建立二次函数模型解决实际问题

合集下载

二次函数解决实际问题

二次函数解决实际问题

二次函数解决实际问题【文章主题】二次函数解决实际问题【引言】二次函数是高中数学中的重要概念,它可以用来解决各种实际问题。

二次函数不仅具有图像美观和数学特性丰富的优点,还能够帮助我们解决现实生活中的一系列实际问题。

本文将深入探讨二次函数对于解决实际问题的具体应用,并结合示例来进一步加深理解。

【正文】1. 什么是二次函数?二次函数是一种具有形式为y = ax^2+bx+c的函数,其中a、b、c 为常数,且a不等于0。

它的图像通常呈现出一个开口向上或向下的U型曲线,称为抛物线。

二次函数的解析式和图像特性使得它成为解决实际问题的有力工具。

2. 二次函数的实际问题应用2.1 抛物线的轨迹由于二次函数具有抛物线形状,因此它在物理学中的应用非常广泛。

在炮弹的抛射问题中,我们可以利用二次函数来描述弹道的形状和轨迹,从而计算出炮弹的射程、最高点和最大高度等重要参数。

二次函数还可以应用于天体运动的研究、桥梁设计的拱形以及运动物体的轨迹预测等领域。

2.2 最值问题二次函数在经济学和管理学中也有广泛的应用,尤其是涉及利润、成本和收益等问题。

在销售决策中,我们可以建立一个二次函数模型来找到最大利润所对应的产量或价格,从而为企业的营销活动提供科学依据。

二次函数还能够帮助我们解决最小成本和最大效益的问题,为管理决策提供指导。

2.3 预测与优化问题二次函数在预测和优化问题中也有重要应用。

在金融领域,我们可以利用二次函数来建立股票价格的模型,预测未来趋势和价格波动。

二次函数还可以用于优化问题,例如最佳化分工与生产,最佳投资组合等。

3. 示例分析为了更好地理解二次函数解决实际问题的应用,我们以一个典型例子进行分析。

假设有一块田地,面积为1000平方米,现在需要修建一个矩形花坛在田地中。

我们想要找到面积最大的花坛。

我们需要建立数学模型。

设田地的长为x米,宽为(1000/x)米,花坛的面积为A(x) = x*(1000/x) = 1000米^2。

考点08 二次函数实际应用问题的7大类型-原卷版 2023-2024学年九年级数学考点归纳与解题策略

考点08 二次函数实际应用问题的7大类型-原卷版 2023-2024学年九年级数学考点归纳与解题策略

考点08 二次函数实际应用问题的7大类型1 围栏篱笆图形类问题的解决方法几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.面积的最值问题应设图形的一边长为自变量,所求面积为函数,建立二次函数的模型,利用二次函数有关知识求得最值,要注意函数自变量的取值范围.一般涉及到矩形等四边形问题,把图形的面积公式掌握,把需要用到的边和高等用未知数表示,即可表示出面积问题的二次函数的关系式,通过最值问题的解决方法,即可求出最值等问题,注意自变量的取值范围问题。

2 图形运动问题的解决思路此类问题一般具体分析动点所在位置,位置不同,所求的结果也不一样,一般把每一段的解析式求出来,根据解析式判断函数类型,从而判断图像形状。

3 拱桥问题的解决方法◆1、建立二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.◆2、建立二次函数模型解决实际问题的一般步骤:(1)根据题意建立适当的平面直角坐标系;(2)把已知条件转化为点的坐标;(3)合理设出函数解析式;(4)利用待定系数法求出函数解析式;(5)根据求得的解析式进一步分析、判断并进行有关的计算.4 销售问题◆1、销售问题中的数量关系:销售利润=销售收入﹣成本;销售总利润=销售量×单价利润◆2、求解最大利润问题的一般步骤:(1)建立利润与价格之间的函数关系式:运用“总利润 = 单件利润×总销量”或“总利润 = 总售价 - 总成本”;(2)结合实际意义,确定自变量的取值范围;(3)在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.◆3、在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.5 投球问题的解决方法此类问题一般需要建立平面直角坐标系,设定好每个点的坐标,分析好题目中的每句话的含义是解决这类问题的关键,有排球、足球、高尔夫球、篮球等,首先根据已知条件确定设定的解析式形式,求出解析式,再根据题意了解问题所求的实质是什么求出即可。

