第九章核苷酸代谢讲述
生物化学-核苷酸代谢

①二氢叶酸还原酶 ②核苷酸甘氨酰胺 (GAR)转甲酰酶 ③5-甲酰氨基咪唑4-甲酰胺核苷酸 (AICAR0转甲酰 酶
嘌呤核苷酸合成和 嘧啶核苷酸合成
氨蝶呤和甲 氨蝶呤
叶酸
①急性白血病 ②头颈部肿瘤 ③妊娠滋养细 胞瘤 ④成骨肉瘤 ⑤淋巴癌 ⑥肝癌 ⑦乳腺癌 ⑧卵巢癌
嘌呤核苷酸合成
部分核苷酸代谢类似物的临床应用
原 因
调节失常
遗传缺陷
临床特点
嘌呤产生和排谢过多
遗传类型
x-染色体连锁隐性 遗传
1.嘌呤核苷酸代谢障碍
Lesch-Nyhan HGPRT 综合征
嘌呤产生排泄多,脑性瘫痪、 x-染色体连锁隐性 自毁容貌症 遗传
免疫缺陷症, ①腺苷脱氨酶
②嘌呤核苷磷酸化酶 肾结石 黄嘌呤尿 APRT 黄嘌呤氧化酶
遗传缺陷
氮杂丝氨酸 5-氨基咪唑-4甲酰胺核苷酸 腺嘌呤 次黄嘌呤 鸟嘌呤 甲酰甘氨咪 核苷酸
部分核苷酸代谢类似物的临床应用
药物名称 正常代谢物 治疗的疾病 ①白血病 ②自身免疫性病 ③妊娠滋养细胞肿 瘤 主要作用的酶 ①IMP脱氢酶 ②腺苷酸代琥珀 酸合成酶 黄嘌呤氧化酶 作用的代谢途径 嘌呤核苷酸合成 6-巯基嘌呤 嘌呤核苷酸
第二节 核酸的降解与核苷酸代谢
食物核蛋白
一、 核 酸 与 核 苷 酸 降 解
第九章核酸的酶促降解及核苷酸代谢

c、UMP转变为CTP
CTP合成酶
UMP UDP UTP
CTP
ATP Gln H2O
嘧啶环上各原子的来源
来自NH3 来自CO2
4
C
N3
C5
C2
C6
1
N
来自天冬氨酸
尿嘧嘧啶+PRPP 尿嘧啶+1-P-核糖 尿嘧啶核苷+ATP
UMP+PPi 尿嘧啶核苷+Pi UMP+ADP
-CH=NH
H-CO-CH2OH -CH= -CH2-CH3
亚氨甲基 甲酰基 甲醇基 次甲基 亚甲基
甲基
一碳基团转移酶的辅酶:FH4 一碳基团四氢叶酸化合物的结构和命名
叶酸和 四氢叶酸(FH4)
叶 酸
四
氢
H
叶
10
酸
5
H
CHOCH2
N5N,5-NC1H0-OC-HF2H-F4 H4
一碳基团的 S-腺苷蛋氨酸 来源与转变
参与 甲基化反应
N5-CH2-FH4
丝氨酸 FH4
NAD+
NDAH+H+ N5 , N10 -CH2-FH4还原酶
N5 N10 - CH2-FH4
为胸腺嘧啶合 成提供甲基
NAD+ NDAH+H+
N5 , N10 -CH2-FH4脱氢酶
组氨酸 FH4 苷氨酸
N5, N10 = CH-FH4
参与嘌呤合成
核酸的酶促降解和核苷酸代谢
本章重点讨论核酸酶的类别和特点,对核 苷酸的生物合成和分解代谢作一般介绍。
第一节 核酸的酶促降解 第二节 核苷酸的分解代谢 第三节 核苷酸的合成代谢
生物化学之核苷酸代谢

生尿酸,同时补救途径不通会引起嘌呤核苷
酸从头合成速度增加,更加大量累积尿酸, 从而导致肾结石和痛风
3、脱氧核苷酸的生成
O P -P O N 核糖核苷酸还原酶 OH
硫 化 原 白 氧 还 蛋
CH2
O P -P CH2 O
N
OH NDP
SH
硫 化 原 白 氧 还 蛋
OH S S
H dNDP
SH 硫氧化还原蛋白还原酶 NADP NADP H
次黄嘌呤核苷酸 IMP
ATP和GTP的生成
