建立二次函数模型

合集下载

二次函数的应用于医学问题

二次函数的应用于医学问题

二次函数的应用于医学问题在医学领域,二次函数是一种经常被使用的数学模型,它可以帮助研究人员分析和解决各种与身体机能和疾病相关的问题。

本文将探讨二次函数在医学问题中的应用,并通过具体案例来说明其在这一领域中的重要性和价值。

一、体温变化的二次函数模型体温是衡量身体状况的重要指标之一,二次函数可以很好地描述体温的变化规律。

我们以发烧为例,假设一个人在发烧前体温为正常值37℃,发烧后体温开始升高,并在一定时间后达到峰值。

然后体温逐渐下降,恢复到正常水平。

设t为时间(单位小时),T为体温(单位℃),我们可以建立如下的二次函数模型:T = a(t - t0)^2 + T0其中,a代表发烧的严重程度和恢复的速度,t0为发烧开始的时间,T0为发烧前的体温水平。

通过调整参数a、t0和T0的值,我们可以根据实际数据去拟合体温变化曲线,进而预测病情的发展趋势以及恢复时间。

二、血糖变化的二次函数模型血糖是糖尿病患者关注的重点指标之一,也可以使用二次函数进行建模。

在某些情况下,糖尿病患者的血糖水平可能会出现波动,特别是在餐后。

通过建立血糖变化的二次函数模型,可以更好地了解血糖的变化规律,以便根据实际情况进行药物管理和饮食调节。

例如,假设一个糖尿病患者在进食后血糖水平开始上升,并在一定时间后达到最高峰值,然后逐渐下降返回基准水平。

可以使用如下的二次函数模型来描述血糖的变化过程:G = a(t - t0)^2 + G0其中,G代表血糖水平,a代表血糖的波动幅度,t0为进食后的时间,G0为进食前的基准血糖水平。

通过调整参数a、t0和G0的值,可以更准确地预测血糖的变化趋势,从而帮助患者更好地管理疾病。

三、药物浓度的二次函数模型在药物治疗过程中,了解药物在体内的浓度变化对于确定药物的用量和用时非常重要。

二次函数可以帮助模拟和预测药物浓度的变化。

设t表示时间(单位小时),C表示药物在血液中的浓度(单位毫克/升),可以构建以下二次函数模型:C = a(t - t0)^2 + C0其中,a表示药物的分布速度和排泄速度,t0表示药物给药的时间,C0表示给药前的血药浓度。

第十二课时建立二次函数模型

第十二课时建立二次函数模型

第十二课时教学内容:建立二次函数模型(P21-22)教学目标1、通过探索得出二次函数的概念。

2、熟练地把二次函数化成一般式,并分清二次项、一次项及其系数和常数。

教学重点和难点教学重点:二次函数的概念。

教学难点:二次函数y=ax2+bx+c中的隐含条件a≠0的应用。

教学方法启发式。

教学手段投影仪、投影片。

教学过程一、创设问题情境,探索建立二次函数模型。

(出示投影1)动脑筋:问题一:植物园的面积随着砌法的不同怎样变化?学校准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形植物园,如图2—1所示,现在已备足可以砌100m长的墙的材料,大家来讨论对应于不同的砌法,植物园的面积会发生什么样的变化。

有没有一种统一的以包括一切可能砌法的探讨方法呢?学生独立思考上述问题,并把结果与同伴交流。

教师针对学生存在的问题予以指正并板书:设与围墙相邻的每一面墙的长度为xm,则与围墙相对的一面墙的长度为(100-2x)m,于是矩形植物园的面积s为s=x(100-2x),0<x<50,即 s=-2x2+100x,0<x<50,①有了公式①,我们对植物园的面积s随着砌法的不同而变化的情况就了如指掌了。

(出示投影2)动脑筋:电脑的价格。

一种型号的电脑两年前的销售价为6000元,现在的售价为y元,如果每年的平均降价率为x,那么降价率变化时,电脑的售价怎样变化呢?学生独立思考上述问题,并把结果与同伴交流。

教师针对学生存在的问题予以指正并边讲边在黑板上板书:y=6000(1-x)2,0<x<1即y=6000x2-12000x+6000,0<x<1。

②教师引入:在上面的两个例子吕,矩形植物园的面积s与相邻于围墙面的每一面墙的长度x的关系式①,电脑价格y与平均降价率x的关系式②有什么共同点?像关系式①、②那样,如果函数的解析式是自变量的二次多项式,那么这样的函数称为二次函数,它的一般形式是:y=ax2+bx+c(a、b、c是常数,a≠0),其中a、b、c分别叫作二次项系数、一次项系数、常数项。