二次函数在实际生活中的应用及建模应用

二次函数在实际生活中的应用及建模应用

二次函数的建模 知识归纳:求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.一、利用二次函数解决几何面积最大问题1、如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。

(1)设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的函数关系式;(2)当x 为何值时,所围成的苗圃面积最大?最大面积是多少?解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得: x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴⎩⎨⎧- (自变量x 的取值范围是关键,在几何类题型中,经常采用的办法是:利用含有自变量的加减代数式的边长来确定自变量的取值范围,例如上式中,18-x ,就是含有自变量的加减代数式,考虑到18-x 是边长,所以边长应该>0,但边长最长不能超过18,于是有0<18-x <18,0<x <18)(2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y 有最大值, 即当9)1(2182=-⨯-=-=a b x 时, 81)1(41804422max =-⨯-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。

点评:在回答问题实际时,一定注意不要遗漏了单位。

2、如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。

问如何围,才能使养鸡场的面积最大?解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x-)(米),根据题意,得:x x x x y 2521)250(2+-=-=; 又∵500,02500<x<>x x >∴⎪⎩⎪⎨⎧- ∵x x x x y 2521)250(2+-=-=中,a=21-<0,∴y 有最大值,即当25)21(2252=-⨯-=-=a b x 时,2625)21(42504422max =-⨯-=-=a b ac y 故当x=25米时,养鸡场的面积最大,养鸡场最大面积为2625平方米。

如何根据实际问题建立二次函数的模型

如何根据实际问题建立二次函数的模型

如何根据实际问题建立二次函数的模型在学习二次函数的有关知识的时候,对于二次函数基础知识的学习告一段落之后,就进行二次函数的有关知识来解决实际问题,这就要求学生要会灵活运用二次函数的基本知识,讲实际问题中的数量关系转化成二次函数中的自变量和函数,建立二次函数模型。

经过多次的讲解和训练,我发现,这是我在教学中的一个教学难点,也是学习中的一个学习难点。

比如我在讲销售利润类型题目的时候,讲过很多类似的题型,可是学生就是不知道如何解相似类型的题型,即使知道怎么解决的,有时候也是丢三拉四,忘记这点,忘记那点,回答问题不全面。

如题:某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件,如果没见涨价1元(售价不可以高于45元),那么每星期少卖出10件,设每件涨价x元(x为非负整数),每星期销量为y元(1):求y与x的函数关系及自变量x的取值范围(2)如何定价让每星期的利润最大且销售量较大?每星期最大利润是多少?通过对学生解答情况的分析,主要问题出现在以下几点:第一:第一问中的函数与自变量的关系,很多同学题目都没有看完,就直接把利润当成函数y,结果导致错误。