HOOCCH CHCOOH 2 O C C N O OH OH C N N CH GTP Asp H N P O CH2 HC NH C C N O OH OH OH 腺苷酸代琥珀酸 OH C N N CH 延胡索酸 HC P O CH2 N O C N CH
Glu
P O CH2 OH
OH
OH
XMP
GMP
(Xanthosine monophosphate)
嘌呤核苷酸从头合成的调节
原则之一:满足需求,防止供过于求。
(-) (+) R-5-P
PRPP合 成 酶
(-) (+) PRPP (-) PAR (-) IMP XMP (-) GMP GDP GTP
次黄嘌呤
6-巯 基 嘌 呤 6MP (6-mercaptopurine)
SH
OH H N HC P O CH2 OH C C N O OH C N N CH H N HC P O CH2 OH
C C N O OH C N N CH
次 黄 嘌 呤 核 苷 酸 (IMP)
6-巯 基 嘌 呤 核 苷 酸
嘌呤核苷酸的抗代谢物-2
生物化学第九章-核苷酸代谢

第九章核苷酸代谢一、核苷酸类物质的生理功用:核苷酸类物质在人体内的生理功用主要有:①作为合成核酸的原料:如用ATP,GTP,CTP,UTP合成RNA,用dA TP,dGTP,dCTP,dTTP合成DNA。
②作为能量的贮存和供应形式:除ATP之外,还有GTP,UTP,CTP等。
③参与代谢或生理活动的调节:如环核苷酸cAMP和cGMP作为激素的第二信使。
④参与构成酶的辅酶或辅基:如在NAD+,NADP+,FAD,FMN,CoA中均含有核苷酸的成分。
⑤作为代谢中间物的载体:如用UDP携带糖基,用CDP携带胆碱,胆胺或甘油二酯,用腺苷携带蛋氨酸(SAM)等。
二、嘌呤核苷酸的合成代谢:1.从头合成途径:利用一些简单的前体物,如5-磷酸核糖,氨基酸,一碳单位及CO2等,逐步合成嘌呤核苷酸的过程称为从头合成途径。
这一途径主要见于肝脏,其次为小肠和胸腺。
嘌呤环中各原子分别来自下列前体物质:Asp → N1;N10-CHO FH4 → C2 ;Gln → N3和N9 ;CO2 → C6 ;N5,N10=CH-FH4 → C8 ;Gly → C4 、C5 和N7。
合成过程可分为三个阶段:⑴次黄嘌呤核苷酸的合成:在磷酸核糖焦磷酸合成酶的催化下,消耗ATP,由5'-磷酸核糖合成PRPP(1'-焦磷酸-5'-磷酸核糖)。
然后再经过大约10步反应,合成第一个嘌呤核苷酸——次黄苷酸(IMP)。
⑵腺苷酸及鸟苷酸的合成:IMP在腺苷酸代琥珀酸合成酶的催化下,由天冬氨酸提供氨基合成腺苷酸代琥珀酸(AMP-S),然后裂解产生AMP;IMP也可在IMP脱氢酶的催化下,以NAD+为受氢体,脱氢氧化为黄苷酸(XMP),后者再在鸟苷酸合成酶催化下,由谷氨酰胺提供氨基合成鸟苷酸(GMP)。
⑶三磷酸嘌呤核苷的合成:AMP/GMP被进一步磷酸化,最后生成A TP/GTP,作为合成RNA的原料。
ADP/GDP则可在核糖核苷酸还原酶的催化下,脱氧生成dADP/dGDP,然后再磷酸化为dATP/dGTP,作为合成DNA的原料。
第九章 核苷酸代谢

图9-7
嘧啶的元素来源
(2)嘧啶核苷酸从头合成的特点 嘧啶核苷酸从头合成途径不同于嘌呤核苷酸 的合成。其特点是: ①合成所需要的酶系大多在胞液内,但个别酶 如二氢乳清酸脱氢酶则位于线粒体内。 ②合成从CO2和谷氨酰胺开始,经6步反应先合 成出尿嘧啶核苷酸(UMP)。 ③由UMP出发再合成其它的嘧啶核苷酸。
