高考数学综合小题训练三

合集下载

2023届高考数学重点专题三轮冲刺双空题小题压轴练(解析版)

2023届高考数学重点专题三轮冲刺双空题小题压轴练(解析版)

双空题小题压轴练-新高考数学复习分层训练(新高考通用)1.(2023秋·广东清远·高三统考期末)设函数f x =-x 2+4x ,x ≤4,log 2x -4 ,x >4, 若关于x 的方程f x =t 有四个实根x 1,x 2,x 3,x 4且x 1<x 2<x 3<x 4,则x 3x 4-4x 3+x 4 =,2+x 1 2-x 2 +4x 3+14x 4的最小值为.【答案】 -15 15【分析】画出f x 的图象,结合图象求得x 1,x 2,x 3,x 4的关系式,根据基本不等式求得正确答案.【详解】画出f x 的图象如下图所示.由图可知x 1+x 2=4,其中x 2>2>x 1>0.因为-log 2x 3-4 =log 2x 4-4 ,即x 3-4 x 4-4 =1,整理得x 3x 4-4x 3+x 4 =-15.且x 4>5>x 3>4,所以2+x 1 2-x 2 =-2+x 1 -2+x 2 ≥-2+x 1-2+x 222=-4,当且仅当2+x 1=-2+x 2,x 1=2-2,x 2=2+2时等号成立,此时t =2,又因为4x 3+14x 4=4x 3-4 +14x 4-4 +17≥24x 3-4 ⋅14x 4-4 +17=19,当且仅当4x 3-4 =14x 4-4 ,x 3=174,x 4=8时等号成立,此时t =2.所以2+x 1 2-x 2 +4x 3+14x 4的最小值为-4+19=15.故答案为:-15;15【点睛】解决含有绝对值的对数函数的问题,可结合函数图象来进行研究.求解最值问题,可考虑利用基本不等式或二次函数的性质来进行求解.二次函数的图象具有对称性.2.(2023春·广东惠州·高三校考阶段练习)已知抛物线C :y 2=2px (p >0),过其焦点F 的直线l 与抛物线C 交于P ,Q 两点(点P 在第一象限),PF =3FQ ,则直线l 的斜率为若FQ =1,点A 为抛物线C 上的动点,且点A 在直线l 的左上方,则△APQ 面积的最大值为.【答案】33【分析】空1:设直线l 的方程为x -p2=my ,联立抛物线方程得到韦达定理式,根据线段比例关系得到两交点纵坐标关系,联立即可解出斜率;空2:根据三角形底为弦长PQ,若面积最大,则高最大,则点A到直线l的距离最大,则转化为直线与抛物线相切的问题.【详解】设直线l的方程为x-p2=my,P x1,y1,Q x2,y2,联立抛物线方程y2=2px p>0得y2-2pmy-p2=0,故y1+y2=2pm①,y1y2=-p2②,∵|PF|=3|FQ|,则y1=-3y2,代入②式得-3y22=-p2,解得y2=±33p,∵P在第一象限,故Q在第四象限,故y1>0,y2<0,故y2=-33p,y1=3p,则y1+y2=3p-33p=2pm,解得m=33,故直线l的斜率k=3,∵y22=2px2,即13p2=2px2,则x2=16p,若|FQ|=1,则|FQ|=16p+p2=1,则p=32,故抛物线方程为y2=3x,此时y1=332,x1=94,x2=16p=14,而PQ=x1+x2+p=14+94+32=4,若要△APQ的面积最大,则只需将直线沿着左上方平移直至与抛物线相切,此时切点位置即为A点位置,故设切线方程为:x-t=33y,t<33,将切线方程与抛物线方程联立得y2-3y-3t=0,则Δ=3+12t=0,解得t=-14,此时切线方程为:x-33y+14=0,直线l的方程为x-33y-34=0,则两直线的距离d=14+341+13=32,此时△APQ面积最大值为12×4×32=3.故答案为:3;3.【点睛】结论点睛:设抛物线方程为y2=2px p>0,若倾斜角为α直线l经过焦点F交抛物线于P x1,y1,Q x2,y2,则有以下结论:(1)x1x2=p24;(2)y1y2=-p2;(3)PQ=2psin2α=x1+x2+p.3.(2023·广东深圳·统考一模)设a>0,A2a,0,B0,2,O为坐标原点,则以OA为弦,且与AB相切于点A的圆的标准方程为;若该圆与以OB为直径的圆相交于第一象限内的点P(该点称为直角△OAB 的Brocard 点),则点P 横坐标x 的最大值为.【答案】 x -a 2+y +a 2 2=a 2+a 445##0.8【分析】以OA 为弦的圆的圆心记作D ,易得圆心在线段OA 的垂直平分线,且通过DA ⊥AB 可得k DA =a ,得到直线DA 的方程即可求出圆的方程;先求出以OB 为直径的⊙C ,然后两圆进行相减得到公共弦方程y =aa 2+1x ,代入⊙C 可得点P 横坐标x =2a 2+1a+a a 2+1,然后用对勾函数即可求得最值【详解】以OA 为弦的圆的圆心记作D ,且圆心在线段OA 的垂直平分线x =a 上,⊙D 与直线AB 相切于A ,则DA ⊥AB ,由k AB =2-00-2a =-1a可得k DA =a ,所以直线DA 为y =a x -2a ,将x =a 代入直线DA 可得圆心为D a ,-a 2 ,r D =AD =2a -a2+0+a 2 2=a 2+a 4,所以所求的圆的标准方程为x -a 2+y +a 2 2=a 2+a 4①;以OB 为直径的圆的圆心C 0,1 ,半径为1,则⊙C 的方程为x 2+y -1 2=1②,①-②可得-2ax +2a 2+1 y =0,即y =aa 2+1x 为⊙C 与⊙D 的公共弦所在直线的方程,将y =a a 2+1x 代入⊙C 可得1+aa 2+12x 2-2a a 2+1x =0,因为交点P 在第一象限,所以x ≠0,所以x =2a 2+1a+aa 2+1,令m =a 2+1a =a +1a ≥2,(当且仅当a =1时取等号)则1m =aa 2+1所以交点P 的横坐标x =2m +1m ,m ≥2由对勾函数可得y =m +1m 在2,+∞ 内单调递增,所以当m =2时,y =m +1m取得最小值,为52,所以交点P 的横坐标的最大值为x =252=45故答案为:x -a 2+y +a 2 2=a 2+a 4;45【点睛】关键点睛:本题的关键是求出交点P 的横坐标x =2a 2+1a+a a 2+1后,利用换元法、构造函数法,结合对勾函数的单调性进行解题.4.(2023秋·广东·高三校联考阶段练习)数学家康托(Cantor )在线段上构造了一个不可数点集--康托三分集.将闭区间0,1 均分为三段,去掉中间的区间段13,23,余下的区间段长度为a 1;再将余下的两个区间0,13,23,1分别均分为三段,并各自去掉中间的区间段,余下的区间段长度为a 2.以此类推,不断地将余下各个区间均分为三段,并各自去掉中间的区间段.重复这一过程,余下的区间集合即为康托三分集,记数列a n 表示第n 次操作后余下的区间段长度.(1)a 4=;(2)若∀n ∈N *,都有n 2a n ≤λa 4恒成立,则实数λ的取值范围是.【答案】1681; 503,+∞ .【分析】由题意直接求出a 1,a 2,a 3,a 4.归纳出数列a n 为等比数列,求出a n =23n.利用分离常数法得到λ≥n 2⋅23n -4.记g n =n 2⋅23n -4,n ∈N ∗ ,判断出单调性,求出g 5 =503最大,即可求出λ的取值范围.【详解】由题意可知:a 1=23,a 2=a 1×23=232,a 3=a 2×23=233,a 4=a 3×23=234.所以a 4=1681.所以数列a n 为首项a 1=23,公比q =23的等比数列,所以a n =a 1×q n -1=23n.因为∀n ∈N *,都有n 2a n ≤λa 4恒成立,且a 4=1681,所以λ≥n 2⋅23n⋅8116=n 2⋅23n -4恒成立,只需λ≥n 2⋅23n -4max记g n =n 2⋅23n -4,n ∈N ∗ ,显然,g n >0.所以g n +1g n =n +1 2⋅23 n +1-4n 2⋅23n -4=2n +1 23n2.令g n +1 g n ≤1,即2n +1 23n2≤1,即n 2-4n -2≥0,解得:n ≥2+6.因为n ∈N ∗,所以n ≥2+6,可以取包含5以后的所有正整数,即n ≥5以后g n =n 2⋅23n -4,n ∈N ∗递减.而g 1 =12⋅231-4=278,g 2 =22⋅232-4=9,g 3 =32⋅233-4=812,g 4 =42⋅234-4=16,g 5 =52⋅235-4=503,所以g 1 <g 2 <g 3 <g 4 <g 5 .综上所述:当n =5时,g 5 =503最大.所以λ≥503,所以实数λ的取值范围是503,+∞ .故答案为:1681;503,+∞.【点睛】求数列最值的方法:(1)利用函数单调性求出最值;(2)利用数列的性质求出最大项或最小项.5.(2023·广东湛江·统考一模)已知函数f x =2x +1,记f 2x =f f x =22x +1 +1=4x +3为函数f x 的2次迭代函数,f 3x =f f f x =42x +1 +3=8x +7为函数f x 的3次迭代函数,⋯,依次类推,f nx =f f f ⋅⋅⋅f x ⋅⋅⋅ n 个为函数f x 的n 次迭代函数,则f nx =;f 10032 除以17的余数是.【答案】 2n x +1 -1 0【分析】第一空,根据题意结合等比数列的前n 项和公式即可推出f nx 的表达式;第二空,将f 10032 化为33×17-125-1,利用二项式定理展开,化简即可求得答案.【详解】由题意,f nx =2nx +2n -1+2n -2+⋅⋅⋅+20=2nx +1-2n1-2=2n x +1 -1,所以f 10032 =33×2100-1=33×1625-1=33×17-1 25-1=33C 25251725-C 24251724+C 23251723-C 22251722+⋯+C 12517-1 -1=33C 25251725-C 24251724+C 23251723-C 22251722+⋯+C 12517 -34=1733C 25251724-C 24251723+C 23251722-C 22251721+⋯+C 125 -2又33C 25251724-C 24251723+C 23251722-C 22251721+⋯+C 125 -2为正整数,所以f 10032 除以17的余数为0,故答案为:2n x +1 -1;0【点睛】关键点睛:解答本题中函数迭代问题,要结合题设找到迭代规律,即可求出函数表达式,解决余数问题的关键在于将f 10032 利用二项式定理展开化简转化为17的倍数的形式,即可求得答案.6.(2023·黑龙江哈尔滨·哈尔滨三中校考一模)如图,椭圆x 2a 2+y 2b 2=1a >b >0 与双曲线x 2m 2-y 2n 2=1m >0,n >0 有公共焦点F 1-c ,0 ,F 2c ,0 c >0 ,椭圆的离心率为e 1,双曲线的离心率为e 2,点P 为两曲线的一个公共点,且∠F 1PF 2=60°,则1e 21+3e 22=;I 为△F 1PF 2的内心,F 1,I ,G 三点共线,且GP ⋅IP =0,x 轴上点A ,B 满足AI =λIP ,BG =μGP ,则λ2+μ2的最小值为.【答案】 4 1+32【分析】第一空:利用椭圆与双曲线的定义及性质,结合图形建立方程,求出PF 1 ,PF 2 ,在利用余弦定理建立关于离心率的齐次方程解出即可;第二空:由I 为△F 1PF 2的内心,得出角平分线,利用角平分线的性质结合平面向量得出λ =e 1及μ =e 2,代入λ2+μ2中利用基本不等式求最值即可.【详解】①由题意得椭圆与双曲线的焦距为F 1F 2 =2c ,椭圆的长轴长为2a ,双曲线的实轴长为2m ,不妨设点P 在双曲线的右支上,由双曲线的定义:PF 1 -PF 2 =2m ,由椭圆的定义:PF 1 +PF 2 =2a ,可得:PF 1 =m +a ,PF 2 =a -m ,又∠F 1PF 2=60°,由余弦定理得:PF 12+PF 2 2-PF 1 ⋅PF 2 =FF 2 2=4c 2,即m +a 2+a -m 2-m +a ⋅a -m =4c 2,整理得:a 2+3m 2=4c 2,所以:a 2c 2+3m 2c 2=4⇒1e 21+3e 22=4;②I 为△F 1PF 2的内心,所以IF 2为∠PF 1F 2的角平分线,则有PF 1 AF 1=IP AI,同理:PF 2AF 2=IP AI,所以PF 1 AF 1 =PF 2 AF 2=IP AI,所以IP AI=PF 1 +PF 2 AF 1 +AF 2=2a 2c =1e 1,即AI =e 1IP ,因为AI =λIP,所以AI =λ IP ,故λ =e 1,I 为△F 1PF 2的内心,F 1,I ,G 三点共线,即F 1G 为∠PF 1B 的角平分线,则有GB PG=BF 2 PF 2=BF 1 PF 1,又BF 2 ≠BF 1 ,所以BGPG =BF 1 -BF 2PF 1 -PF 2=2c2m =e 2,即BG =e 2GP ,因为BG =μGP ,所以BG =μ GP ,故μ =e 2,所以λ2+μ2=e 21+e 22=14e 21+e 22 1e 21+3e 22=141+3+3e 21e 22+e 22e 21≥144+23e 21e 22⋅e 22e 21=1+32,当且仅当3e 21e 22=e 22e 21⇒e 2=3e 1时,等号成立,所以λ2+μ2的最小值为1+32,故答案为:4,1+32.【点睛】方法点睛:离心率的求解方法,(1)直接法:由题意知道a ,c 利用公式求解即可;(2)一般间接法:由题意知道a ,b 或b ,c 利用a ,b ,c 的关系式求出a ,c ,在利用公式计算即可;(3)齐次式方程法:建立关于离心率e 的方程求解.7.(2023春·江苏扬州·高三扬州市新华中学校考开学考试)侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上.设外围第一个正方形A 1B 1C 1D 1的边长为1,往里第二个正方形为A 2B 2C 2D 2,⋯,往里第n 个正方形为A n B n C n D n .那么第7个正方形的周长是,至少需要前个正方形的面积之和超过2.(参考数据:lg2=0.301,lg3=0.477).【答案】5007294【分析】根据已知,利用勾股定理、正方形的周长公式、面积公式以及等比数列的通项、前n 项和公式进行求解.【详解】因为每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上,且外围第一个正方形A 1B 1C 1D 1的边长为1,所以A 2B 1=23,B 2B 1=13,由勾股定理有:A 2B 2=A 2B 1+B 1B 2=232+132=53,设第n 个正方形A n B n C n D n 的边长为l n ,则l 1=1,l 2=23l 12+13l 1 2=53l 1,⋯⋯,l n =23l n -12+13l n -1 2=53l n -1,所以l n =53n -1l 1=53n -1,所以第7个正方形的周长是4l 7=4×536=4×5336=4×125729=500729,第n 个正方形的面积为ln 2=532n -2=59n -1,则第1个正方形的面积为l 12=59=1,则第2个正方形的面积为l 22=591=59,则第3个正方形的面积为l 32=59 2,⋯⋯则第n 个正方形的面积为l n 2=59n -1,前n 个正方形的面积之和为S n =1+591+⋯+59n -1=1-59 n1-59=941-59n,当n =1时,S 1=941-591=1,当n =2时,S 2=941-592=149,当n =3时,S 3=941-593=15181,当n =4时,S 4=941-594=1484729>2,所以至少需要前4个正方形的面积之和超过2.故答案为:500729,4.8.