用几何画板探究二次函数最值模型

用几何画板探究二次函数最值模型

用几何画板探究二次函数最值模型资料编号:202210311539模型制作1.打开几何画板,单击“自定义工具”,从弹出的工具菜单中选择“函数工具”,从弹出的子菜单中选择“三点二次函数(1)”,在绘图区三个不同的位置单击,作出一条经过A、B、C三点的抛物线.同时,在绘图区会出现抛物线的解析式,调整三个点的位置,可以改变抛物线开口大小和开口方向.如图1所示.2.依次单击“绘图”、“隐藏网格”.选中抛物线,单击“显示”,修改线型为“细线/虚线”.选中单位点,单击“显示”、“隐藏单位点”.如图2所示.3.单击“线段直尺工具”,在向右弹出的工具中单击“线段工具”,在x轴上任意作出一条线段DE,修改线型为“中等/实线”,颜色为“黑色”.如图3所示.4.单击“点工具”,在线段DE上任取一点“F”.依次选中点D、F、E和线段DE,依次单击“构造”、“垂线”,分别交抛物线与点G、I、H.构造线段DG、EH,修改线型为“细线/实线”.选中三条垂线并依次.如图4所示.5.依次选中点F、I,依次单击“构造”、“轨迹”,修改线型为“中等/实线”.选中点B、C、I、F并隐藏点.如图5所示.6.单击“文字工具”,单击点G和点H,隐藏两个点的标签.选中抛物线与x轴,依次单击“构造”、“交点”,得到两个交点,标签分别为J、K.双击点J,选中点K,依次单击“变换”、“缩放”,按“固定比”1 : 2进行缩放,得到线段JK的中点'K,选中点'K和x轴(注意不是线段DE),依次单击“构造”、“垂线”,作出抛物线的对称轴,修改对称轴的线型为“细线/虚线”,颜色为“红色”.如图6、图7所示.7.选中点J、K、'K并隐藏.修改点D的标签为m,点E的标签为n,如图8所示.经此一步,完成作图.模型探索拖动点D 或点E ,即改变m 或n 的值,可以改变x 的取值范围,观察轨迹的变化,我们可以借助于轨迹的变化来直观地研究二次函()02≠++=a c bx ax y 的最值情况.而拖动点A ,可以改变抛物线的开口大小和开口方向.确定二次函数在指定区间(自变量的取值范围)上的最值,要画出二次函数图象的简图,结合其图象对称轴与区间的相对位置关系以及开口方向来进行.具体情况见下面的表格所示.模型应用例1.当t ≤x ≤1+t 时,求函数25212--=x x y 的最小值(其中t 为常数).分析 二次函数在指定区间(自变量的取值范围)上的最值与其图象的开口方向和对称轴的位置有关.必要时可画出图象的简图进行求解.本题中,抛物线的对称轴是确定的,指定的区间为含参区间,这样的问题被称为定轴动区间,要对区间与对称轴的相对位置关系进行讨论.解:()3121252122--=--=x x x y ,其图象开口向上,对称轴为直线1=x ∵t ≤x ≤1+t ∴分为三种情况:①当1+t ≤1,即t ≤0时,二次函数的图象在t ≤x ≤1+t 上是下降的,表明y 随x 的增大而减小∴当1+=t x 时,y 取得最小值,最小值为()3213112122min -=--+=t t y ;②当11+<<t t ,即10<<t 时,3min -=y ;③当t ≥1时,二次函数的图象在t ≤x ≤1+t 上是上升的,表明y 随x 的增大而增大∴当t x =时,y 取得最小值,最小值为()2521312122min --=--=t t t y .综上所述,⎪⎪⎩⎪⎪⎨⎧--<<-≤-=252110,30,32122mint t t t t y .例2.在1≤x ≤2的条件下,求函数122++-=ax x y (a 是实常数)的最大值M 和最小值m .解:()112222++--=++-=a a x ax x y ,其图象开口向下,对称轴为直线a x =.①当a ≥2时,函数图象在1≤x ≤2上是上升的,表明y 随x 的增大而增大∴当2=x 时,34max -==a y M ;当1=x 时,a y m 2min ==.②当a <1≤23221=+,a x =时,12max +==a y M ;当2=x 时,34min -==a y m .③当223<<a ,12max +==a y M ;当1=x 时,a y m 2min ==.④当a ≤1时,函数图象在1≤x ≤2上是下降的,表明y 随x 的增大而减小∴当1=x 时,a y M 2max ==;当2=x 时,34min -==a y m .综上所述,⎪⎩⎪⎨⎧≤<<+≥-=1,221,12,342a a a a a a M ,⎪⎪⎩⎪⎪⎨⎧<-≥=23,3423,2a a a a m .例3.已知函数4121412+⎪⎭⎫ ⎝⎛+-=x m x y ,是否存在实数m ,使得当m ≤x ≤2+m 时,函数有最小值5-?若存在,求出m 的值;若不存在,说明理由.分析 本题难度较高,属于对称轴和自变量的取值范围均含参数的最值问题.解:函数4121412+⎪⎭⎫ ⎝⎛+-=x m x y 的图象开口向上,对称轴为直线12+=m x .①当2+m ≤12+m ,即m ≥1时,当2+=m x 时()()54123434122124122min -=+--=++⎪⎭⎫ ⎝⎛+-+=m m m m m y 整理得:0722=-+m m 解之得:221,22121--=+-=m m ∵m ≥1∴221+-=m ;②当212+<+<m m m ,即11<<-m 时,当12+=m x 时()()541122112412min -=++⎪⎭⎫ ⎝⎛+-+=m m m y 整理得:()21122=+m 解之得:2211,221121--=+-=m m∵11<<-m ∴21,m m 都不符合题意,舍去;③当12+m ≤m ,即m ≤1-时,当m x =时541214*********min -=+--=+⎪⎭⎫ ⎝⎛+-=m m m m m y 整理得:021232=-+m m 解之得:37,321=-=m m ∵m ≤1-∴3-=m .综上所述,存在实数3-=m 或221+-=m 满足题意.。