2) 嘧啶核苷酸的负性调节同样由合成产物的反 馈抑制进行调节。主要集中在对4个关键酶的反 馈抑制上。
第一个关键酶是氨基甲酰磷酸合成酶Ⅱ (CPSⅡ),由UMP反馈抑制。 第二个关键酶是天冬氨酸转氨基甲酰酶 (CAT),由UMP和CTP反馈抑制。
第三个关键酶是磷酸核糖焦磷酸激酶 (OPRT),由ADP和GDP反馈抑制。 第四个关键酶是CTP合成酶(CTPS),由CTP反 馈抑制。CTP对天冬氨酸转氨酶的反馈调节为变 构调节。该酶有6个催化亚基和6个调节亚基。当 CTP浓度升高时,CTP就与调节亚基结合,使调节 亚基和催化亚基逐步变构,从而使酶由活性状态 逐步转变为无活性状态,实现反馈抑制调节。
图9-3
嘌呤核苷酸的从头合成
图9-4
由IMP合成AMP和GMP
(5) 嘌呤核苷酸从头合成的调节 细胞和机体能够对嘌呤核苷酸的从头合成 进行调节,以保持细胞和机体内相对稳定的嘌呤 核苷酸供应。嘌呤核 苷酸从头合成的调节包 括正性调节和负性调节两种方式。 正性调节是指促进嘌呤核苷酸合成的调节。 而负性调节是指抑制嘌呤核苷酸合成的调节。
1)正性调节表现为前后两端调节 前端正性调节主要是对两个关键酶的促进作用。这 两个关键酶是PRPPK和GPAT,底物ATP、5’-磷酸核糖和 PRPP分别促进其活性,增加IMP的合成。 后端正性调节主要是由ATP促进GMP合成酶和GTP促 进腺苷酸代琥珀酸合成酶这两个关键酶的活性,增加 GTP和ATP的合成。
生物化学_09 核酸降解和核苷酸的代谢

IMP转变为GMP和 转变为GMP (3)IMP转变为GMP和AMP
2、 补救途径
(利用已有的碱基和核苷合成核苷酸) (1) 磷酸核糖转移酶途径(重要途径)
核苷磷酸化酶
嘌呤核苷 + 磷酸 腺嘌呤 + 5-PRPP
次黄嘌呤(鸟嘌呤) 磷酸核糖转移酶
嘌呤碱 + 戊糖-1-磷酸 AMP + PPi
腺嘌呤磷酸核糖转移酶
基因组DNA 基因组 不被切割
限制—修饰的酶学假说 限制 修饰的酶学假说 1968年,Meselson 和Yuan发现了 型限制性核酸内切酶 年 发现了I型限制性核酸内切酶 发现了 1970年,Smith和Wilcox从流感嗜血杆菌中分离纯化了 年 和 从流感嗜血杆菌中分离纯化了 第一个II型限制性核酸内切酶 第一个 型限制性核酸内切酶Hind II 型限制性核酸内切酶
(2)尿嘧啶核苷酸的合成 )
天冬氨酸转氨甲酰酶 二氢乳清酸酶
乳清苷酸焦磷酸化酶/Mg2+ 二氢乳清酸脱氢酶
乳清苷酸脱羧酶
(3) 胞嘧啶核苷酸的合成
尿嘧啶核苷三磷酸可直接与NH3(细菌)或Gln(动物) 细菌) 尿嘧啶核苷三磷酸可直接与 (动物) 反应,生成胞嘧啶核苷三磷酸。 反应,生成胞嘧啶核苷三磷酸。
二、脱氧核糖核酸酶
只能水解DNA磷酸二酯键的酶。 只能水解DNA磷酸二酯键的酶。 DNA磷酸二酯键的酶 牛胰脱氧核糖核酸酶(DNaseⅠ) 牛胰脱氧核糖核酸酶(DNaseⅠ): 可切割双链和单链DNA 降解产物为3 DNA, 可切割双链和单链 DNA, 降解产物为 3’ - 磷酸 为末端的寡核苷酸。 为末端的寡核苷酸。 限制性核酸内切酶: 限制性核酸内切酶: 细菌产生的、能识别并特异切割外源DNA DNA特定 细菌产生的 、 能识别并特异切割外源 DNA 特定 中的磷酸二脂键( 序列中的磷酸二脂键 对碱基序列专一) 序列中的磷酸二脂键(对碱基序列专一)的核酸内 切酶。 切酶。