(2023春·云南曲靖·高三宣威市第三中学校考阶段练习)△ABC 中,AB =AC =3,BC =2,沿BC 将△ABC 折起到△PBC 位置,P 点不在△ABC 面内,当三棱锥P -ABC 的体积最大时,三棱锥P -ABC 的外接球半径是;当PA =2时,三棱锥P -ABC 的外接球表面积是.【答案】654 15815π【分析】根据图形,得出面ABC 外接圆的半径为r ,而后利用勾股定理求出三棱锥P -ABC 的外接球半径;结合余弦定理,二倍角公式以及同角关系,求出OE ,再由勾股定理得出R 2,进而求出三棱锥P -ABC 的外接球表面积.【详解】由题知,取BC 中点D ,连接AD ,PD ,设△ABC 的外接圆的圆心为E ,△PBC 的外接圆的圆心为F ,三棱锥外接球的球心为O ,半径为R ,连接OE ,OF 如图所示,要使三棱锥P -ABC 的体积最大时,即要使得点P 到平面ABC 的距离最大,只有当平面ABC ⊥平面PBC 时,体积最大,即点P 到BC 的距离最大,三棱锥体积最大.此时,四边形OEDF 是正方形,假设△ABC 外接圆的半径为r ,则在△BDE 中,由勾股定理得:r 2-1+r =AD =22,解得r =928,所以OE =DF =DE =r 2-1=728,∴R =OE 2+r 2=654.当PA =2时,由上述可知,结合余弦定理cos ∠EDF =8+8-22×22×22=78,由二倍角公式cos ∠ODE =154,∴tan ∠ODE =1515,∴OE =1515×728=730120,∴R 2=OE 2+r 2,∴三棱锥P -ABC 的外接球表面积为S =4πR 2=158π15.故答案为:654;158π15.9.(2023春·云南·高三校联考开学考试)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点M ,N 的距离之比为定值λ(λ≠1,λ>0)的点的轨迹是圆”,后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系xOy 中,M (-2,0),N (4,0),点P 满足|PM ||PN |=12.则点P 的轨迹方程为;在三棱锥S -ABC 中,SA ⊥平面ABC ,且SA =3,BC =6,AC =2AB ,该三棱锥体积的最大值为.【答案】 (x +4)2+y 2=16 12【分析】利用求点的轨迹方程的步骤及两点间的距离公式即可求解;根据已知条件及阿波罗尼斯圆的特点,结合棱锥的体积公式即可求解.【详解】设P (x ,y ),|PM ||PN |=12,所以(x +2)2+y 2(x -4)2+y 2=12,所以x 2+8x +y 2=0,即(x +4)2+y 2=16,所以点P 的轨迹方程为(x +4)2+y 2=16;三棱锥的高为SA =3,当底面△ABC 的面积最大值时,三棱锥的体积最大,BC =6,AC =2AB ,取BC 靠近B 的一个三等分点为坐标原点O ,BC 为x 轴建立平面直角坐标系,不妨取B (-2,0),C (4,0),由题设定义可知A (x ,y )的轨迹方程为(x +4)2+y 2=16,所以A 在圆(x +4)2+y 2=16的最高点处(-4,4),S △ABC =12×6×4=12,此时,V S -ABC max =13×3×12=12.故答案为:(x +4)2+y 2=16;12.【点睛】解决此题的关键是第一空主要利用求点的轨迹方程的步骤即可;第二空要使该三棱锥体积的最大值,只需要将问题转化为求底面△ABC 的面积最大值,再利用阿波罗尼斯圆的特点即可.10.(2023·云南昆明·高三昆明一中校考阶段练习)已知抛物线E :x 2=2py p >0 的焦点为F ,现有不同的三点A ,B ,C 在抛物线E 上,且AF +BF +CF =0,AF +BF +CF=12,则p 的值是;若过点P 1,-2 的直线PM ,PN 分别与抛物线E 相切于点M ,N ,则MN =.【答案】 4172##8.5【分析】根据向量的坐标运算化简可得y A +y B +y C =32p ,再利用抛物线的定义求出p ,根据切线的方程可求出直线MN 的方程,根据直线过焦点利用弦长公式y 1+y 2+p 求解.【详解】设A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),F 0,p2,则AF +BF +CF =-x A -x B -x C ,p 2-y A +p 2-y B +p2-y C =0,∴p 2-y A +p 2-y B +p 2-y C =0,即y A +y B +y C =32p ,又AF +BF +CF =y A +p 2+y B +p 2+y C +p 2=32p +32p =3p =12,解得p =4.设M (x 1,y 2),N (x 2,y 2),由x 2=8y 可得y =x4,则k PM =x 14,k PN =x 24,所以直线PM 的方程为y -y 1=x14(x -x 1),即x 1x =4(y +y 1)①,同理直线PN 的方程为x 2x =4(y +y 2)②由直线均过点P 可得x 1=4(-2+y 1),x 2=4(-2+y 2),即直线MN 的方程为x =4(-2+y ),过焦点F (0,2),联立x 2=8y x =4(-2+y ) ,消元得2y 2-9y +8=0,所以y 1+y 2=92,∴MN =y 1+y 2+p =92+4=172,故答案为:4;17211.(2023·安徽淮北·统考一模)已知双曲线C :x 22-y 26=λ过点5,3 ,则其方程为,设F 1,F 2分别为双曲线C 的左右焦点,E 为右顶点,过F 2的直线与双曲线C 的右支交于A ,B 两点(其中点A 在第一象限),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则ME -NE 的取值范围是.【答案】 x 24-y 212=1 -433,433【分析】①将点代入方程中求出λ,即可得答案;②据圆的切线长定理和双曲线的定义可推得△AF 1F 2,△BF 1F 2的内切圆与x 轴切于双曲线的右顶点E ,设直线AB 的倾斜角为θ,可用θ表示ME -NE ,根据A ,B 两点都在右支上得到θ的范围,利用θ的范围可求得ME -NE 的取值范围【详解】①由双曲线C :x 22-y 26=λ过点5,3 ,所以52-36=λ⇒λ=2所以方程为x 24-y 212=1②如图:设△AF 1F 2的内切圆与AF 1,AF 2,F 1F 2分别切于H ,D ,G ,所以|AH |=|AD |,|HF 1|=|GF 1|,|DF 2|=|GF 2|,所以|AF 1|-|AF 2|=|AH |+|HF 1|-|AD |-|DF 2|=|HF 1|-|DF 2|=|GF 1|-|GF 2|=2a ,又|GF 1|+|GF 2|=2c ,所以|GF 1|=a +c ,|GF 2|=c -a ,又|EF 1|=a +c ,|EF 2|=c -a ,所以G 与E (a ,0)重合,所以M 的横坐标为a ,同理可得N 的横坐标也为a ,设直线AB 的倾斜角为θ.则∠EF 2M =π-θ2,∠EF 2N =θ2,|ME |-|NE |=c -a tan π-θ2-c -a tanθ2=c -a ⋅sin π2-θ2 cos π2-θ2 -sin θ2cos θ2=c -a ⋅cos θ2sin θ2-sin θ2cos θ2 =(c -a )⋅cos 2θ2-sin 2θ2sin θ2⋅cos θ2=c -a 2cos θsin θ,当θ=π2时,|ME |-|NE |=0,当θ≠π2时,由题知,a =2.c =4.ba=3.因为A ,B 两点在双曲线的右支上,∴π3<θ<2π3,且θ≠π2,所以tan θ<-3或tan θ>3,∴-33<1tan θ<33.且1tan θ≠0,ME -NE =4-2 ⋅2tan θ=4tan θ∈-433,0 ∪0,433,综上所述,|ME |-|NE |∈-433,433.故①答案为:x 24-y 212=1;-433,433【点睛】关键点点睛:第一问相对简单,代点求出即可;第二问难度较大,主要根据圆的切线长定理和双曲线的定义推出△AF 1F 2,△BF 1F 2的内切圆与x 轴同时切于双曲线的右顶点E ,并将ME -NE 用直线AB 的倾斜角θ表示出来是解题关键.12.(2023春·重庆·高三统考开学考试)定义:若A ,B ,C ,D 为球面上四点,E ,F 分别是AB ,CD 的中点,则把以EF 为直径的球称为AB ,CD 的“伴随球”.已知A ,B ,C ,D 是半径为2的球面上四点,AB =CD =23,则AB ,CD 的“伴随球”的直径取值范围为;若A ,B ,C ,D 不共面,则四面体ABCD 体积的最大值为.【答案】 0,2 4【分析】设O 为A ,B ,C ,D 所在球面的球心,则由题可知E 、F 均是以O 为球心,1为半径的球面上的点,据此即可求出EF 范围;根据V A -BCD =2V A -CDE =23S △CDE⋅d (d 为点A 到平面CDE 距离,),求出S △CDE ,d 的最大值即可得体积最大值.【详解】设O 为A ,B ,C ,D 所在球面的球心,∴OA =OC =2.∵AB =CD =23,且E ,F 分别是AB ,CD 的中点,∴OE ⊥AB ,OE ⊥CD ,且AE =CF =3,∴OE =OF =1,则E 、F 均是以O 为球心,1为半径的球面上的点,若以EF 为直径作球,则0<EF ≤OE +OF =2,即AB ,CD 的“伴随球”的直径取值范围是(0,2];∵E 是AB 中点,∴V A -BCD =2V A -CDE =23S △CDE⋅d ,d 为点A 到平面CDE 距离,d ≤AE =3,又S △CDE =12CD ⋅h ,h 为点E 到CD 距离,h ≤EF ≤2,∴V A -BCD ≤23×23×22×3=4,当且仅当E ,O ,F 三点共线,且AB ⊥CD 时,等号成立.故答案为:(0,2];4.【点睛】本题关键是根据已知条件确定E 和F 的轨迹,数形结合可得EF 的范围;根据E 是AB 中点,则A 与B 到平面CDE 的距离相等,据此将三棱锥A -BCD 的体积转化为三棱锥A -CDE 体积的2倍,再数形结合即可求得最值.对空间想象能力的要求很高,属于难题.13.(2023·重庆沙坪坝·高三重庆南开中学校考阶段练习)已知抛物线C :y 2=4x 的焦点为F ,准线交x 轴于点D ,过点F 作倾斜角为θ(θ为锐角)的直线交抛物线于A ,B 两点,如图,把平面ADF 沿x 轴折起,使平面ADF ⊥平面BDF ,则三棱锥A -BDF 体积为;若θ∈π6,π3,则异面直线AD ,BF 所成角的余弦值取值范围为.【答案】4377,155【分析】根据抛物线焦点弦的性质可得AF =p 1-cos θ,BF =p1+cos θ,进而根据面面垂直即可求三棱锥的高,进而利用体积公式即可求解,建立空间直角坐标系,利用向量的夹角就可求解异面直线的夹角.【详解】过B 作BM ⊥x ,BN ⊥准线,垂足为M ,N ,在Rt △BMF 中,MF =BF cos θ,又BN =BF =DF -MF =p -BF cos θ⇒BF =p 1+cos θ,MB =BF sin θ=p sin θ1+cos θ同理可得,AF =p1-cos θ过A 作AH ⊥x 于H ,由于平面ADF ⊥平面BDF ,且交线为DF ,AH ⊂平面ADF ,所以AH ⊥平面BDF ,且AH =AF sin θ=p sin θ1-cos θ,故三棱锥的体积为13S △BDF AF =13×12DF BM AH =16p p sin θ1+cos θp sin θ1-cos θ=p 36=86=43,AD =p 1-cos θ 2+p sin θ1-cos θ2=p 1-cos θ1+sin 2θ,BF =p1+cos θ且MB =p sin θ1+cos θ,FH =p cos θ1-cos θ,所以建立如图所示的空间直角坐标系,B p 2-p cos θ1+cos θ,-p sin θ1+cos θ,0 ,A p 2+p cos θ1-cos θ,0,p sin θ1-cos θ,p =2即B 1-cos θ1+cos θ,-2sin θ1+cos θ,0 ,A 1+cos θ1-cos θ,0,2sin θ1-cos θ ,D -1,0,0 ,F 1,0,0 ,DA =21-cos θ,0,2sin θ1-cos θ ,BF =2cos θ1+cos θ,2sin θ1+cos θ,0 ,DA ⋅BF =21+cos θ 2cos θ1-cos θ =4cos θsin 2θ所以cos DA ,BF =DA ⋅BFDA BF =4cos θsin 2θp 1-cos θ1+sin 2θp 1+cos θ=cos θ1+sin 2θ=1-sin 2θ1+sin 2θ=-1+21+sin 2θ,当θ∈π6,π3时,sin θ∈12,32 ⇒sin 2θ∈14,34 ⇒1+sin 2θ∈54,74 ,所以cos DA ,BF =-1+21+sin 2θ∈77,155 ,由于DA ,BF为锐角,所以异面直线AD ,BF 所成角的角等于DA ,BF ,故异面直线AD ,BF 所成角的余弦值取值范围为77,155故答案为:43,77,155【点睛】思路点睛:圆锥曲线中的范围或最值问题,可根据题意构造关于参数的目标函数,然后根据题目中给出的范围或由判别式得到的范围求解,解题中注意函数单调性和基本不等式的作用.另外在解析几何中还要注意向量的应用,如本题中根据向量的共线得到点的坐标之间的关系,进而为消去变量起到了重要的作用14.(2023春·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知数列a n 满足:①a 1=5;②a n +1=a n +2,n 为奇数3a n +2,n 为偶数 .则a n 的通项公式a n =;设S n 为a n 的前n 项和,则S 2023=.(结果用指数幂表示)【答案】 a n =3n +32-4,n 为奇数 3n +22-2,n 为偶数2×31013-6079【分析】当n 为奇数时令n =2k -1,k ∈N *可得a 2k =a 2k -1+2,当n 为偶数时令n =2k ,k ∈N *,可得a 2k +1+4=3a 2k -1+4 ,即可得到a 2k -1+4 是以9为首项,3为公比的等比数列,从而求出通项公式,再利用分组求和法计算可得.【详解】当n 为奇数时a n +1=a n +2,令n =2k -1,k ∈N *,则a 2k =a 2k -1+2,当n 为偶数时a n +1=3a n +2,令n =2k ,k ∈N *,则a 2k +1=3a 2k +2=3a 2k -1+2 +2=3a 2k -1+8,则a 2k +1+4=3a 2k -1+4 ,当k=1时a1+4=9,所以a2k-1+4是以9为首项,3为公比的等比数列,所以a2k-1+4=9×3k-1=3k+1,所以a2k-1=3k+1-4,则a2k=a2k-1+2=3k+1-4+2=3k+1-2,当n为奇数时,由n=2k-1,k∈N*,则k=n+12,所以a n=3n+12+1-4=3n+32-4,当n为偶数时,由n=2k,k∈N*,则k=n2,所以a n=3n2+1-2=3n+22-2,所以a n=3n+32-4,n为奇数3n+22-2,n为偶数,所以S2023=a1+a3+⋯+a2023+a2+a4+⋯+a2022=32+33+⋯+31013-4×1012+32+33+⋯+31012-2×1011=321-310121-3-4×1012+321-310111-3-2×1011=2×31013-6079故答案为:a n=3n+32-4,n为奇数3n+22-2,n为偶数,2×31013-607915.