利用二次函数解决问题步骤

利用二次函数解决问题步骤

利用二次函数解决问题步骤正文:
二次函数在数学和实际问题中有着广泛的应用。

利用二次函数解决问题的步骤可以帮助我们更好地理解和解决各种实际情况中的数学难题。

下面将介绍利用二次函数解决问题的一般步骤。

1. 确定问题,首先,需要明确问题的背景和要求,明确所要解决的具体问题是什么,例如寻找最大值、最小值,或者确定某个变量的取值范围等。

2. 建立二次函数模型,根据问题的特点,建立二次函数模型。

二次函数的一般形式为 y = ax^2 + bx + c,其中 a、b、c 分别为二次项系数、一次项系数和常数项。

根据问题的特点,确定二次函数的具体形式。

3. 求解问题,利用二次函数的性质和相关知识,对建立的二次函数模型进行分析和求解。

可以通过求导数、配方法、公式法等方式,找到函数的极值点、零点等关键信息。

4. 验证和解释,在求解出结果后,需要对结果进行验证和解释,确保结果符合实际情况,并能够清晰地解释结果的意义和影响。

5. 应用实际问题,最后,将得到的结果应用到实际问题中,解
决实际情况中的数学难题,验证二次函数的有效性和实用性。

通过以上步骤,我们可以利用二次函数解决各种实际问题,提
高数学建模和问题解决能力,为实际生活和工程技术提供有效的数
学支持。

同时也可以更好地理解和掌握二次函数的性质和应用,为
进一步深入学习数学打下坚实的基础。

时建立二次函数的模型解决实际问题详解演示文稿

时建立二次函数的模型解决实际问题详解演示文稿
[归纳] 根据函数图象确定函数的关系式,然后利用函数的性质解 决实际问题.
第7页,共22页。
第2课时 建立二次函数的模型解决实际问题
► 学习目标2 二次函数和几何图形的综合题 4.如图 21-4-7,二次函数 y=x2-4x+3 的图象交 x
轴于 A,B 两点,交 y 轴于点 C,则△ABC 的面积为( C ) A.6 B.4 C.3 D.1
[解析] 连接MN,与抛物线交于P点,根据两点之间线段最短得到此
时PM+PN最短,设直线MN的关系式为y=kx+b,求出直线MN的关
系式,与抛物线关系式联立组成方程组,求出方程组的解得到x与y
的值,此时可以得到两组x与y的值,只有位于线段MN上的点,才符合
要求,因而由此可确定P点的坐标.
第9页,共22页。
x 15 20 25 30
38
40 45 50
y 10 约 27.58 40 约 48.20 约 49.10 约 47.12 40 约 26.99
(2)确定采用哪种进货方案能让厂家获得最大利润,
并求出最大利润.
第15页,共22页。
第2课时 建立二次函数的模型解决实际问题
第16页,共22页。
第2课时 建立二次函数的模型解决实际问题 [解析] (1)在所给定的平面直角坐标系中通过描点、连线等步骤画 出图形,根据图象判断该函数为二次函数,再将三点坐标代入其 中即可求得二次函数的关系式;
A.8 米 B.6 米 C.4 米 D.1 米
第3页,共22页。
第2课时 建立二次函数的模型解决实际问题