原因在于学生没有认真审题。

第二:公式的运用,总利润=(售价-进价)*销售量。

有很多学生不记公式,导致做题的时候不知道怎么表示函数关系。

第三:还有同学就是记得公式,但却不知道如何表示销售量,涨价和销售量之间不知道如何建立函数关系。

这就需要平时加强这方面的训练,还要自己总结归纳,才能有所感,有所收获。

第四:在第二问的时候忽略了X是非负整数,这个重要条件。

导致在最后什么都对的情况下,忽略这一条件而功亏一篑。

这也是没有认真审题的原因导致。

第五:在注意X是非负整数的情况下,很多同学又忽略了最后最值得问题,既然X是非负整数,那么当最后X=2或3时,最值就是在自变量为2和3时,函数的值。

而很多同学依然用函数的顶点纵坐标来作为最值,就是大错特错。

通过对学生的考查,我总结出以下几点对策,来帮助学生灵活运用二次函数的基本知识根据实际问题建立二次函数模型,从而达到解决实际问题的目的。

26.3.1 建立二次函数模型解决实际问题 课件(共20张PPT)华东师大版数学九年级下册

26.3.1  建立二次函数模型解决实际问题 课件(共20张PPT)华东师大版数学九年级下册
直角坐标系中,水流喷出的高度y(m)与水平距 离x(m)之间的函数关系式是 y x2 2x 5 .
4
y x2 2x 5 4
(1)喷出的水流距水平面的最大高度是多少?
(2)y x2 2x 5 x 12 Nhomakorabea94
4
9
当x=1时, y最大 4 .
∴ 喷出的水流距水平面的最大高度是 9 .
D或E的坐标
抛物线的函 数表达式
可设抛物线表达式 为 y=ax2(a<0)
顶点在原点 对称轴为y轴 开口向下
问题2
一个涵洞的截面边缘是抛物线,如图所示.
现测得当水面宽AB=1.6m时,涵洞顶点与水面
的距离为2.4 m. 这时,离开水面1.5 m处,涵洞
宽ED是多少?是否会超过1 m?
解:设涵洞的横截面所成抛物线表达式为 y=ax2(a<0)
∵ AB=1.6m , ∴ CB AB 0.8 m 又由题可知OC=2.4 m, 2
∴点B的坐标是(0.8,-2.4) 代入y=ax2(a<0) ,得-2.4=a×0.82
∴ a 15 因此,函数关系式是 y 15 x2
4
4
问题2
一个涵洞的截面边缘是抛物线,如图所示.
现测得当水面宽AB=1.6m时,涵洞顶点与水面
所以涵洞宽ED是 2 10 ,超过1m. 5
练 练习 习
如图,一个横截面为抛物线形的隧道底部宽12 m、高6 m. 车辆双向
通行,规定车辆必须在中心线两侧、距离道路边缘2 m的范围内行驶,
并保持车辆顶部与隧道有不少于 1
3
m的空隙.
你能否根据这些要求,建立适当的平面直角
坐标系,应用已有的函数知识,确定通过隧
(1)写出出售该商品每天所得的利润y(元)与售价x(元/件)之间的函数 关系式. 利润=(售价-进价)×售出件数