(2023秋·河北张家口·高三统考期末)已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且a=4,c=3b,则△ABC面积的最大值是;若r,R分别为△ABC的内切圆和外接圆半径,则rR的范围为.【答案】 3;34,2 .【分析】对于第一空,利用余弦定理表示出cos A,再表示出sin A,再利用S△ABC=12bc sin A可得答案;对于第二空,利用r=2S△ABCabc,R=12⋅asin A可得答案.【详解】因a,b,c在三角形中,则由三角形三边关系可得c+b=4b>4c-b=2b<4⇒1<b<2,又利用余弦定理有:cos A=b2+c2-a22bc =10b2-166b2,又cos2A+sin2A=1,sin A>0,则sin A=1-cos2A=1-100b4+256-320b236b4=4-b4+5b2-43b2.得S△ABC=12bc sin A=2-b4+5b2-4=2-b2-522+94≤3,当且仅当b2=52,即b=102时取等号.则△ABC面积的最大值是3;对于第二空,因S△ABC=12a+b+cr,则r=2S△ABCa+b+c=bc sin A4+4b=3b2sin A4+4b,又asin A=2R⇒R=a2sin A=2sin A,则rR=6b24+4b=32⋅b21+b=32⋅1+b-121+b=32b+1+1b+1-2,因1<b<2,则2<b+1<3.令f x =x+1x,其中x∈2,3,因f x =x2-1x2>0,则f x 在2,3上单调递增,故52<b+1+1b+1<103,得rR∈34,2.故答案为:3;3 4 ,2.16.(2023秋·河北保定·高三统考期末)定义在R上的两个函数f x 和g x ,已知f x +g1-x=3,g x +f x-3=3.若y=g x 图象关于点1,0对称,则f0 =,g1 +g2 +g3 +⋯+g1000=.【答案】 3 0【分析】①根据题意,利用方程法得到f x =f-2-x,通过赋值得到f0 =f-2,根据y=g x 的图象关于点1,0对称得到g1-x+g1+x=0,即可得到f x -g1+x=3,再利用方程法得到f x +f x-2=6,令x=0,得到f0 +f-2=6,然后求f0 即可;②利用方程法得到g x =-g x-2,整理可得g x =g x-4,得到4是g x 的一个周期,然后根据g x =-g x-2得到g1 +g2 +g3 +g4 =0,最后再利用周期求g1 +g2 +g3 +⋯+g1000即可.【详解】由g x +f x-3=3可得g1-x+f-2-x=3,又f x +g1-x=3,所以f x =f-2-x,令x=0,所以f0 =f-2;因为y=g x 的图象关于点1,0对称,所以g1-x+g1+x=0,又f x +g1-x=3,所以f x -g1+x=3,因为g x +f x-3=3,所以g1+x+f x-2=3,f x +f x-2=6,令x=0,所以f0 +f-2=6,则f0 =3;因为f x -g1+x=3,所以f x-3-g x-2=3,又g x +f x-3=3,所以g x =-g x-2,g x-2=-g x-4,则g x =g x-4,4是g x 的一个周期,因为g3 =-g1 ,g4 =-g2 ,所以g1 +g2 +g3 +g4 =0,因为g x 周期是4,所以g1 +g2 +g3 +⋯+g1000=0.故答案为:3,0.17.(2023秋·江苏·高三统考期末)已知数列a n、b n满足b n=a n+12,n=2k-1a n+1,n=2k其中k∈N*,b n 是公比为q的等比数列,则a n+1a n=(用q表示);若a2+b2=24,则a5=.【答案】 q2 1024【分析】根据已知得出a k=b2k-1,则a n+1a n=b2n+1b2n-1,即可得出a n+1a n=q2,根据已知得出a2=b3,可得到b1q1+q=24,根据已知得出a3=b2,b5=a3,结合条件即得.【详解】∵n=2k-1时,b n=a n+12,即a k=b2k-1,k∈N*,则a n+1a n=b2n+1b2n-1,∵b n是公比为q的等比数列,∴b2n+1b2n-1=q2,即a n+1a n=q2;∵q2>0,∴a n中的项同号,∵n=2k时,b n=a n+1,∴a n+1≥0,则a n中的项都为正,即a n>0,∴b n=a n+12>0,∴q>0,∵b n=a n+12,n=2k-1a n+1,n=2k,∴a2=b3,∴a2+b2=b2+b3=24,∴b1q1+q=24,∵b n=a n+12,n=2k-1a n+1,n=2k,∴a3=b2,b5=a3,∴b22=b5,即b21q2=b1q4,∴b1=q2,∴q31+q=24,q4-16+q3-8=0,解得q=2,∴a5=b24=q10=1024.故答案为:q 2;1024.18.(2023秋·山东潍坊·高三统考期中)在△ABC 中,点D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍,且AD =λAC ,则实数λ的取值范围为;若△ABC 的面积为1,当BC 最短时,λ=.【答案】 0,43 2105##2510【分析】过C 作CE ⎳AB 交AD 延长线于E ,由题设易得BD =2DC 、AC =EC 、△ADB ∼△EDC ,在△ACE 中应用三边关系求λ的取值范围,若∠BAD =∠CAD =θ∈0,π2,由三角形面积公式得b 2sin2θ=1,且AE =2AC ⋅cos θ得cos θ=3λ4,进而可得b 2=83λ16-9λ2,应用余弦定理得到BC 关于λ的表达式,结合其范围求BC 最小时λ对应值即可.【详解】由△ABD 面积是△ADC 面积的2倍,即BD =2DC ,如上图,过C 作CE ⎳AB 交AD 延长线于E ,又AD 平分∠BAC ,所以∠BAE =∠CAE =∠AEC ,即AC =EC ,且△ADB ∼△EDC ,故ED AD=CD BD =12,若AC =EC =b ,又AD =λAC ,则AD =λb 且λ>0,ED =λb2,△ACE 中,AC +EC =2b >AE =3λb 2,可得λ<43,故0<λ<43;由角平分线性质知:S △ABD S △ACD =ABAC =2,则AB =2AC =2b ,若∠BAD =∠CAD =θ∈0,π2 ,则S △ABC =12AB ⋅AC sin2θ=b 2sin2θ=1,又AE =2AC ⋅cos θ,即3λb 2=2b cos θ,则cos θ=3λ4,故sin θ=16-9λ24,所以b 2sin2θ=2b 2sin θcos θ=3λb 216-9λ8=1,可得b 2=83λ16-9λ2,由BC 2=5b 2-4b 2cos2θ=9b 2-8b 2cos 2θ=12(2-λ2)λ16-9λ2=12⋅(λ2-2)2-9(λ2-2)2-20(λ2-2)-4,令t =1λ2-2∈-92,-12 ,则BC 2=12⋅1-9-20t-4t 2=12-141t+522-16,所以t =-52时BC 2min =12×14=3,即BC min =3,此时λ2=85,即λ=2105.故答案为:0<λ<43,2105.【点睛】关键点点睛:注意过C 作CE ⎳AB 交AD 延长线于E ,应用三角形三边关系求参数范围,根据已知条件得到BC 关于λ的表达式是求最值的关键.19.(2023秋·山东德州·高三统考期末)如图所示,已知F 1、F 2分别为双曲线x 24-y 212=1的左、右焦点,过F 2的直线与双曲线的右支交于A 、B 两点,则∠AF 2O 的取值范围为;记△AF 1F 2的内切圆O 1的面积为S 1,△BF 1F 2的内切圆O 2的面积为S 2,则S 1+S 2的取值范围是.【答案】π3,2π3 8π,403π【分析】分析可知直线AB 与x 轴不重合,设直线AB 的方程为x =my +4,将直线AB 的方程与双曲线的方程联立,利用韦达定理结合已知条件求出m 的取值范围,可求得∠AF 2O 的取值范围;设圆O 1切AF 1、AF 2、F 1F 2分别于点M 、N 、G ,分析可知直线AB 的倾斜角取值范围为π3,2π3,推导出圆O 1、圆O 2的半径r 1、r 2满足r 1r 2=4,求得r 1∈233,23 ,利用双勾函数的单调性可求得S 1+S 2的取值范围.【详解】设直线AB 的倾斜角为α,在双曲线x 24-y 212=1中,a =2,b =23,则c =a 2+b 2=4,故点F 24,0 ,若直线AB 与x 轴重合,则直线AB 与双曲线交于该双曲线的两个实轴的端点,不合乎题意,所以,直线AB 与x 轴不重合,设直线AB 的方程为x =my +4,设点A x 1,y 1 、B x 2,y 2 ,联立x =my +43x 2-y 2=12可得3m 2-1 y 2+24my +36=0,由题意可得3m 2-1≠0Δ=242m 2-4×36×3m 2-1 >0 ,解得m 2≠13,由韦达定理可得y 1+y 2=-24m 3m 2-1,y 1y 2=363m 2-1,x 1+x 2=m y 1+y 2 +8=-24m 23m 2-1+8=-83m 2-1>0,可得m 2<13,x 1x 2=my 1+4 my 2+4 =m 2y 1y 2+4m y 1+y 2 +16=-12m 2+163m 2-1>0,可得m 2<13,所以,-33<m <33,且α∈0,π 当-33<m <0时,tan α=1m ∈-∞,-3 ,此时α∈π2,2π3,当m =0时,AB ⊥x 轴,此时α=π2,当0<m <33时,tan α=1m ∈3,+∞ ,此时α∈π3,π2 ,综上,π3<α<2π3,不妨设点A 在第一象限,则∠AF 2O =α∈π3,2π3;设圆O 1切AF 1、AF 2、F 1F 2分别于点M 、N 、G ,过F 2的直线与双曲线的右支交于A 、B 两点,可知直线AB 的倾斜角取值范围为π3,2π3,由切线长定理可得AM =AN ,F 1M =F 1G ,F 2G =F 2N ,所以,AF 2 +F 1F 2 -AF 1 =AN +F 2N +F 1G +F 2G -AM +F 1M =F 2N +F 2G =2F 2G =2c -2a ,则F 2G =c -a =2,所以点G 的横坐标为4-2=2.故点O 1的横坐标也为2,同理可知点O 2的横坐标为2,故O 1O 2⊥x 轴,故圆O 1和圆O 2均与x 轴相切于G 2,0 ,圆O 1和圆O 2两圆外切.在△O 1O 2F 2中,∠O 1F 2O 2=∠O 1F 2G +∠O 2F 2G =12∠AF 2F 1+∠BF 2F 1 =90°,O 1O 2⊥F 2G ,∴∠GO 1F 2=∠F 2O 1O 2,∠O 1GF 2=∠O 1F 2O 2=90°,所以,△O 1GF 2∽△O 1F 2O 2,所以,O 1G O 1F 2=O 1F 2 O 1O 2,则O 1F 2 2=O 1G ⋅O 1O 2 ,所以F 2G 2=O 1F 2 2-O 1G 2=O 1G ⋅O 1O 2 -O 1G 2=O 1G ⋅O 2G ,即c -a 2=r 1⋅r 2,则r 1⋅r 2=4,由直线AB 的倾斜角取值范围为π3,2π3 ,可知∠AF 2F 1的取值范围为π3,2π3,则∠O 1F 2F 1=12∠AF 2F 1∈π6,π3,故r 1=F 2G ⋅tan ∠O 1F 2F 1=2tan ∠O 1F 2F 1∈233,23,则S 1+S 2=πr 21+r 22 =πr 21+16r 21,其中r 1∈233,23 ,令f x =x +16x ,其中x ∈43,12 ,则f x 在43,4 单调递减,在4,12 单调递增.因为f 4 =8,f 43=f 12 =403,则当x ∈43,12 时,f x ∈8,403 ,故S 1+S 2=πr 21+16r 21∈8π,40π3 .故答案为:π3,2π3;8π,40π3.【点睛】方法点睛:圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.20.(2023春·山东滨州·高三山东省北镇中学校考阶段练习)如图所示,一个平面内任意两两相交但不重合的若干条直线,直线的条数与这些直线将平面所划分的区域个数满足如下关系:1条直线至多可划分的平面区域个数为2;2条直线至多可划分的平面区域个数为4;3条直线至多可划分的平面区域个数为7;4条直线至多可划分的平面区域个数为11;一般的,n n ∈N * 条直线至多可划分的平面区域个数为;在一个平面内,对于任意两两相交但不重合的若干个圆,类比上述研究过程,可归纳出:n 个圆至多可划分的平面区域个数为.【答案】 n 2+n +22n 2-n +2【分析】根据当直线两两相交且任意三条直线均不交于同一点时,可划分的平面区域个数最多,设n 条直线可划分的平面区域个数为a n ,推导出a n =a n -1+n n ≥2 ,利用累加法求得a n ;利用类比的方法可求得n 个圆至多可划分的平面区域个数.【详解】当这些直线两两相交且任意三条直线均不交于同一点时,可划分的平面区域个数最多,设这样的n 条直线可划分的平面区域个数为a n ,已知a 1=2,a 2=4,当n ≥2时,因为第n 条直线l 与前n -1条直线至多新增n -1个交点,且新增的这n -1个交点均在l 上,按沿l 的方向向量方向排布将这n -1个交点依次记为A 1,A 2,⋯,A n -1,对于线段A m -1A m m ∈N * ,且2≤m ≤n -1 ,和以A 1和A n -1为端点且不经过A 2,A 3⋯,A n -2的两条射线,均能将前n -1条直线所划分的区域一分为二,故将新增n 个区域,故a n =a n -1+n n ≥2 ,故a n =a 1+a 2-a 1 +a 3-a 2 +⋯+a n -a n -1 =2+2+3+⋯+n =1+n n +1 2=n 2+n +22,故n 条直线至多将平面划分的区域个数为n 2+n +22;同理,当这些圆两两相交,且任意三个圆均不交于同一点时,可划分的平面区域个数最多,设这样的n 个圆可划分的平面区域个数为b n ,已知b 1=2,b 2=4,当n ≥2时,因为第n 个圆C 与前n -1个圆至多新增2n -1 个交点,且新增的这2n -2个交点均在C 上,按沿C 的逆时针方向排布将这2n -2个交点依次记为B 1,B 2,⋯,B 2n -2,对于弧B k -1Bk (k ∈N *,且2≤k ≤2n -2),和弧B 2n -2B 1,每一段弧均能将前n -1个圆所划分的区域一分为二,故将新增2n -2个区域,故有b n =b n -1+2n -2n ≥2 ,故b n =b 1+b 2 -b 1 +b 3-b 2 +⋯+b n -b n -1=2+2+4+⋯+2n -2 =2+n n -1 =n 2-n +2,故n 个圆至多可划分的平面区域个数为n 2-n +2.故答案为:n 2+n +22;n 2-n +2.【点睛】关键点点睛:确定当直线两两相交且任意三条直线均不交于同一点时,可划分的平面区域个数最多,设这样的n 条直线可划分的平面区域个数为a n ,关键点就是要推导出当增加一条直线时新增的区域个数,从而得到a n =a n -1+n n ≥2 .21.(2023·山东青岛·统考一模)设函数f x 是定义在整数集Z 上的函数,且满足f 0 =1,f 1 =0,对任意的x ,y ∈Z 都有f x +y +f x -y =2f x f y ,则f 3 =;f 12+22+⋅⋅⋅+20232f 12+f 22 +⋅⋅⋅+f 20232=.【答案】 011011【分析】由f x +y +f x -y =2f x f y 结合已知函数值,通过代入特殊值计算f 3 ;推导出函数f x 周期T =4,通过已知函数值,分析f 12+22+⋅⋅⋅+20232 f 12 +f 22 +⋅⋅⋅+f 20232中自变量的数据特征求值.【详解】令x =y =1,f (2)+f (0)=2f 2(1),∴f 2 =-1,。