[解析] 由于 y=-2x2+8x=-2(x-2)2+8,所以抛物线的顶 点坐标是(2,8),因此,水喷出的最大高度是 8 米.
第4页,共22页。

二次函数建立二次函数模型课件

二次函数建立二次函数模型课件
确定变量
确定实际问题中的自变量和因变量。
转化条件
将实际问题中的条件转化为数学方程中的 限制条件。
建立方程
根据实际问题中的条件和规律,建立二次 函数方程。
求解模型
利用数学知识和计算方法,求解二次函数 模型,得到解或最优解。
04
求解二次函数模型
利用公式求解二次函数模型
了解二次函数的标准形式 理解二次函数系数a、b、c的含义及其对函数图像的影响
二次函数建立二次函数模型 课件
2023-11-05
目录
• 引言 • 二次函数的概念及表达式 • 建立二次函数模型 • 求解二次函数模型 • 案例分析
学生们已经学习了一次函数,对于函数的图像、性质及表达 式有了初步的了解。
在此基础上,进一步学习二次函数,掌握其图像、性质及表 达式的特点和规律。
案例二:交通流量问题
总结词
二次函数模型可以用来描述交通流量的变 化。
VS
详细描述
在交通工程中,二次函数模型可以用来描 述交通流量与时间的关系。例如,假设初 始流量为Q0,流量变化率为k,那么交通 流量Q可以通过二次函数模型表示为 Q=Q0-kt^2。这个模型可以帮助交通工 程师更好地规划交通网络,提高交通效率 。
转化条件
将实际问题中的条件转化为数学方 程中的限制条件。
利用二次函数解决实际问题
01
02
03
分析实际问题
分析实际问题的特点,确 定需要解决的问题和目标 。
建立数学模型
根据实际问题的特点,建 立二次函数模型。
求解模型
利用数学知识和计算方法 ,求解二次函数模型,得 到解或最优解。
建立二次函数模型的步骤
案例三:房屋按揭贷款问题

二次函数待定系数法

二次函数待定系数法

二次函数待定系数法二次函数待定系数法是一种常用的参数估计方法,它可以用来评估二次函数的未知系数和参数。

该方法的核心思想是,通过观察函数的图像,获取未知参数的近似值,将其作为函数参数的初值,然后用迭代法来逼近它们的准确值。

二次函数待定系数法用于描述连续变化的事物,它具有准确性、稳定性和可拓展性等优点,可以准确表征曲线的弯曲程度,所以在实际应用中,常常被广泛使用。

二、二次函数待定系数法的实现步骤(一)构造二次函数模型首先,我们要构造二次函数模型,它由三个参数组成:函数上凸系数a、函数下凸系数b、函数拐点c。

二次函数模型的数学表达式可以用如下形式表示:y=ax2+bx+c(二)求取函数参数参数a、b、c是二次函数的“待定系数”,要获取这三个参数的准确值,可以通过以下迭代法来求取:①确定函数上凸系数a:首先,在函数图像上观察,求取函数的1/4顶点坐标(x1,y1),然后用以下公式:a=4(y1-c)/x1出参数a 的值;②确定函数下凸系数b:在函数图像上观察,求取函数的3/4顶点坐标(x2,y2),然后用以下公式:b=4(y2-c)/x2出参数b的值;③确定函数拐点c:通过将第①步和第②步求出的参数a和b代入到函数模型中,求出参数c的值。