核酸的降解

第九章核酸的酶促降解和核苷酸代谢核酸在生物体内核酸酶、核苷酸酶、核苷酶等的作用下,分解为氨、尿素、尿囊素、尿囊酸、尿酸等终产物,排泄到体外。
在核酸的分解过程中,产生的核糖可以沿磷酸戊糖途径代谢,产生的核苷酸及其衍生物几乎参与细胞的所有生化过程。
如A TP是生物体内的通用能源;腺苷酸还是几种重要辅酶的组成成分;cAMP和cGMP作为激素作用的第二信使,是生物体内物质代谢的重要调节物质。
第一节核酸的分解代谢动物和异养型微生物可以分泌消化酶来分解食物中的核蛋白和核酸类物质,以获得各种核苷酸、核苷及嘌呤碱、嘧啶碱和戊糖。
植物一般不能消化体外的有机物质。
但所有生物细胞都含有与核酸代谢有关的酶类,能使细胞内的核酸分解,促使核酸更新。
在体内,核酸的分解过程如下:嘌呤碱和嘧啶碱+ 戊糖—1—磷酸。
一、核酸的降解(解聚)在生物体内能催化磷酸二酯键水解而使核酸解聚的酶,称为核酸酶。
其中专一作用于RNA的称为核糖核酸酶(RNase);专一水解DNA的称为脱氧核糖核酸酶(DNase)。
核糖核酸酶和脱氧核糖核酸酶中,能水解核酸分子内部磷酸二酯键的酶称为核酸内切酶(Endonuclease);而能从DNA或RNA以及低聚多核苷链的一端逐个水解下单核苷酸的酶称为核酸外切酶(Exonuclease)。
二、核苷酸的降解各种单核苷酸受细胞内磷酸单酯酶或核苷酸酶的作用水解为核苷和磷酸。
核苷在核苷酶的作用下进一步分解。
核苷酶的种类很多,可以分为两大类:一类是核苷磷酸化酶(Nucleoside Phosphorylase),一类是核酸水解酶(Nucleoside hydrolase)。
三、碱基的分解1.嘌呤的分解嘌呤碱的分解首先是在各种脱氨酶的作用下脱去氨基。
在许多动物体内广泛含有鸟嘌呤脱氨酶,可以催化鸟嘌呤水解脱氨生成黄嘌呤。
但腺嘌呤脱氨酶含量极少,而腺苷脱氨酶和腺苷酸脱氨酶活性很高。
因此,腺嘌呤的脱氨反应是在腺苷酸和腺苷的水平上进行的。
专科(生物化学)第9章 核苷酸代谢

酸提供氨基合成腺苷酸代琥珀酸(AMP-S),然后
裂解产生AMP;
• IMP也可在IMP脱氢酶的催化下,以NAD+为受氢体,
脱氢氧化为黄嘌呤核苷酸(XMP),后者再在鸟苷 酸合成酶催化下,由谷氨酰胺提供氨基合成鸟苷酸 (GMP)。
2、AMP和GMP的生成
HOOCCH2CHCOOH
NH2 NH C N C N C 延胡索酸 N HN C CH CH HC C N N HC C 腺苷酸代琥珀 N N R-5'-P
1.嘌呤类似物:
6-巯基嘌呤(6MP)、6-巯基鸟嘌呤、 8-氮杂鸟嘌呤
其中, 6MP临床应用较多.其化学结构与次黄嘌
呤相似,并可在体内转变成6MP核苷酸.因而可抑 制IMP转变为AMP及GMP;可通过竞争性抑制影 响次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)而 阻止了补救合成途径;还可反馈抑制PRPP酰基转
MTX
AICAR FAICAR
6MP
IMP
AMP
PPi
A
PRPP
6MP
GMP
PPi
I G
PRPP
氮杂丝氨酸
嘌呤核苷酸抗代谢物的作用
6MP
二、
嘧啶核苷酸的合成
合成途径:
从头合成
补救合成
嘧啶核苷酸的结构
(一)嘧啶核苷酸的从头合成
•定义
嘧啶核苷酸的从头合成是指利用磷
酸核糖、氨基酸、二氧化碳等简单物
2.体内某些组织器官,如脑、骨髓等只能进行补
救合成。
(基因缺陷导致HGPRT完全缺乏的患儿,表现为自
毁容貌征或称: Lesch-Nyhan综合征 )
1、病因:
自毁容貌症(Lesch-Nyhan综合症)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
腺苷酸(AMP)与鸟苷酸(GMP)的合成
GDP + Pi
Asp + GTP
AMP-S
IMP
腺苷酸代琥 琥珀酸合成酶
延胡索酸
AMP
腺苷酸代琥 琥珀酸裂解酶
5.某些化合物合成的前体物:CTP时辅因子四
氢叶酸蝶呤合成的前体物,也为mRNA的帽子结构 提供合成原料。
6.酶的变构调节剂和为酶的共价修饰提供磷 酸基:许多酶通过磷酸化和去磷酸化进行共价修
饰,ATP为其提供磷酸基;
7.作为代谢中间物的载体:如用UDP携带糖基,
用CDP携带胆碱,乙醇胺或甘油二酯,用腺苷携带 蛋氨酸(形成SAM)等。
用于合成RNA,dATP,dGTP,dCTP,dTTP用于 合成DNA。
2. 能量贮存和供应的载体:除ATP之外,还
有GTP,UTP,CTP等。
3.生理调节介质:如环核苷酸cAMP和cGMP作为
激素的第二信使。
4. 辅酶的组成成分:如在NAD+,NADP+,FAD,
FMN,CoA中均含有核苷酸的成分。
第九章 核苷酸代谢
Chapter 9 Metabolism of nucleotides
第十章 核苷酸的代谢
第一节 核苷酸的功能 第二节 核苷酸的合成与分解 一、嘌呤核苷酸的代谢 二、嘧啶核苷酸的代谢 三、脱氧核苷酸的合成 四、核苷二、三磷酸的合成 第三节 核苷酸的代谢障碍和抗代谢物 一、核苷酸的代谢障碍 二、抗代谢物
IMP脱氢酶
H2O + NAD+
XMP
鸟苷酸合成酶
GMP
NADH + H+
Gln + ATP
Glu + AMP + PPi
嘌呤核苷酸从头合成的调节
➢嘌呤核苷酸合成的底物和产物的激活作用 ➢嘌呤核苷酸合成产物的反馈抑制作用
__ +
+
R-5-P PRPP合成酶
酰胺转移酶
PRPP
_PRA
ATP
_
_
腺苷酸代 琥珀酸
ura cil
(二)戊糖
΄
΄
΄
΄΄
΄
΄
΄
΄΄
β-D-核糖
核糖 (Ribose) 构成 RNA
H
β-D-2-脱氧核糖
脱氧核糖 (Deoxyribose) 构成 DNA
dAMP
dGMP
dTMP
dCMP
AMP
GMP
UMP
CMP
• 核苷酸(nucleotide)是构成核酸(nucleic acid)的基本单位,人体所需的核苷酸都是由 机体自身合成的。
1.从头合成途径:
(1) (2)
(次黄嘌呤)
⑴ 次黄嘌呤苷酸(IMP)的合成:
• 首先在磷酸核糖焦磷酸合成酶的催化下,消耗 ATP,由5-磷酸核糖合成PRPP(1-焦磷酸-5-磷酸 核糖)。
• PRPP再经过大约10步反应,合成第一个嘌呤核 苷酸——次黄嘌呤苷酸(IMP)。
次黄嘌呤苷酸(IMP)的合成
3. 嘌呤核苷酸的分解代谢
核苷酸酶
脱氨酶
核苷酶
AMP
腺苷
次黄苷
次黄嘌呤
H2O Pi
H2O NH3
Pi R-1-P
黄嘌呤 氧化酶
核苷酸酶
GMP