小题训练05 计数原理与概率统计-2023年高考数学三轮复习(新高考专用)

小题训练05 计数原理与概率统计-2023年高考数学三轮复习(新高考专用)

aX,则 D(Y)=D(aX)=a2D(X),所以方差变为原来的 a2 倍,故 A 错误.
对于选项 B,从中任取 3 条有 4 种取法,其中能构成三角形的只有 3,5,7 一种,故这 3 条线 段能够组成三角形的概率为1,故 B 正确.
4
对于选项 C, |r|→1,成对样本数据的线性相关性越强,|r|→0,成对样本数据的线性相关性
条线段能够组成三角形的概率为1
4
C.样本相关系数 r 越大,成对样本数据的线性相关性越强;反之,线性相关性越弱
D.设两个独立事件 A 和 B 都不发生的概率为19,A 发生且 B 不发生的概率与 B 发生且 A 不发生
的概率相同,则事件
A
发生的概率为2
3
【解析】对于选项 A,设一组数据为 X,则每个数据都乘以同一个非零常数 a 后,可得 Y=
的方差分别为 10,8,则二线城市的房价的方差为 117.98.
【解析】设二线城市的房价的方差为 s2,
由题意可知 20= 1 [s2+(2.4-1.2)2]+ 3 ×[10+(1.8-1.2)2]+ 6 ×
1+3+6
1+3+6
1+3+6
[8+(0.7-1.2)2],
解得 s2=117.98,即二线城市的房价的方差为 117.98.
3.某机构调査了 10 种食品的卡路里含量,结果如下:107,135,138,140,146,175,
179,182,191,195.则这组数据的第 25 百分位数和中位数分别是( A ).
A.138,160.5 C.138,175
B.138,146 D.136.5,160.5

(整理版)高考数学小题狂做冲刺训练(详细解析)

(整理版)高考数学小题狂做冲刺训练(详细解析)

高考数学小题狂做冲刺训练〔详细解析〕、选择题〔本大题共10小题,每题5分,共50分。

在每题给出的四个选项中,只有一个选项是符合题目要求的〕 1.点P 在曲线323+-=x x y 上移动,设点P 处切线的倾斜角为α,那么角α的取值范围是( )A.[0,2π]B.[0,2π〕∪[43π,π) C.[43π,π) D.(2π,43π]解析:∵y′=3x 2-1,故导函数的值域为[-1,+∞). ∴切线的斜率的取值范围为[-1,+∞〕. 设倾斜角为α,那么tanα≥-1. ∵α∈[0,π),∴α∈[0,2π)∪[43π,π).答案:B2.假设方程x 2+ax+b =0有不小于2的实根,那么a 2+b 2的最小值为( )A.3B.516 C.517 D.518 解析:将方程x 2+ax+b =0看作以(a,b)为动点的直线l:xa+b+x 2=0的方程,那么a 2+b 2的几何意义为l 上的点(a,b)到原点O(0,0)的距离的平方,由点到直线的距离d 的最小性知a 2+b 2≥d 2=211)1(1)100(2224222-+++=+=+++x x x x x x (x ≥2), 令u =x 2+1,易知21)(-+=u u u f (u ≥5)在[5,+∞)上单调递增,那么f(u)≥f(5)=516, ∴a 2+b 2的最小值为516.应选B. 答案:B3.国际上通常用恩格尔系数来衡量一个国家或地区人民生活水平的状况,它的计算公式为yxn =(x:人均食品支出总额,y:人均个人消费支出总额),且y =2x+475.各种类型家庭情相同的情况下人均少支出75元,那么该家庭属于( )解析:设1998年人均食品消费x 元,那么人均食品支出:x(1-7.5%)=92.5%x,人均消费支出:2×92.5%x+475,由题意,有2×92.5%x+475+75=2x+475,∴x=500. 此时,14005.462475%5.922%5.92=+⨯=x x x ≈0.3304=33.04%,应选D.答案:D4.(海南、宁夏高考,文4)设f(x)=xlnx,假设f′(x 0)=2,那么x 0等于( )2B.eC.22ln 解析:f′(x)=lnx+1,令f′(x 0)=2, ∴lnx 0+1=2.∴lnx 0=1.∴x 0=e. 答案:B5.n =log n+1 (n+2)(n∈N *).定义使a 1·a 2·a 3·…·a k 为整数的实数k 为奥运桔祥数,那么在区间[1,2 008]内的所有奥运桔祥数之和为( )A.1 004B.2 026C.4 072D.2 044解析:a n =log n+1 (n+2)=)1lg()2lg(++n n ,a 1·a 2·a 3·…·a k =2lg )2lg()1lg()2lg(4lg 5lg 3lg 4lg 2lg 3lg +=++••k k k . 由题意知k+2=22,23,…,210,∴k=22-2,23-2,…,210-2.∴S=(22+23+…+210)-2×9=20261821)21(49=---. 答案:B6.从2 004名学生中选取50名组成参观团,假设采用下面的方法选取,先用简单随机抽样法从2 004人中剔除4人,剩下的 2 000人再按系统抽样的方法进行,那么每人入选的概率〔 〕A .不全相等B .均不相等C .都相等且为002125D .都相等且为401解析:抽样的原那么是每个个体被抽到的概率都相等,所以每人入选的概率为002125. 答案:C7.将数字1,2,3,4,5,6拼成一列,记第i 个数为a i 〔i =1,2,…,6〕,假设a 1≠1,a 3≠3,5≠5,a 1<a 3<a 5,那么不同的排列方法种数为〔 〕A .18B .30C .36D .48 解析:∵a 1≠1且a 1<a 3<a 5,∴〔1〕当a 1=2时,a 3为4或5,a 5为6,此时有12种; 〔2〕当a 1=3时,a 3仍为4或5,a 5为6,此时有12种; 〔3〕当a 1=4时,a 3为5,a 5为6,此时有6种. ∴共30种. 答案:B8.在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.假设从中任选3人,那么选出的火炬手的编号能组成以3为公差的等差数列的概率为〔 〕A .511 B .681 C .3061 D .4081 解析:属于古典概型问题,根本领件总数为318C =17×16×3,选出火炬手编号为a n =a 1+3〔n -1〕〔1≤n ≤6〕,a 1=1时,由1,4,7,10,13,16可得4种选法; a 1=2时,由2,5,8,11,14,17可得4种选法; a 1=3时,由3,6,9,12,15,18可得4种选法. 故所求概率68131617444444318=⨯⨯++=++=C P . 答案:B9.复数i 3(1+i)2等于( )A.2B.-2 C解析:i 3(1+i)2=-i(2i)=-2i 2=2. 答案:A 10.(全国高考卷Ⅱ,4)函数x xx f -=1)(的图象关于( ) A.y 轴对称 B.直线y =-x 对称 C.坐标原点对称 D.直线y =x 对称 解析: x xx f -=1)(是奇函数,所以图象关于原点对称. 答案:C、填空题〔本大题共5小题,每题5分,共25分〕11.垂直于直线2x-6y+1=0且与曲线y=x 3+3x 2-5相切的直线方程为___________________.解析:与直线2x-6y+1=0垂直的直线的斜率为k=-3,曲线y=x 3+3x 2-5的切线斜率为y ′=3x 2+6x.依题意,有y ′=-3,即3x 2+6x=-3,得x=-1.当x=-1时,y=(-1)3+3·(-1)2-5=-3.故所求直线过点(-1,-3),且斜率为-3,即直线方程为y+3=-3(x+1), 即3x+y+6=0. 答案:3x+y+6=0 12.函数13)(--=a axx f (a≠1).假设f(x)在区间(0,1]上是减函数,那么实数a 的取值范围是______________. 解析:由03)1(2)('<--=axa a x f ,⎪⎩⎪⎨⎧<->-②,0)1(2①,03a aax由①,得a <x3≤3. 由②,得a <0或a >1,∴当a =3时,f(x)在x∈(0,1)上恒大于0,且f(1)=0,有f(x)>f(1). ∴a 的取值范围是(-∞,0)∪(1,3]. 答案:(-∞,0)∪(1,3] 13.平面上三点A 、B 、C满足3||=AB ,5||=CA ,4||=BC ,那么AB CA CA BC BC AB •+•+•的值等于________________.解析:由于0=++CA BC AB ,∴)(2||||||)(2222AB CA CA BC BC AB CA BC AB CA BC AB •+•+•+++=++0)(225169=•+•+•+++=AB CA CA BC BC AB ,即可求值.答案:-2514.设一次试验成功的概率为p,进行100次独立重复试验,当p=_________________时,成功次数的标准差的值最大,其最大值为___________________________________.解析:4)2(2n q p n npq D =+≤=ξ,等号在21==q p 时成立,此时Dξ=25,σξ=5. 答案:215 15.设z 1是复数,112z i z z -=(其中1z 表示z 1的共轭复数),z 2的实部是-1,那么z 2的虚部为___________________.解析:设z 1=x+yi(x,y ∈R),那么yi x z -=1. ∴z 2=x+yi-i(x-yi)=x-y+(y-x)i. ∵x-y=-1, ∴y-x=1. 答案:1。