(三)迭代法为了接近参数a、b、c的准确值,需要用迭代法对参数进行调整,使函数图像尽可能地拟合实际事件。

(四)最小二乘法在迭代的过程中,需要用最小二乘法确定参数的最佳状态:S=∑(y-y)2y=ax2+bx+c其中,S为误差平方和,“y”为实际数据,“y”为拟合函数值,a、b、c是待定系数。

参数a、b、c调整到使“S”最小的状态下,此时参数a、b、c的值就是最合适的数值,函数拟合实际事件的精度也就最高了。

三、二次函数待定系数法的应用二次函数待定系数法可以应用于多个领域,以优化事件及其关系的表达,其中包括:1、工程计算2、医学研究3、预测分析4、机器学习5、机器人控制这些领域都有一系列的实际物理参数,这些物理参数可以用二次函数待定系数法描述,从而更加准确、精确地表征事件及其关系,从而做出更准确的决策和预测。

二次函数十大解题模型汇总(模型+例题+练习题)

二次函数十大解题模型汇总(模型+例题+练习题)
(1)试写出 y 与 x 之间的函数表达式(不必写出 x 的取值范围);(2)试写出 z 与 x 之间的函数表达式(不 必写出 x 的取值范围);(3)计算销售单价为 160 元时的年获利,销售单价还可以定为多少元?相应的年 销售量分别为多少万件?(4)公司计划:在第一年按年获利最大确定的销售单价,进行销售;第二年年 获利不低于 1130 万元.请你借助函数的大致图象说明,第二年的销售单价 x(元)应确定在什么范围内?
角线 a 的关系.
2、已知:一等腰直角三角形的面积为 S,请写出 S 与其斜边长 a 的关系表达式,并分别求出 a=1,a= 2 ,
a=2 时三角形的面积.
1 3、在物理学内容中,如果某一物体质量为 m,它运动时的能量 E 与它的运动速度 v 之间的关系是 E= 2 mv2
(m 为定值).(1)若物体质量为 1,填表表示物体在 v 取下列值时,E 的取值:
例 2、如果人民币一年定期储蓄的年利率是 x,一年到期后,银行将本金和利息自动按一年定期储蓄转存, 到期支取时,银行将扣除利息的 20%作为利息税.请你写出两年后支付时的本息和 y(元)与年利率 x 的 函数表达式.
例 3、某商场将进价为 40 元的某种服装按 50 元售出时,每天可以售出 300 套.据市场调查发现,这种服 装每提高 1 元售价,销量就减少 5 套,如果商场将售价定为 x,请你得出每天销售利润 y 与售价的函数表 达式.
二次函数十大解题模型汇总(模型+例题+练习题)
模型 1:根据二次函数的定义求字母的值
例 1:函数 y=(m+2)x m2−2 +2x-1 是二次函数,则 m=

对象:y=(m+2)x m2−2 +2x-1 角度:二次函数的稀疏,次数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:二次函数学习目标:1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义;2.了解二次函数关系式,会确定二次函数关系式中各项的系数。

学习重点:1.经历探索二次函数关系的过程,获得用二次函数表示变量之间关系的体验.2.能够表示简单变量之间的二次函数。

学习难点:确定实际问题中二次函数的关系式。

学习过程:一、知识准备:1.设在一个变化过程中有两个变量x和y,如果对于x的每一个值, y都有唯一的值与它对应,那么就说y是x的,x叫做 ,y叫做。

2.我们已经学过的函数有:一次函数、反比例函数,其中的图像是直线,的图像是双曲线。

我们得到它们图像的方法和步骤是:①;②;③。

3. 形如___________y=,()的函数是一次函数,当______0=时,它是函数,图像是经过的直线;形如kyx=,()的函数是函数,它的表达式还可以写成:①、②二、提出问题(展示交流):1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S与半径r之间的函数关系式是。

2.用16m长的篱笆围成长方形圈养小兔,圈的面积y(㎡)与长方形的长x(m)之间的函数关系式为。

3.要给一个边长为x (m)的正方形实验室铺设地板,已知某种地板的价格为每平方米240元,踢脚线价格为每米30元,如果其它费用为1000元,那么总费用y(元)与x (m)之间的函数关系式是。