鸟苷
核苷酶
鸟嘌呤
鸟嘌呤酶 黄嘌呤
H2O Pi
Pi R-1-P
H2O NH3
尿酸
• 尿酸是嘌呤核苷酸在人体内分解代谢的终产物。 • 正常人血浆中尿酸含量约为0.12-0.36mmol/L
(一)碱基 (base)
嘧啶
嘌呤
(A)
腺嘌呤
(G)
鸟嘌呤
(C)
胞嘧啶
(T)
胸腺嘧啶
(U)
尿嘧啶
O
HN
N
NN H
Hypoxant hi ne
H3 C CH3 N
N
N
NN H
N 6-Dime thylade nine
N H2
N
CH3
ON
H 5- Me t hyl cy tosi ne
O
HN
ON
H 5, 6-Di hyro -
ATP
AMP
R-5-P
PRPP
(5-磷酸核糖) PRPP合成酶 (5-磷酸核糖-1-焦磷酸)
在谷氨酰胺、甘氨酸、 一碳单位、二氧化碳 及天冬氨酸的参与下, 逐步合成
IMP
⑵ 腺苷酸及鸟苷酸的合成:
• IMP在腺苷酸代琥珀酸合成酶的催化下,由天冬氨酸提 供氨基合成腺苷酸代琥珀酸(AMP-S),然后裂解产生 腺苷酸(AMP)。
合成途径(de novo synthesis)。
• 这一途径主要见于肝,其次为小肠和胸腺。 所有合成 反应在胞液中进行。
嘌呤碱合成的元素来源
天冬氨酸
甲酰基 (N10-CHO FH4)
CO2 甘氨酸
甲酰基 (N5,N10-CH=FH4)
谷氨酰胺 (酰胺基)
嘌呤核苷酸从头合成的特点:
① 胞液 ② 5’-磷酸核糖(5’-PR)为原料,经11步反 应生成IMP。 ③ 由氨基酸,CO2,一碳单位提供元素或基 团在5’-PR 分子上完成合成碱基合成。 ④ 从IMP出发再合成AMP和GMP。
8.核苷或核苷酸及其代谢中间体的类似物可 作为抗代谢物:
第二节 核苷酸的合成与分解
(Metabolism of Nucleotides)
一、嘌呤核苷酸的合成代谢
(一)嘌呤核苷酸的从头合成:
• 通过利用一些简单的前体物,如5-磷酸核糖,氨基酸, 一碳单位及CO2等,逐步合成嘌呤核苷酸的过程称为从头
AMP ADP ATP
IMPห้องสมุดไป่ตู้
XMP GMP GDP GTP
_
腺苷酸代
AMP
IMP
琥珀酸
GTP
+
XMP _ATP
+GMP
ADP GDP
ATP GTP
2. 嘌呤核苷酸的补救合成
在酶的催化下,由PRPP的磷酸核糖部分与嘌呤碱 基结合形成核苷酸或由核苷经激酶催化形成核苷酸的 一步合成反应。
酶: • 腺嘌呤磷酸核糖转移酶
• 食物中的核酸或核苷酸类物质基本上不能被人 体所利用。在核酸类物质的水解产物中,只有 磷酸和戊糖可被吸收利用。
食物中核酸的消化
胃 核蛋白
HCl
蛋白质
小肠
小肠
核酸
单核苷酸
胰核酸酶
核苷酸酶
磷酸 小肠
核苷 核苷酶
戊糖 含氮碱
第一节 核苷酸的功能
Functions of Nucleotides
1. 核酸的构成单位:如ATP,GTP,CTP,UTP
(adenine phosphoribosyl transferase, APRT)
• 次黄嘌呤-鸟嘌呤磷酸核糖转移酶
(hypoxanthine-guanine phosphoribosyl transferase, HGPRT)
• 腺苷激酶(adenosine kinase)
HGPRT缺乏-----自毁容貌症 (Lesh-Nyhan综合症)