2023新教材高考数学二轮专题复习强化训练3排列组合二项式定理

2023新教材高考数学二轮专题复习强化训练3排列组合二项式定理

强化训练3 排列、组合、二项式定理一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.[2022·山东泰安模拟](x -1x)22展开式中的常数项为( )A .C 1122 B .-C 1122 C .C 1222D .-C 12222.3名男生2名女生站成一排照相,则2名女生相邻且都不站在最左端的不同的站法共有( )A .72种B .64种C .48种D .36种3.六名志愿者到北京、延庆、张家口三个赛区参加活动,若每个赛区两名志愿者,则安排方式共有( )A .15种B .90种C .540种D .720种4.[2022·湖南益阳一模]为迎接新年到来,某中学2022年“唱响时代强音,放飞青春梦想”元旦文艺晚会如期举行.校文娱组委员会要在原定排好的8个学生节目中增加2个教师节目,若保持原来的8个节目的出场顺序不变,则不同排法的种数为( )A .36B .45C .72D .905.[2022·山东德州二模]已知a >0,二项式(x +ax2)6的展开式中所有项的系数和为64,则展开式中的常数项为( )A .36B .30C .15D .106.[2022·山东淄博一模]若(1-x )8=a 0+a 1(1+x )+a 2(1+x )2+…+a 8(1+x )8,则a 6=( )A .-448B .-112C .112D .4487.[2022·河北沧州二模](x -2x-1)5的展开式中的常数项为( )A .-81B .-80C .80D .1618.[2022·湖北十堰三模]甲、乙、丙、丁共4名学生报名参加夏季运动会,每人报名1个项目,目前有100米短跑、3 000米长跑、跳高、跳远、铅球这5个项目可供选择,其中100米短跑只剩下一个参赛名额,若最后这4人共选择了3个项目,则不同的报名情况共有( )A.224种B.288种C.314种D.248种二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.[2022·河北唐山二模]已知(x-2x2)n的展开式中第3项与第8项的二项式系数相等,则( )A.n=9B.n=11C.常数项是672D.展开式中所有项的系数和是-110.在新高考方案中,选择性考试科目有:物理、化学、生物、政治、历史、地理6门.学生根据高校的要求,结合自身特长兴趣,首先在物理、历史2门科目中选择1门,再从政治、地理、化学、生物4门科目中选择2门,考试成绩计入考生总分,作为统一高考招生录取的依据.某学生想在物理、化学、生物、政治、历史、地理这6门课程中选三门作为选考科目,下列说法正确的是( )A.若任意选科,选法总数为C24B.若化学必选,选法总数为C12 C13C.若政治和地理至少选一门,选法总数为C12 C12C13D.若物理必选,化学、生物至少选一门,选法总数为C12 C12+111.[2022·广东·华南师大附中三模]已知(a+2b)n的展开式中第5项的二项式系数最大,则n的值可以为( )A.7 B.8C.9 D.1012.[2022·湖北荆州三模]已知二项式(2x-1x)n的展开式中共有8项,则下列说法正确的有( )A.所有项的二项式系数和为128B.所有项的系数和为1C.第4项和第5项的二项式系数最大D .有理项共3项三、填空题(本题共4小题,每小题5分,共20分)13.[2022·山东烟台三模]若(1-ax )8展开式中第6项的系数为1792,则实数a 的值为________.14.[2022·辽宁辽阳二模]某话剧社计划在今年7月1日演出一部红色话剧,导演已经选好了该话剧的9个角色的演员,还有4个角色的演员待定,导演要从8名男话剧演员中选3名,从5名女话剧演员中选1名,则导演的不同选择共有________种.15.[2022·浙江卷]已知多项式(x +2)(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 2=______,a 1+a 2+a 3+a 4+a 5=______.16.[2022·河北保定一模]2022年北京冬奥会的某滑雪项目中有三个不同的运动员服务点,现需将10名志愿者分配到这三个运动员服务点处,每处需要至少2名至多4名志愿者,则不同的安排方法一共有________种.强化训练3 排列、组合、二项式定理1.解析:(x -1x)22展开式中的常数项为C 1122 (-1)11=-C 1122 .答案:B2.解析:将2名女生捆绑在一起,故2名女生相邻有A 22 种站法,又2名女生都不站在最左端,故有A 13 种站法,剩下3个位置,站3名男生有A 33 种站法,故不同的站法共有A 22 A 13 A 33 =36种. 答案:D3.解析:先从六名志愿者中选择两名志愿者到北京参加活动,有C 26 =15种方法,再从剩下的4名志愿者中选择2名志愿者到延庆参加活动,有C 24 =6种方法,最后从剩下的2名志愿者中选择2名志愿者到延庆参加活动,有C 22 =1种方法.由分步乘法原理得共有15×6×1=90种方法.答案:B4.解析:采用插空法即可:第1步:原来排好的8个学生节目产生9个空隙,插入1个教师节目有9种排法; 第2步:排好的8个学生节目和1个教师节目产生10个空隙,插入1个教师节目共有10种排法,故共有9×10=90种排法. 答案:D5.解析:令x =1,则可得所有项的系数和为(1+a )6=64且a >0,解得a =1, ∵(x +1x 2)6的展开式中的通项T k +1=C k 6 x 6-k(1x2)k =C k 6 x 6-3k ,k =0,1, (6)∴当k =2时,展开式中的常数项为C 26 =15. 答案:C6.解析:(1-x )8=(x -1)8=[(1+x )-2]8=a 0+a 1(1+x )+a 2(1+x )2+…+a 8(1+x )8,a 6=C 28 ·(-2)2=112.答案:C7.解析:(x -2x -1)5=(x -2x -1)(x -2x -1)(x -2x -1)(x -2x -1)(x -2x-1),所以展开式中的常数项为(-1)5+C 15 C 14 ×(-2)×(-1)3+C 25 C 23 ×(-2)2×(-1)=-81.答案:A8.解析:分两种情况讨论:①不选100米短跑,四名学生分成2名、1名、1名三组,参加除100米短跑的四个项目中的三个,有C 24 A 34 =144种;②1人选100米短跑,剩下三名学生分成2名、1名两组,参加剩下四个项目中的两个,有C 14 C 23 A 24 =144种.故他们报名的情况总共有144+144=288种. 答案:B9.解析:由C 2n =C 7n ,可得n =9,则选项A 判断正确;选项B 判断错误; (x -2x2)n 的展开式的通项公式为C k 9 x 9-k (-2)k x -2k =(-2)k C k 9 x 9-3k,令9-3k =0,则k =3,则展开式的常数项是(-2)3C 39 =-672.选项C 判断错误; 展开式中所有项的系数和是(1-212)9=-1.判断正确.答案:AD10.解析:若任意选科,选法总数为C 12 C 24 ,A 错误; 若化学必选,选法总数为C 12 C 13 ,B 正确;若政治和地理至少选一门,选法总数为C 12 (C 12 C 12 +1),C 错误;若物理必选,化学、生物至少选一门,选法总数为C 12 C 12 +1,D 正确. 答案:BD11.解析:当(a +2b )n的展开式中第4项和第5项的二项式系数相等且最大时,n =7; 当(a +2b )n的展开式中第5项和第6项的二项式系数相等且最大时,n =9; 当(a +2b )n的展开式中只有第5项的二项式系数最大时,n =8. 答案:ABC12.解析:由题设n =7,则T k +1=C k 7 (2x )7-k(-1x)k =(-1)k 27-k C k7 x7-3k2,A .所有项的二项式系数和为27=128,正确; B .当x =1,所有项的系数和为(2-1)7=1,正确;C .对于二项式系数C k 7 ,显然第四、五项对应二项式系数C 37 =C 47 最大,正确; D .有理项为7-3k2∈Z ,即k =0,2,4,6共四项,错误.答案:ABC13.解析:因为T 6=T 5+1=C 58 (-ax )5=C 58 (-a )5x 5=C 38 (-a )5x 5, 所以有:C 38 (-a )5=-56a 5=1 792, 所以a 5=-32, 解得a =-2. 答案:-214.解析:依题意,可得导演的不同选择的种数为C 38 ·C 15 =280. 答案:28015.解析:因为(x +2)(x -1)4展开式中x 2的系数为a 2,所以a 2=C 34 (-1)3+2C 24 (-1)2=8.在多项式(x +2)(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5中,令x =0,得a 0=2;令x =1,得a 0+a 1+a 2+a 3+a 4+a 5=0.所以a 1+a 2+a 3+a 4+a 5=-a 0=-2.答案:8 -216.解析:根据题意得,这10名志愿者分配到三个运动员服务点处的志愿者数目为2,4,4或3,3,4,所以不同的安排方法共有C 210 C 48 C 44 A 22 A 33 +C 410 C 36 C 33 A 22 A 33 =22 050. 答案:22 050。

专题4小题提分限时训练3(原卷版)-2021年新高考数学小题限时提分训练(45分钟)

专题4小题提分限时训练3(原卷版)-2021年新高考数学小题限时提分训练(45分钟)

专题4新高考数学小题提分限时训练3(原卷版)一、单选题1.已知集合{}{}11,21M x x N x x =-≤=-<≤,则M N =( )A .{}20x x -≤≤B .{}01x x ≤≤C .{}21x x -≤≤D .{}22x x -≤≤2.已知复数z 满足(2)z i i -=(i 为虚数单位),则z =( ) A .125i-+ B .125i-- C .125i- D .125i+ 3.下面四个条件中,使a b >成立的充分而不必要的条件是 A .1a b +>B .1a b ->C .22a b >D .33a b >4.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上, 则cos2θ=( ) A .-45B .-35C .35D .455.设实数x 、y 满足不等式组,若x 、y 为整数,则3x+4y 的最小值是( )A .14B .16C .17D .196.(2011•湖北)已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x ﹣a ﹣x +2(a >0,且a≠0).若g (a )=a ,则f (a )=( ) A .2 B .C .D .a 27.(1+2x)5的展开式中,x 2的系数等于 A .80B .40C .20D .108.设圆锥曲线τ的两个焦点分别为12,F F ,若曲线τ上存在点P 满足1122::PF F F PF 4:3:2=,则曲线τ的离心率等于A .12或32B .23或2 C .12或2 D .23或32二、多选题 9.下列各式中值为12的是( ).A .2sin 75cos75B .2π12sin12-C .cos 45cos15sin 45sin15-D .()tan 77tan 3221tan 77tan 32-+⋅10.已知{}n a 为等比数列,下面结论中错误的是( ) A .1322a a a + B .2221322a a a + C .若13a a =,则12a a =D .若31a a >,则42a a >11.若直线0ax by +=与圆22420x y x +-+=有公共点,则( ) A .ln ln a b B .||||a bC .()()0a b a b +-D .a b12.已知四边形ABCD 是等腰梯形(如图1),3AB =,1DC =,45BAD ∠=︒,DE AB ⊥.将ADE 沿DE 折起,使得AE EB ⊥(如图2),连结AC ,AB ,设M 是AB 的中点.下列结论中正确的是( )A .BC AD ⊥B .点E 到平面AMC 6 C .//EM 平面ACD D .四面体ABCE 的外接球表面积为5π三、填空题13.已知向量(1,2)a =-,(,1)b m =.若向量a 与b 平行,则m =_______.14.曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________. 15.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.16.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//BH DG ,EF =12 cm ,DE=2 cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为________cm2.。