三、归纳提高(讨论归纳):观察上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不同?。

一般地,形如,(,且)的函数为二次函数。

其中x是自变量,函数。

注意:1、定义中只要求二次项系数a 不为零(必须存在二次项),一次项系数b 、常数项c 可以为零。

最简单形式的二次函数:2(0)y ax a =≠例如,y =-5x 2+100x+60000和y=100x 2+200x+100都是二次函数.我们以前学过的正方形面积A 与边长a 的关系2A a =,圆面积s 与半径r 的关系2s r π=等也都是二次函数的例子.2、二次函数2y ax bx c =++中自变量x 的取值范围是 ,你能说出上述三个问题中自变量的取值范围吗?四、例题精讲(小组讨论交流): 例1 函数y=(m +2)x22-m +2x -1是二次函数,则m= .点拨:从二次函数的定义出发:看二次项的系数和次数确定m 的取值例2.下列函数中是二次函数的有( )①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=21x+x .A .1个B .2个C .3个D .4个例3、写出下列各函数关系,并判断它们是什么类型的函数. ⑴圆的面积y (cm 2)与它的周长x (cm )之间的函数关系;⑵某种储蓄的年利率是1.98%,存入10000元本金,若不计利息税,求本息和y (元)与所存年数x 之间的函数关系;⑶菱形的两条对角线的和为26cm ,求菱形的面积S (cm 2)与一对角线长x (cm )之间的函数关系五、课堂训练1.下列函数中,二次函数是( )A .y=6x 2+1 B .y=6x +1 C .y=x 6+1 D .y=26x+12.函数y=(m -n )x 2+mx +n 是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数3.半径为3的圆,如果半径增加2x ,则面积S 与x 之间的函数表达式为( ) A.S=2π(x +3)2 B.S=9π+xC.S=4πx 2+12x +9D.S=4πx 2+12πx +9π 4.下列函数关系中,满足二次函数关系的是( ) A.圆的周长与圆的半径之间的关系;B.在弹性限度内,弹簧的长度与所挂物体质量的关系;C.圆柱的高一定时,圆柱的体积与底面半径的关系;D.距离一定时,汽车行驶的速度与时间之间的关系.5.已知菱形的一条对角线长为a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线a 的关系_________.6.若一个边长为x cm 的无盖..正方体形纸盒的表面积为y cm 2,则___________y =,其中x 的取值范围是 。

7.一矩形的长是宽的1.6倍,则该矩形的面积S 与宽x 之间函数关系式:S = 。

8.如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,请写出绿地面积y (㎡)与路宽x (m)之间的函数关系式:y = 。

9.如图,用50m 长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y (㎡)与它与墙平行的边的长x (m)之间的函数 关系式:y = 。

10.已知函数27(3)m y m x -=-是二次函数,求m 的值.课题:二次函数的图象与性质(1)一、学习目标 1.知识与技能会用描点法画出二次函数2ax y =的图象,概括出图象的特点及函数的性质. 2.过程和方法利用描点法作出y=x 2的图象过程中,理解掌握二次函数y=x 2的性质。

3.情感和态度鼓励学生在探索规律的教程中从多个角度进行考虑,品尝成功的喜悦,激发学生应用数学的热情,培养学生主动探索,敢于实践,善于发现的科学精神,树立创新意识。

二、知识准备我们已经知道,一次函数12+=x y ,反比例函数x y 3=x y 3=的图象分别是 、 ,那么二次函数2x y =的图象是什么呢?1.你能描述图象的形状吗?与同伴交流。

2.图象与x 轴有交点吗?如果有,交点的坐标是什么?3.当x<0时,y 随着x 的增大,y 的值如何变化?当x>0时呢?4.当x 取什么值时,y 的值最小?5.图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流。

三、学习内容在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?(1)22x y = (2)22x y -=共同点:都以y 轴为对称轴,顶点都在坐标原点.不同点:22x y =的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升.22x y -=的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降. 注意点:在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接. 四、知识梳理(1)二次函数y=ax 2的图象的性质:①、图象——“抛物线”是轴对称图形;②、与x、y轴交点——(0,0)即原点;③、a的绝对值越大抛物线开口越大,a﹥0,开口向上,当x﹤0时,(对称轴左侧),y随x的增大而减小(y随x的减小而增大);当x﹥0时,(对称轴右侧),y随x的增大而增大(y随x的减小而减小).a﹤0,开口向下,当x﹤0时,(对称轴左侧),y随x的增大而增大(y随x的减小而减小)当x﹥0时,(对称轴右侧),y随x的增大而减小(y随x的减小而增大)(2)今天我们通过观察收获不小,其实只要我们在日常生活中勤与观察,勤与思考,你会发现知识无处不在,美无处不在。