二次函数的应用案例总结

二次函数的应用案例总结

二次函数的应用案例总结二次函数是一种常见的数学函数形式,它的形式为:y = ax^2 + bx + c。

在现实生活中,二次函数可以用于解决各种问题,包括物理、经济、工程等领域。

本文将总结几个常见的二次函数应用案例,以展示二次函数的实际应用。

案例一:物体自由落体的高度模型假设一个物体从高处自由落体,忽略空气阻力,我们可以用二次函数来表示物体的高度与时间之间的关系。

设物体初始高度为H,加速度为g,时间为t。

根据物理定律,物体的高度可以表示为:h(t) = -0.5gt^2 + H。

这个二次函数模型可以帮助我们计算物体在任意时间点的高度,并可以用于预测物体何时落地。

案例二:销售收入和定价策略假设一个公司生产和销售某种产品,销售价格为p(单位:元),销售量为q(单位:件)。

二次函数可以用于建立销售收入与定价策略之间的模型。

设定售价的二次函数为:R(p) = -ap^2 + bp + c,其中a、b、c为常数。

我们可以通过分析二次函数的图像、求解极值等方法,确定最佳售价,以使得销售收入最大化。

案例三:桥梁设计中的弧线形状在桥梁设计中,常常需要确定桥梁的弧线形状,以使得车辆在桥上行驶时感到平稳。

二次函数可以用来描述桥梁的曲线形状。

设桥梁的弧线形状为y = ax^2 + bx,其中x表示桥梁长度的一半,y表示桥梁的高度。

通过调整参数a和b,可以得到不同形状的弧线,以满足设计要求。

案例四:市场需求和价格关系分析在经济学中,二次函数可以用于建立市场需求与价格之间的关系模型。

设市场需求量为D,价格为p。

根据经济理论,市场需求可以表示为:D(p) = ap^2 + bp + c,其中a、b、c为常数。

通过分析二次函数的图像、求解极值等方法,可以研究市场需求和价格之间的关系,得出不同价格下的市场需求量。

综上所述,二次函数在物理、经济、工程等领域中具有广泛的应用。

通过建立二次函数模型,我们可以更好地理解和解决各种实际问题。

利用二次函数解决问题步骤

利用二次函数解决问题步骤

利用二次函数解决问题步骤正文:
二次函数在数学和实际问题中有着广泛的应用。

利用二次函数解决问题的步骤可以帮助我们更好地理解和解决各种实际情况中的数学难题。

下面将介绍利用二次函数解决问题的一般步骤。

1. 确定问题,首先,需要明确问题的背景和要求,明确所要解决的具体问题是什么,例如寻找最大值、最小值,或者确定某个变量的取值范围等。

2. 建立二次函数模型,根据问题的特点,建立二次函数模型。

二次函数的一般形式为 y = ax^2 + bx + c,其中 a、b、c 分别为二次项系数、一次项系数和常数项。

根据问题的特点,确定二次函数的具体形式。

3. 求解问题,利用二次函数的性质和相关知识,对建立的二次函数模型进行分析和求解。

可以通过求导数、配方法、公式法等方式,找到函数的极值点、零点等关键信息。

4. 验证和解释,在求解出结果后,需要对结果进行验证和解释,确保结果符合实际情况,并能够清晰地解释结果的意义和影响。

5. 应用实际问题,最后,将得到的结果应用到实际问题中,解
决实际情况中的数学难题,验证二次函数的有效性和实用性。

通过以上步骤,我们可以利用二次函数解决各种实际问题,提
高数学建模和问题解决能力,为实际生活和工程技术提供有效的数
学支持。

同时也可以更好地理解和掌握二次函数的性质和应用,为
进一步深入学习数学打下坚实的基础。

利用二次函数解决实际问题

利用二次函数解决实际问题

利用二次函数解决实际问题二次函数是数学中重要的一类函数,它具有许多应用于实际问题的能力。

通过解决二次函数相关的实际问题,我们可以更好地理解和应用这一数学工具。

本文将通过几个实际问题的案例,详细介绍如何利用二次函数解决这些问题。

案例一:抛物线的高度与水平距离的关系假设一个小球以一定的初速度从地面上抛出,并以二次函数描述它的高度与水平距离的关系。

首先,我们可以建立抛物线方程:h = ax² + bx + c其中,h为小球的高度,x为水平距离,a、b、c为常数。

当小球达到最高点时,它的速度为零,根据这一条件,可以求得抛物线的顶点坐标为(-b/2a,c-b²/4a)。

通过这一顶点坐标和给定的初速度,可以解得a、b、c的具体值。

有了这些参数,我们就能方便地计算小球在任意水平距离上的高度。

案例二:曲线拟合与数据预测在实际问题中,我们常常需要通过一些已知数据点来拟合出一个曲线,并利用这个曲线对未知数据进行预测。

二次函数是一种常用的曲线模型,因为它能很好地适应一些非线性的数据分布。

具体做法是,通过最小二乘法来求得二次函数的参数,使得拟合曲线与已知数据点之间的误差最小化。

然后,利用这个拟合曲线,我们就可以对未知数据进行预测。

这一方法在经济预测、气象预报等领域有着广泛的应用。

案例三:最优化问题二次函数也可以应用于最优化问题的求解。

以抛物线形式的二次函数为例,假设我们需要在一条直线上选择一个点,使得它到抛物线的距离最小。

这可以被看作是一个最优化问题,即求解抛物线与直线的最短距离。

我们可以通过求解二次函数和直线的交点来解决这个问题。

具体的求解过程利用了二次函数的性质和一些微积分的知识。

总结:通过上述几个案例,可以看出二次函数在实际问题中的广泛应用。

它可以用于描述抛物线的运动、拟合非线性数据以及求解最优化问题等。

通过解决这些实际问题,我们不仅巩固了对二次函数的理解,也提升了数学在实际应用中的能力。

因此,在学习和应用二次函数时,我们应该注重理论知识和实际问题的结合,这样才能更好地掌握和利用二次函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:建立如图所示的坐标系,根据题意得,A点坐标为(0, 1.25),顶点B坐标为(1,2.25).
y x 12 2.25
数学化
y ●B(1,2.25) A
(0,1.25)