2023年高考数学二轮复习第三篇小题提速练透大题规范增分第4讲排列、组合、二项式定理

2023年高考数学二轮复习第三篇小题提速练透大题规范增分第4讲排列、组合、二项式定理

项式系数之和为 64,则该展开式中的 x6 的系数是
(B )
A.60
B.160
C.180
D.240
第三篇 小题提速练透•大题规范增分
高考二轮总复习 • 数学
【解析】由已知可得 2n=64,解得 n=6, 则二项式的展开式的通项公式为 Tr+1=C6r (2x3)6-r1xr=C6r ·26-rx18-4r, 令 18-4r=6,解得 r=3, 所以展开式中含 x6 的系数为 C36 ·23=160, 故选 B.
【解析】根据题意,分 2 种情况讨论: ①3 人中有 1 人分得 3 张,其余 2 人各 1 张,有 C13 A33 =18 种分法, ②3 人中有 1 人分得 1 张,其余 2 人各 2 张,有 3A33 =18 种分法, 则有 18+18=36 种分法,即不同的分法种数为 36, 故选 B.
第三篇 小题提速练透•大题规范增分
第三篇 小题提速练透•大题规范增分
高考二轮总复习 • 数学
在yx2Tr+1=C5r x4-ryr+2 中,令 r=1,可得:yx2T2=C15 x3y3,该项中 x3y3 的系数为 5,
所以 x3y3 的系数为 10+5=15, 故选 C.
第三篇 小题提速练透•大题规范增分
高考二轮总复习 • 数学
第三篇 小题提速练透•大题规范增分
高考二轮总复习 • 数学
3.(2022·全国新高考Ⅱ卷)甲、乙、丙、丁、戊5名同学站成一排参 加文艺汇演,若甲不站在两端,丙和丁相邻,则不同的排列方式共有
A.12种 C.36种
B.24种 D.48种
(B )
第三篇 小题提速练透•大题规范增分
高考二轮总复习 • 数学
高考二轮总复习 • 数学

2025届辽宁省大连市重点中学高考数学三模试卷含解析

2025届辽宁省大连市重点中学高考数学三模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知等边△ABC 内接于圆τ:x 2+ y 2=1,且P 是圆τ上一点,则()PA PB PC ⋅+的最大值是( ) A .2B .1C .3D .22.设复数z 满足()117i z i +=-,则z 在复平面内的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.某工厂只生产口罩、抽纸和棉签,如图是该工厂2017年至2019年各产量的百分比堆积图(例如:2017年该工厂口罩、抽纸、棉签产量分别占40%、27%、33%),根据该图,以下结论一定正确的是( )A .2019年该工厂的棉签产量最少B .这三年中每年抽纸的产量相差不明显C .三年累计下来产量最多的是口罩D .口罩的产量逐年增加4.已知函数()()()1sin,13222,3100x x f x f x x π⎧-≤≤⎪=⎨⎪-<≤⎩,若函数()f x 的极大值点从小到大依次记为12,?··n a a a ,并记相应的极大值为12,,?··n b b b ,则()1niii a b =+∑的值为( )A .5022449+B .5022549+C .4922449+D .4922549+5.祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A 、B 为两个同高的几何体,:p A 、B 的体积不相等,:q A 、B 在等高处的截面积不恒相等.根据祖暅原理可知,p 是q的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.tan570°=( ) A .33B .-33C .3D .327.关于x 的不等式0ax b ->的解集是(1,)+∞,则关于x 的不等式()(3)0ax b x +->的解集是( ) A .(,1)(3,)-∞-+∞ B .(1,3)- C .(1,3)D .(,1)(3,)-∞+∞8.设双曲线22221y x a b-=(0a >,0b >)的一条渐近线与抛物线213y x =+有且只有一个公共点,且椭圆22221x y a b +=的焦距为2,则双曲线的标准方程为( )A .22143x y -= B .22143y x -=C .22123x y -=D .22132y x -=9.已知全集,,则( )A .B .C .D .10.执行程序框图,则输出的数值为( )A .12B .29C .70D .16911.已知定义在R 上的可导函数()f x 满足()()()'10x f x x f x -⋅+⋅>,若3(2)y f x e=+-是奇函数,则不等式1()20x x f x e +⋅-<的解集是( ) A .(),2-∞B .(),1-∞C .()2,+∞D .()1,+∞12.已知(1,2)a =,(,3)b m m =+,(2,1)c m =--,若//a b ,则b c ⋅=( ) A .7-B .3-C .3D .7二、填空题:本题共4小题,每小题5分,共20分。

2012届高考理科数学小题训练

2012届高考理科数学小题训练1 姓名一、本题共8小题,每小题5分,共40分,每小题有且只有一个选项是符合题目要求的.1.若集合211{|log (1)1},{|()1}42xM x x N x =-<=<<,则M N = ( ) A .{|12}x x <<B .{|13}x x <<C .{|03}x x <<D .{|02}x x <<2.已知向量()525,2,1=-=⋅=b a a等于( )A .5B .52C .25D .53.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A .34000cm 3B .38000cm 3C .32000cmD .34000cm4.命题“存在R x ∈,使24x ax a +-<0,为假命题”是命题“016≤≤-a ”的 ( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件5.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50m , 105,45=∠=∠CAB ACB 后,就可以计算出A 、B 两点的距离为( ) A. m 250B. m 350C. m 225D. m 22256. 某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽 取了5名学生的学分,用茎叶图表示(如右图). 1s ,2s 分别表 示甲、乙两班抽取的5名学生学分的标准差,则1s 2s .(填“>”、“<”或“=”). 为( ) A .> B .< C .= D .不能确定7. 函数x x y sin 3+=的图象大致是( )正视图侧视图俯视图8.设双曲线1422=-y x 的两条渐近线与直线2=x 围成的三角形区域(包括边界)为D ,P ()y x ,为D 内的一个动点,则目标函数y x z -=21的最小值为 ( )A .2-B .223-C .0D .225-二、填空题:本大题共8小题,每小题5分,共35分,把答案填在题中横线上。

2019江苏高考数学小题强化训练50练(提升版)(含详细解答)