五、课堂训邹庄中学初三数学课课练 第六章《二次函数》(二)1.若二次函数y=ax 2(a ≠0),图象过点P (2,-8),则函数表达式为 . 2.函数y=x 2的图象的对称轴为 ,与对称轴的交点为 ,是函数的顶点.3.点A (21,b )是抛物线y=x 2上的一点,则b= ;点A 关于y 轴的对称点B是 ,它在函数 上;点A 关于原点的对称点C 是 ,它在函数上.4.如图,A 、B 分别为y=x 2上两点,且线段AB ⊥y 轴,若AB=6,则直线AB 的表达式为( )A .y=3B .y=6C .y=9D .y=365.求直线y=x 与抛物线y=x 2的交点坐标.6.若a >1,点(a -1,y 1)、(a ,y 2)、(a +1,y 3)都在函数y=x 2的图象上,判断y 1、y 2、y 3的大小关系?课题:二次函数的图象与性质(2) 一、学习目标: 1.知识与技能:会画出k ax y +=2这类函数的图象,通过比较,了解这类函数的性质.2.过程和方法经历探索二次函数y=ax 2和y=ax 2+c 的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验. 3.情感和态度教学中为学生创造大量的操作,思考和交流的机会,培养了学生分析解决问题的能力以及识图能力。

二、知识准备:同学们还记得一次函数x y 2=与12+=x y 的图象的关系吗?你能由此推测二次函数2x y =与12+=x y 的图象之间的关系吗? ,那么2x y =与22-=x y 的图象之间又有何关系? 动手操作、探究:在同一平面内画出函数y=x 2与y=x 2-2的图象。

比较它们的性质,你可以得到什么结论? 三、学习内容:动手画:在同一直角坐标系中,画出函数12+-=x y 与12--=x y 的图象,并说明,通过怎样的平移,可以由抛物线12+-=x y 得到抛物线12--=x y .回顾与反思 抛物线12+-=x y 和抛物线12--=x y 分别是由抛物线2x y -=向上、向下平移一个单位得到的.探索 如果要得到抛物线42+-=x y ,应将抛物线12--=x y 作怎样的平移?四、知识梳理1、函数k ax y +=2与2ax y =图像的关系。

2、能说出y=ax 2+c 与y=ax 2图象的开口方向、对称轴和顶点坐标、增减性。

五、课堂训练邹庄中学初三数学课课练 第六章《二次函数》(三)1.抛物线y=-4x 2-4的开口向 ,当x= 时,y 有最 值,y= .2.当m= 时,y=(m -1)xmm 2-3m 是关于x 的二次函数.3.抛物线y=-3x 2上两点A (x ,-27),B (2,y ),则x= ,y= .4.抛物线y=3x 2与直线y=kx +3的交点为(2,b ),则k= ,b= . 5.已知抛物线的顶点在原点,对称轴为y 轴,且经过点(-1,-2),则抛物线的表达式为 .6.在同一坐标系中,图象与y=2x 2的图象关于x 轴对称的是( )A .y=21x 2B .y=-21x 2C .y=-2x 2D .y=-x 27.抛物线,y=4x 2,y=-2x 2的图象,开口最大的是( )A .y=41x 2B .y=4x 2C .y=-2x 2D .无法确定8.对于抛物线y=31x 2和y=-31x 2在同一坐标系里的位置,下列说法错误的是( )A .两条抛物线关于x 轴对称B .两条抛物线关于原点对称C .两条抛物线关于y 轴对称D .两条抛物线的交点为原点9.二次函数y=ax 2与一次函数y=ax +a 在同一坐标系中的图象大致为( )10.已知函数y=ax 2的图象与直线y=-x +4在第一象限内的交点和它与直线y=x 在第一象限内的交点相同,则a 的值为( )A .4B .2C .21D .4111.已知直线y=-2x +3与抛物线y=ax 2相交于A 、B 两点,且A 点坐标为(-3,m ).(1)求a 、m 的值;(2)求抛物线的表达式及其对称轴和顶点坐标;(3)x 取何值时,二次函数y=ax 2中的y 随x 的增大而减小;(4)求A 、B 两点及二次函数y=ax 2 的图象顶点构成的三角形的面积.课题:二次函数的图象与性质(3)一、学习目标1、经历探索二次函数y =ax 2+k(a ≠0)及y =a(x+m)2 (a ≠0)的图象作法和性质的过程。

相关文档
最新文档