D(-2.5,0) o
●x
C(2.5,0)
设抛物线为y=a(x+h)2+k,由待定系数法可求得抛物线表达式 为:y=- (x-1)2+2.25. 当y=0时,可求得点C的坐标为(2.5,0) ; 同理,点 D的坐标为(-2.5,0) .
A.50m
B.100m
C.160m
D.200m
2.如图,济南建邦大桥有一段抛物线形的拱梁,抛物线的 表达式为y= ax²+bx,小强骑自行车从拱梁一端O沿直线匀 速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时 和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部 分的桥面OC共需3_6____秒.
根据对称性,如果不计其它因素,那么水池的半径至少要 2.5m,才能使喷出的水流不致落到池外.
当堂练习
1.某公园草坪的防护栏是由100段形状相同的抛物线形组 成的,为了牢固起见,每段护栏需要间距0.4m加设一根 不锈钢的支柱,防护栏的最高点距底部0.5m(如图), 则这条防护栏需要不锈钢支柱的总长度至少为(C )
学练优九年级数学上(HK) 教学课件
21.4 二次函数的应用
第2课时 建立二次函数模型解决实际问题
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.能运用二次函数的知识分析解决相关实际问题;(重点) 2.经历探索解决实际问题的过程,进一步获得利用数学方法解决
实际问题的经验; (难点) 3.感受数学建模思想和数学的应用价值.(难点)
x
D B
∵该抛物线过(10,-4),
∴-4=100a,a=-0.04
∴y=-0.04x2.
方法归纳
1.用二次函数解决实际问题,首先要建立好模型,而且所建 的坐标系要是最合适的,不然事倍功半;
2.根据建立好的坐标系求出该函数的解析式; 3.在实际问题中要注意自变量的取值范围内.
典例精析 例:一公园要建造圆形喷水池,在水池中央垂直于水面处安装 一个柱子OA,O恰在水面中心,OA=1.25m,由柱子顶端A处的 喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为 使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到 距水面最大高度2.25m.如果不计其它因素,那么水池的半径至少 要多少m才能使喷出的水流不致落到池外?
导入新课
回顾与思考 问题:解决生活中面积的实际问题时,你会用到什么知识? 所用知识在解决生活中问题时,还应注意哪些问题?
讲授新课
二次函数在建筑问题中的应用
问题:图中是抛物线形拱桥,当拱顶离水面 2 m时,水面 宽 4 m . 水面下降 1 m,水面宽度增加多少?
问题引导 (1)求宽度增加多少需要什么数据? (2)表示水面宽的线段的端点在哪条曲线上? (3)如何求这组数据?需要先求什么? (4)图中还知道什么? (5)怎样求抛物线对应的函数的解析式?
课堂小结
建立二次函数模型解决实际问题的一般步骤: (1)根据题意建立适当的平面直角坐标系; (2)把已知条件转化为点的坐标; (3)合理设出函数解析式; (4)利用待定系数法求出函数解析式; (5)根据求得的解析式进一步分析,判断并进行有关的计算.
“拱桥”问题
问题:如何建立直角坐标系?
y
解:如图建立直角坐 标系.
l
oHale Waihona Puke x问题:解决本题的关键是什么? 解:建立合适的直角坐标系.
解:如图建立直角坐标系.
y
根据题意可设该拱桥形成
的抛物线的解析式为
y=ax2+2.
∵该抛物线过(2,0),
l
x
o
x
∴0=4a+2,a= 1 2
y 1 x2 2. 2
∵水面下降1m,即当y=-1时, x 6 ,
∴水面宽度增加了 2 6 4 米.
练一练
有一座抛物线形拱桥,正常水位时桥下水面宽度为 20 m,拱 顶距离水面 4 m.
如图所示的直角坐标系中,求出这条抛物线表示的函数的解
析式;
C A
y O
h 20 m
解:设该拱桥形成的抛
物线的解析式为y=ax2.
相关文档
最新文档