高考数学小题强化训练50篇(提升版)8个填空题+4个解答题 (含详细参考答案)班级 __________ 姓名 __________ 分数 __________小题强化训练一一、填空题:本大题共8小题,每题5分,共40分. 1.给出以下结论:①命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”; ②“x =4”是“x 2-3x -4=0”的充分条件;③命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题;④命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”. 则其中错误的是________.(填序号)2.已知函数f (x )=⎩⎨⎧sin 5πx 2,x ≤0,16-log 3x ,x >0,则f (f (33))=________.3.连续抛掷两枚骰子分别得到的点数是a ,b ,则函数f (x )=ax 2-bx 在x =1处取得最值的概率是________.4.设S n 为正项等比数列{a n }的前n 项和.若a 4·a 8=2a 10,则S 3的最小值为________.5.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-4x =0,若直线y =k (x +1)上存在一点P ,使过点P 所作的圆的两条切线相互垂直,则实数k 的取值范围是____________.(第6题)6.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ=________.7.已知a >0,b >0,则a 2a +b +2b2b +a的最大值为________.8.已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一的零点,则a =________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)如图,在三棱柱ABCA 1B 1C 1中,已知M ,N 分别为线段BB 1,A 1C 的中点,MN 与AA 1所成角的大小为90°,且MA 1=MC .求证:(1)平面A 1MC ⊥平面A 1ACC 1; (2)MN ∥平面ABC .10.(本小题满分14分)已知向量m =(cos α,-1),n =(2,sin α),其中α∈(0,π2),且m ⊥n .(1)求cos2α的值;(2)若sin(α-β)=1010,且β∈(0,π2),求角β的值.11.(本小题满分16分)设椭圆C :x 22+y 2=1的右焦点为F ,过点F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,求证:∠OMA =∠OMB .12.(本小题满分16分)已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63. (1)求数列{a n }的通项公式; (2)若b n =2a n +(-1)n ·a n ,求数列{b n }的前n 项和T n .班级 __________ 姓名 __________ 分数 __________小题强化训练二一、填空题:本大题共8小题,每题5分,共40分.1.已知复数z 满足(z -2)i =1+i (i 为虚数单位),则复数z 的共轭复数z 在复平面内对应的点位于第________象限.2.设集合A ={x |y =ln(x 2-3x )},B ={y |y =2x ,x ∈R },则A ∪B =____________.3.若θ∈(0,π4),且sin2θ=14,则sin(θ-π4)=________.4.已知一个正方体的外接球体积为V 1,其内切球体积为V 2,则V 1V 2的值为________.5.记等差数列{a n }的前n 项和为S n .已知a 1=3,且数列{S n }也为等差数列,则a 11=________.6.在▱ABCD 中,∠BAD =60°,E 是CD 上一点,且AE →=12AB →+BC →,|AB →|=λ|AD →|.若AC →·EB →=12AD → 2,则λ=________.7.设函数f (x )=ln x +mx,m ∈R ,若对任意x 2>x 1>0,f (x 2)-f (x 1)<x 2-x 1恒成立,则实数m 的取值范围是__________.8.已知实数x ,y 满足x 2+y 2=1,则1(x -y )2+1(x +y )2的最小值为________. 二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5. (1)求cos ∠ADB 的值;(2)若DC =22,求BC 的值.10.(本小题满分14分)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(点E与点A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.11.(本小题满分16分)如图所示的某种容器的体积为90πcm3,它是由圆锥和圆柱两部分连结而成的,圆柱与圆锥的底面圆半径都为rcm.圆锥的高为h1cm,母线与底面所成的角为45°;圆柱的高为h2cm.已知圆柱底面造价为2a元/cm2,圆柱侧面造价为a元/cm2,圆锥侧面造价为2a元/cm2.(1)将圆柱的高h2表示为底面圆半径r的函数,并求出定义域;(2)当容器造价最低时,圆柱的底面圆半径r为多少?12.(本小题满分16分)已知等比数列{a n}的前n项和为S n,且2n+1,S n,a成等差数列(n∈N*).(1)求a的值及数列{a n}的通项公式;(2)若b n=(2n-1)a n,求数列{b n}的前n项和T n.班级 __________ 姓名 __________ 分数 __________小题强化训练三一、填空题:本大题共8小题,每题5分,共40分.1.设集合A =⎩⎨⎧⎭⎬⎫x |14≤2x ≤64,x ∈N ,B ={x |y =ln(x 2-3x )},则A ∩B 的子集的个数是________.2.设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的__________条件. 3.已知双曲线C :x 2a 2-y2b2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为3,则双曲线C 的焦距为________.4.已知{a n },{b n }均为等比数列,其前n 项和分别为S n ,T n .若对任意的n ∈N *,总有S n T n =3n+14,则a 3b 3=________.5.已知在平行四边形ABCD 中,∠BAD =120°,AB =1,AD =2,P 是线段BC 上的一个动点,则AP →·DP →的取值范围是________.(第7题)6.已知函数f (x )=sin x (x ∈[0,π])和函数g (x )=12tan x 的图象交于A ,B ,C 三点,则△ABC 的面积为________.7.如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.8.已知函数f (x )=⎩⎪⎨⎪⎧x 3+x 2+m ,0≤x ≤1,mx +2,x >1,若函数f (x )有且只有两个零点,则实数m 的取值范围是________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值; (2)记f (x )=a·b ,求f (x )的最大值和最小值以及对应的x 的值.10.(本小题满分14分)在平面直角坐标系xOy 中,圆O :x 2+y 2=4,直线l :4x +3y -20=0.A (45,35)为圆O 内一点,弦MN 过点A ,过点O作MN 的垂线交l 于点P .(1)若MN ∥l ,求△PMN 的面积;(2)判断直线PM 与圆O 的位置关系,并证明.11.(本小题满分16分)某农场有一块农田,如图,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为△CDP ,要求A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ. (1)用θ分别表示矩形ABCD 和△CDP 的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4∶3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.12.(本小题满分16分)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n,求数列{c n }的前n 项和T n .班级 __________ 姓名 __________ 分数 __________小题强化训练四一、填空题:本大题共8小题,每题5分,共40分.1.已知集合A ={x |2≤x <4},B ={x |x >a },若A ∩B ={x |3<x <4},则实数a =________.2.已知f (x )=ax 5+bx 3+sin x -8,且f (-2)=10,那么f (2)=________.3.已知sin θ-cos θ=43,θ∈(3π4,π),则sin(π-θ)-cos(π-θ)=________.4.记函数f (x )=3-2x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.5.在三棱锥ABCD 中,E 是AC 的中点,F 在AD 上,且2AF =FD .若三棱锥ABEF 的体积为2,则四棱锥BECDF 的体积为________.6.在平面直角坐标系xOy 中,已知圆C :x 2+(y -1)2=4.若等边三角形P AB 的一边AB 为圆C 的一条弦,则PC 的最大值为________.7.设数列{a n }满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N *),则k =1100(a k a k +1)的值为________.8.已知函数f (x )=⎩⎪⎨⎪⎧x 2,0<x ≤1,|ln (x -1)|,x >1.若方程f (x )=kx -2有两个不相等的实数根,则实数k 的取值范围是________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9.(本小题满分14分)在△ABC 中,a =7,b =8,cos B =-17.(1)求A 的值;(2)求边AC 上的高.10.(本小题满分14分)如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°. (1)求证:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,且四棱锥P ABCD 的体积为83,求该四棱锥的侧面积.11.(本小题满分16分)已知函数f (x )=1x-x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,求证:f (x 1)-f (x 2)x 1-x 2<a -2.12.(本小题满分16分)设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *). (1)求数列{a n }的通项公式;(2)若b n =na n +1-a n,数列{b n }的前n 项和为T n ,n ∈N *,求证:T n <2.班级 __________ 姓名 __________ 分数 __________小题强化训练五一、填空题:本大题共8小题,每题5分,共40分.1.欧拉公式e xi =cos x +i sin x (i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,e -3i 表示的复数在复平面中位于第________象限.2.某校有三个兴趣小组,甲、乙两名学生每人选择其中一个参加,且每人参加每个兴趣小组的可能性相同,则甲、乙不在同一兴趣小组的概率为________.3.在矩形ABCD 中,AB =2BC =2,现向矩形ABCD 内随机投掷质点P ,则满足P A →·PB →≥0的概率是________. 4.已知向量a =(cos θ,sin θ),向量b =(3,-1),则|2a -b|的最大值与最小值的和为________.(第5题)5.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的图象如图所示,则该函数的解析式是______________.6.若抛物线x 2=4y 的弦AB 过焦点F ,且AB 的长为6,则弦AB 的中点M 的纵坐标为________.7.已知数列{a n }满足a 1=0,数列{b n }为等差数列,且a n +1=a n +b n ,b 15+b 16=15,则a 31=________.8.已知函数f (x )=x (a -1ex ),曲线y =f (x )上存在两个不同的点,使得曲线在这两点处的切线都与y 轴垂直,则实数a的取值范围是__________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos(B -π6).(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.10.(本小题满分14分)如图,在直三棱柱ABCA 1B 1C 1中,BC ⊥AC ,D ,E 分别是AB ,AC 的中点.求证: (1)B 1C 1∥平面A 1DE ;(2)平面A 1DE ⊥平面ACC 1A 1.11.(本小题满分16分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤,分析显示:当S 中x %(0<x <100)的成员自驾时,自驾群体的人均通勤时间为f (x )=⎩⎪⎨⎪⎧30,0<x ≤30,2x +1 800x -90,30<x <100(单位:分钟),而公交群体的人均通勤时间不受x 影响,恒为40分钟.试根据上述分析结果回答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S 的人均通勤时间g (x )的表达式;讨论g (x )的单调性,并说明其实际意义.12.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2. (1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.班级 __________ 姓名 __________ 分数 __________小题强化训练六一、填空题:本大题共8小题,每题5分,共40分. 1.若A ={x ||x |<3},B ={x |2x >1},则A ∩B =________.2.电视台组织的中学生知识竞赛,共设有5个版块的试题,主题分别是“立德树人”“社会主义核心价值观”“依法治国理念”“中国优秀传统文化”“创新能力”.某参赛队从中任选2个主题作答,则“立德树人”主题被该队选中的概率是________.3.将函数y =3sin(2x -π6)的图象向左平移π4个单位长度,所得图象对应的函数解析式为____________.4.已知实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则y +1x的取值范围是________.(第5题)5.如图,从热气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时热气球的高度是60m ,则河流的宽度BC =________.6.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a的取值范围是________.7.已知O 为矩形P 1P 2P 3P 4内的一点,满足OP 1=4,OP 3=5,P 1P 3=7,则OP 2→·OP 4→=________.8.已知函数f (x )=⎩⎨⎧1-(x -1)2,0≤x <2,f (x -2),x ≥2.若对于正数k n (n ∈N *),直线y =k n x 与函数y =f (x )的图象恰有(2n +1)个不同的交点,则数列{k 2n }的前n 项和为________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)如图,在平行六面体ABCDA 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1.求证: (1)AB ∥平面A 1B 1C ;(2)平面ABB 1A 1⊥平面A 1BC .10.(本小题满分14分)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c tan C =3(a cos B +b cos A ). (1)求角C ;(2)若c =23,求△ABC 面积的最大值.11.(本小题满分16分)某厂花费2万元设计了某款式的服装.根据经验,每生产1百套该款式服装的成本为1万元,每生产x (百套)的销售额(单位:万元)P (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x -0.8,0<x ≤5,14.7-9x -3,x >5.(1)该厂至少生产多少套此款式服装才可以不亏本?(2)试确定该厂生产多少套此款式服装可使利润最大,并求最大利润. (注:利润=销售额-成本,其中成本=设计费+生产成本)12.(本小题满分16分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点A (0,1).(1)求椭圆C 的方程;(2)不经过点A 的直线l 与椭圆C 交于P ,Q 两点,且AP →·AQ →=0,求证:直线l 过定点.班级 __________ 姓名 __________ 分数 __________小题强化训练七一、填空题:本大题共8小题,每题5分,共40分.1.已知集合A ={x |x 2-x -2≤0},集合B ={x |1<x ≤3},则A ∪B =____________.2.已知复数z =(1+i )(1+2i ),其中i 是虚数单位,则z 的模是________.3.已知函数f (x )=⎩⎪⎨⎪⎧x 2-x ,x ≤1,11-x,x >1,则f (f (-2))=________.4.已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则mn=________.5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思如下:有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了________.6.已知sin α=3sin(α+π6),则tan(α+π12)=________.7.已知经过点P (1,32)的两个圆C 1,C 2都与直线l 1:y =12x ,l 2:y =2x 相切,则这两圆的圆心距C 1C 2等于________.8.已知函数f (x )=log 2(ax 2+2x +3),若对于任意实数k ,总存在实数x 0,使得f (x 0)=k 成立,则实数a 的取值范围是________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)在长方体ABCDA 1B 1C 1D 1中,AB =BC =EC =12AA 1.求证:(1)AC 1∥平面BDE ; (2)A 1E ⊥平面BDE .10.(本小题满分14分)已知数列{a n }是公差不为0的等差数列,a 2=3,且a 3,a 5,a 8成等比数列. (1)求数列{a n }的通项公式;(2)设b n =a n cos a n π2,求数列{b n }的前2018项和.11.(本小题满分16分) 为建设美丽乡村,政府欲将一块长12百米,宽5百米的矩形空地ABCD 建成生态休闲园,园区内有一景观湖EFG (图中阴影部分).以AB 所在直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系xOy (如图).景观湖的边界曲线符合函数y =x +1x (x >0)模型.园区服务中心P 在x 轴正半轴上,PO =43百米.(1)若在点O 和景观湖边界曲线上一点M 之间修建一条休闲长廊OM ,求OM 的最短长度; (2)若在线段DE 上设置一园区出口Q ,试确定Q 的位置,使通道PQ 最短.12.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知F 1,F 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,且椭圆经过点A (2,0)和点(1,3e ),其中e 为椭圆的离心率. (1)求椭圆的方程;(2)过点A 的直线l 交椭圆于另一点B ,点M 在直线l 上,且OM =MA .若MF 1⊥BF 2,求直线l 的斜率.班级 __________ 姓名 __________ 分数 __________小题强化训练八一、填空题:本大题共8小题,每题5分,共40分. 1.若向量a =(cos10°,sin10°),b =(cos70°,sin70°),则|a -2b|=________.2.在同一平面直角坐标系中,函数y =sin(x +π3)(x ∈[0,2π))的图象和直线y =12的交点的个数是________.3.由命题“存在x 0∈R ,使得e |x 0-1|-m ≤0”是假命题,得m 的取值范围是(-∞,a ),则实数a 的值是________.4.已知圆柱M 的底面圆半径为2,高为6,圆锥N 的底面圆直径和母线长相等,若圆柱M 和圆锥N 的体积相同,则圆锥N 的高为________.5.在平面直角坐标系xOy 中,双曲线x 23-y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是________.6.设定义在R 上的偶函数f (x )在区间(-∞,0]上单调递减.若f (1-m )<f (m ),则实数m 的取值范围是________.7.设S n 为数列{a n }的前n 项和,S n =kn 2+n ,n ∈N *,其中k 是常数.若对于任意的m ∈N *,a m ,a 2m ,a 4m 成等比数列,则k 的值为________.8.已知直线y =kx +2-2k 与曲线y =2x -3x -2交于A ,B 两点,平面上的动点P 满足|P A →+PB →|≤2,则|PO →|的最大值为________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)如图,在正四棱锥VABCD 中,E ,F 分别为棱VA ,VC 的中点.求证: (1)EF ∥平面ABCD ; (2)平面VBD ⊥平面BEF .10.(本小题满分14分) 如图,某公园有三条观光大道AB ,BC ,AC 围成直角三角形,其中直角边BC =200m ,斜边AB =400m .现有甲、乙、丙三位小朋友分别在AB ,BC ,AC 大道上嬉戏,所在位置分别记为点D ,E ,F .(1)若甲、乙都以每分钟100m 的速度从点B 出发在各自的大道上奔走,到大道的另一端时即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲、乙两人之间的距离;(2)设∠CEF =θ,乙、丙之间的距离是甲、乙之间距离的2倍,且∠DEF =π3,请将甲、乙之间的距离ym 表示为θ的函数,并求甲、乙之间的最小距离.11.(本小题满分16分)如图,在平面直角坐标系xOy 中,设P 为圆O :x 2+y 2=2上的动点,过点P 作x 轴的垂线,垂足为Q ,点M 满足PQ→=2MQ →.(1)求证:当点P 运动时,点M 始终在一个确定的椭圆上; (2)过点T (-2,t )(t ∈R )作圆O 的两条切线,切点分别为A ,B . ①求证:直线AB 过定点(与t 无关);②设直线AB 与(1)中的椭圆交于C ,D 两点,求证:ABCD≤ 2.12.(本小题满分16分)已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x +t ,x <0,x +ln x ,x >0,其中t 是实数.设A ,B 为该函数图象上的两点,横坐标分别为x 1,x 2,且x 1<x 2.(1)求f (x )的单调区间和极值;(2)若x 2<0,函数f (x )的图象在点A ,B 处的切线互相垂直,求x 1-x 2的最大值.班级 __________ 姓名 __________ 分数 __________小题强化训练九一、填空题:本大题共8小题,每题5分,共40分.1.已知向量a =(-1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是________.3.如图,在△ABC 中,已知AN →=12AC →,P 是BN 上一点.若AP →=mAB →+14AC →,则实数m 的值是________.(第2题)(第3题)(第4题)4.如图,正方体ABCDA 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1DEF 的体积为________.5.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧2x -y ≥0,x +y -4≥0,x ≤3,则2x 3+y 3x 2y的取值范围是________.6.若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为________.7.若数列⎩⎨⎧⎭⎬⎫2n (2n -1)(2n +1-1)的前k 项的和不小于2 0182 019,则k 的最小值为________.8.在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上.若P A →·PB →≤20,则点P 的横坐标的取值范围是________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b sin2C =c sin B . (1)求角C ;(2)若sin(B -π3)=35,求sin A 的值.10.(本小题满分14分)在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD ,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x 厘米,矩形纸板的两边AB ,BC 的长分别为a 厘米和b 厘米,其中a ≥b . (1)当a =90时,求纸盒侧面积的最大值;(2)试确定a ,b ,x 的值,使得纸盒的体积最大,并求出最大值.11.(本小题满分16分)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)求证:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+F A →+FB →=0.求证:|F A →|,|FP →|,|FB →|成等差数列,并求该数列的公差.12.(本小题满分16分)设等差数列{a n }是无穷数列,且各项均为互不相同的正整数.(1)设数列{a n }的前n 项和为S n ,b n =S na n-1,n ∈N *.①若a 2=5,S 5=40,求b 2的值; ②若数列{b n }为等差数列,求b n .(2)求证:数列{a n }中存在三项(按原来的顺序)成等比数列.班级 __________ 姓名 __________ 分数 __________小题强化训练十一、填空题:本大题共8小题,每题5分,共40分.1.若复数(a -i )(1-i )(a ∈R )的实部与虚部相等,则实数a =________.2.在三张奖券中有一、二等奖各一张,另一张无奖,甲、乙两人各抽取一张(不放回),两人都中奖的概率为________.3.执行下面的流程图,输出的T =________.4.已知正项等比数列{a n }的前n 项和为S n ,且4a 2=a 4,则S 4a 2+a 5=________.5.已知点P (1,22)在角θ的终边上,则sin(2θ+π2)+sin(2θ+2π)=________.6.从x 2m -y2n=1(其中m ,n ∈{-1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x 轴上的双曲线方程的概率为________.7.在平面直角坐标系xOy 中,若直线l :x +2y =0与圆C :(x -a )2+(y -b )2=5相切,且圆心C 在直线l 的上方,则ab 的最大值为________.8.设函数f (x )=⎩⎪⎨⎪⎧x 2+2,x ≤0,e x -1,x >0,若函数y =f (x )-2x +t 有两个零点,则实数t 的取值范围是______________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos2α的值; (2)求tan(α-β)的值.10.(本小题满分14分)如图,在一条海防警戒线上的点A ,B ,C 处各有一个水声监测点,B ,C 两点到点A 的距离分别为20km 和50km .某时刻,B 收到发自静止目标P 的一个声波信号,8s 后A ,C 同时接收到该声波信号,已知声波在水中的传播速度是1.5km /s .(1)设A 到P 的距离为xkm ,用x 表示B ,C 到P 的距离,并求x 的值; (2)求P 到海防警戒线AC 的距离.11.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆C :x 24+y 23=1的左、右顶点分别为A ,B ,过右焦点F 的直线l 与椭圆C交于P ,Q 两点(点P 在x 轴上方). (1)若QF =2FP ,求直线l 的方程;(2)设直线AP ,BQ 的斜率分别为k 1,k 2.是否存在常数λ,使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由.12.(本小题满分16分) 已知函数f (x )=e x -ax 2.(1)若a =1,求证:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)上只有一个零点,求实数a 的值.班级 __________ 姓名 __________ 分数 __________小题强化训练十一一、填空题:本大题共8小题,每题5分,共40分.1.若集合A ={x ∈Z |x 2+x -12<0},B ={x |x <sin5π},则A ∩B 中元素的个数为________.2.根据如图所示的伪代码,可知输出的结果S 是________.i ←1Whilei <6 i ←i +2 S ←2i +3 EndWhile PrintS3.已知首项为负数的等差数列{a n }中,a 5a 4<-1,若S n 取到最小正数,则此时的n =________.4.在平面直角坐标系xOy 中,双曲线x 2-y 24=1的一条渐近线与准线的交点到另一条渐近线的距离为________.5.已知约束条件⎩⎪⎨⎪⎧x +y -3≥0,x -2y +3≥0,x ≤a表示的可行域为D ,其中a >1,点(x 0,y 0)∈D ,点(m ,n )∈D .若3x 0-y 0与n +1m的最小值相等,则实数a =________.6.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线l 恰好是曲线y =x 3-3x 2+22x 在原点处的切线,左顶点到一条渐近线的距离为263,则双曲线的标准方程为__________.7.将函数y =3sin(π4x )的图象向左平移3个单位长度,得函数y =3sin(π4x +φ)(|φ|<π)的图象(如图),点M ,N 分别是函数f (x )图象上y 轴两侧相邻的最高点和最低点.设∠MON =θ,则tan(φ-θ)的值为________.8.已知函数f (x )=x 3-2x +e x -1ex ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)在△ABC 中,AB =6,AC =32,AB →·AC →=-18. (1)求BC 的长; (2)求tan2B 的值.10.(本小题满分14分)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式;(2)求S n ,并求S n 的最小值.11.(本小题满分16分)曲线f (x )=x 2-a 2ln x 在点(12,f (12))处的切线斜率为0.(1)讨论函数f (x )的单调性;(2)若g (x )=f (x )+12mx 在区间(1,+∞)上没有零点,求实数m 的取值范围.12.(本小题满分16分)如图,圆柱体木材的横截面半径为1dm ,从该木材中截取一段圆柱体,再加工制作成直四棱柱A 1B 1C 1D 1ABCD ,该四棱柱的上、下底面均为等腰梯形,分别内接于圆柱的上、下底面,下底面圆的圆心O 在梯形ABCD 内部,AB ∥CD ,∠DAB =60°,AA 1=AD ,设∠DAO =θ. (1)求梯形ABCD 的面积;(2)当sin θ取何值时,四棱柱A 1B 1C 1D 1ABCD 的体积最大?并求出最大值.(注:木材的长度足够长)班级 __________ 姓名 __________ 分数 __________小题强化训练十二一、填空题:本大题共8小题,每题5分,共40分.1.已知集合A ={x ∈R |log 12(x -2)≥-1},B =⎩⎨⎧⎭⎬⎫x ∈R |2x +63-x ≥1,则A ∩B =________. 2.设向量a =(2,m ),b =(1,-1),若b ⊥(a +2b ),则实数m =________.3.已知正五边形ABCDE 的边长为23,则AC →·AE →的值为________.4.正方形铁片的边长为8cm ,以它的一个顶点为圆心,一边长为半径画弧,剪下一个顶角为π4的扇形,用这块扇形铁片围成一个圆锥形容器,则这个圆锥形容器的容积等于________cm 3.5.等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.6.已知sin α=55,α∈(0,π2),tan β=13,则tan(α+2β)=________.7.已知a >0,函数f (x )=x (x -a )2和g (x )=-x 2+(a -1)x +a 存在相同的极值点,则a =________.8.设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x <a ,-2x ,x ≥a ,若关于x 的不等式f (x )>4a 在实数集R 上有解,则实数a 的取值范围是____________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为a 23sin A.(1)求sin B sin C 的值;(2)若6cos B cos C =1,a =3,求△ABC 的周长.10.(本小题满分14分)如图,在四棱锥P ABCD 中,底面ABCD 为梯形,CD ∥AB ,AB =2CD,AC 交BD 于点O ,锐角三角形P AD 所在平面P AD ⊥底面ABCD ,P A ⊥BD ,点Q 在侧棱PC 上,且PQ =2QC .求证: (1)P A ∥平面QBD ; (2)BD ⊥AD .11.(本小题满分16分)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率为53,点A 的坐标为(b ,0),且FB ·AB =6 2.(1)求椭圆的方程;(2)设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若AQ PQ =524sin ∠AOQ (O 为原点),求k 的值.12.(本小题满分16分)如图,半圆AOB 是某爱国主义教育基地一景点的平面示意图,半径OA 的长为1百米.为了保护景点,基地管理部门从道路l 上选取一点C ,修建参观线路CDEF ,且CD ,DE ,EF 均与半圆相切,四边形CDEF 是等腰梯形.设DE=t 百米,记修建每1百米参观线路的费用为f (t )万元,经测算f (t )=⎩⎨⎧5,0<t ≤13,8-1t ,13<t <2.(1)用t 表示线段EF 的长;(2)求修建该参观线路的最低费用.班级 __________ 姓名 __________ 分数 __________小题强化训练十三一、填空题:本大题共8小题,每题5分,共40分.(第3题)1.已知复数z =2+i1-i (i 为虚数单位),那么z 的共轭复数为________.2.若tan(α-π4)=16,则tan α=________.3.执行如图所示的程序框图,若a =2018,则输出的S =________.4.设等边三角形ABC 的边长为1,t 为任意的实数,则|AB →+tAC →|的最小值为________.5.已知函数f (x )=2sin x +1(x ∈[0,2π]),设h (x )=|f (x )|-a ,则当1<a <3时,函数h (x )的零点个数为________.6.已知函数f (x )=(x 2-2x )sin(x -1)+x +1在x ∈[-1,3]上的最大值为M ,最小值为m ,则M +m =________.7.已知x >y >0,且x +y ≤2,则4x +3y +1x -y的最小值为________.8.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.若椭圆上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是______________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)如图,在四棱锥P ABCD 中,底面ABCD 是矩形,PD ⊥平面ABCD ,过AD 的平面分别与PB ,PC 交于点E ,F .求证: (1)平面PBC ⊥平面PCD ; (2)AD ∥EF .10.(本小题满分14分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点(-3,12)在椭圆C 上.(1)求椭圆C 的标准方程;(2)若直线l 交椭圆C 于P ,Q 两点,线段PQ 的中点为H ,O 为坐标原点,且OH =1,求△POQ 面积的最大值.11.(本小题满分16分)如图,圆O 是一块半径为1米的圆形钢板,为生产某部件需要,需从中截取一块多边形ABCDFGE .其中AD 为圆O的直径,点B ,C ,G 在圆O 上,BC ∥AD ,点E ,F 在AD 上,且OE =OF =12BC ,EG =FG .(1)设∠AOB =θ,试将多边形ABCDFGE 面积S 表示成θ的函数关系式; (2)求多边形ABCDFGE 面积S 的最大值.12.(本小题满分16分)已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立. (1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13恒成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A tB t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由.班级 __________ 姓名 __________ 分数 __________小题强化训练十四一、填空题:本大题共8小题,每题5分,共40分.1.设全集U ={x |x ≥2,x ∈N },集合A ={x |x 2≥5,x ∈N },则∁U A =________.2.如图所示的茎叶图记录了甲、乙两组各八名学生在一次数学测试中的成绩(单位:分),规定85分以上(含85分)为优秀,现分别从甲、乙两组中随机选取一名同学的数学成绩,则两人成绩都为优秀的概率是________. 错误!(第2题) (第3题) (第5题)3.如图,在一个面积为8的矩形中随机撒一粒黄豆,若黄豆落到阴影部分的概率为14,则阴影部分的面积为________.4.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯________盏.5.如图,在四棱锥P ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形.若AB =2,∠BAD =60°,则当四棱锥P ABCD 的体积等于23时,PC =________.6.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右端点分别为A ,B ,点C (0,2b ).若线段AC 的垂直平分线过点B ,则双曲线的离心率为________.7.在平行四边形ABCD 中,AB =2,AD =1,AB →·AD →=-1,点M 在边CD 上,则MA →·MB →的最大值为________.8.已知函数f (x )=x (e x -e -x )-(2x -1)(e 2x -1-e 1-2x ),则满足f (x )>0的实数x 的取值范围是________. 二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (-35,-45).(1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cos β的值.。

高考数学ABC三级训练题库选修23含4 试题

目录:数学选修2-3数学选修2-3第一章:计数原理 [根底训练A组]数学选修2-3第一章:计数原理 [综合训练B组] 数学选修2-3第一章:计数原理 [进步训练C组]数学选修2-3第二章:离散型随机变量解答题精选(数学选修2--3) 第一章 计数原理[根底训练A 组] 一、选择题1.将3个不同的小球放入4个盒子中,那么不同放法种数有〔 〕 A .81 B .64 C .12 D .142.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机 各1台,那么不同的取法一共有〔 〕 A .140种 B.84种 C.70种 D.35种3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有〔 〕A .33AB .334AC .523533A A A -D .2311323233A A A A A +4.,,,,a b c d e 一共5个人,从中选1名组长1名副组长,但a 不能当副组长, 不同的选法总数是〔 〕A.20 B .16 C .10 D .65.现有男、女学生一共8人,从男生中选2人,从女生中选1人分别参加数学、 物理、化学三科竞赛,一共有90种不同方案,那么男、女生人数分别是〔 〕 A .男生2人,女生6人 B .男生3人,女生5人 C .男生5人,女生3人 D .男生6人,女生2人.6.在82x ⎛- ⎝的展开式中的常数项是〔 〕 A.7 B .7- C .28 D .28-7.5(12)(2)x x -+的展开式中3x 的项的系数是〔 〕A.120 B .120- C .100 D .100-8.22nx ⎫⎪⎭展开式中只有第六项二项式系数最大,那么展开式中的常数项是〔 〕A .180B .90C .45D .360二、填空题1.从甲、乙,……,等6人中选知名4代表,那么〔1〕甲一定中选,一共有 种选法.〔2〕甲一定不入选,一共有 种选法.〔3〕甲、乙二人至少有一人中选,一共有 种选法.2.4名男生,4名女生排成一排,女生不排两端,那么有 种不同排法. 3.由0,1,3,5,7,9这六个数字组成_____个没有重复数字的六位奇数.4.在10(x 的展开式中,6x 的系数是 .5.在220(1)x -展开式中,假如第4r 项和第2r +项的二项式系数相等,那么r = ,4r T = .6.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个?7.用1,4,5,x 四个不同数字组成四位数,所有这些四位数中的数字的总和为288,那么x .8.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共有________________个? 三、解答题1.判断以下问题是排列问题还是组合问题?并计算出结果.〔1〕高三年级学生会有11人:①每两人互通一封信,一共通了多少封信?②每两人互握了一次手,一共握了多少次手?〔2〕高二年级数学课外小组10人:①从中选一名正组长和一名副组长,一共有多少种不同的选法?②从中选2名参加数学竞赛,有多少种不同的选法?〔3〕有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?2.7个排成一排,在以下情况下,各有多少种不同排法?〔1〕甲排头,〔2〕甲不排头,也不排尾,〔3〕甲、乙、丙三人必须在一起,〔4〕甲、乙之间有且只有两人,〔5〕甲、乙、丙三人两两不相邻,〔6〕甲在乙的左边〔不一定相邻〕,〔7〕甲、乙、丙三人按从高到矮,自左向右的顺序,〔8〕甲不排头,乙不排当中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学综合小题训练三一、选择题(共10小题,每题5分,满分50分,每题给出的四个选项中,有且只有一个选项是正确的)1.已知全集R U =,{|A y y =,则U C A =( ) A .[0,)+∞ B .(,0)-∞ C .(0,)+∞ D .(,0]-∞ 2.“2πϕ=” 是 “函数(x)sin(x )f ϕ=+为偶函数” 的A 、充分而不必要条件B 、必要而不充分条件C 、充分必要条件D 、既不充分也不必要条件 3.已知sin αcos α=18,且54π<α<32π,则cos α-sin α的值为( )A . -34 C . 34 D . 4.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为 ( )A .101B . 1212C .808D .20125.已知抛物线:C )0(22>=p px y ,焦点为F ,准线为l ,P 为抛物线上一点,过点P 作直线l 的垂线PM ,垂足为M ,已知PFM ∆为等边三角形,则PFM ∆的面积为( )A. 2p B. 23p C. 22p D. 232p6.左图是某高三学生进入高中三年来的数学考试成绩茎叶图,第一次到14次的考试成绩依次为1A ,2A ,…,14A ,右图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A.7B.8C.9D.107.已知1,2,150,OA OB AOB ==∠=︒点C 在AOB ∠的内部且30AOC ∠=︒,设OC OA OB m n =+,则mn=( ) A ...1 D .28.从6人中选4人分别到北京、哈尔滨、广州、成都四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且在这6人中甲、乙不去哈尔滨游览,则不同的选择方案共有A.300种B.240种C.144种D.96种 9.已知等差数列{}n a 中,359,17a a ==,记数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和为n S ,若)(,1012Z m mS S n n ∈≤-+,对任意的*N n ∈成立,则整数m 的最小值为( ) A .5 B .4 C .3 D .210.设函数()f x 的定义域为R,若存在常数M>0,使()f x M x ≤对 一切实数x 均成 立,则称()f x 为“倍约束函数”,现给出下列函数:①()2f x x =:②2()1f x x =+:③()sin cos f x x x =+;④2()3xf x x x =-+ ⑤()f x 是定义在实数集R 上的奇函数,且对一切12,x x 均有1212()()f x f x x x -≤-,其中是“倍约束函数”的有( ) A .1个 B .2个 C ..3个 D .4个二、填空题(共5小题,每题5分,满分25分,请将答案填在题中的横线上)11.设i 是虚数单位,复数12aii++为纯虚数,则实数a的值为 . 12.一个正四棱锥的侧棱长与底面边长相等,则它的表面积为________. 13.已知52345012345(12)x a a x a x a x a x a x -=+++++, 则12345a a a a a ++++= .14.已知圆()()()22:10C x a y a a -+-=>与直线3y x =相交于P 、Q 两点,则当的面积最大时,实数的值为 .a15.已知命题:①将一组数据中的每个数都变为原来的2倍,则方差也变为原来的2倍; ②命题“2,10x R x x ∃∈++<”的否定是“2,10x R x x ∀∈++<”; ③在ABC ∆中,若sin sin A B A B ><,则; ④在正三棱锥S ABC -内任取一点P ,使得12P ABC S ABC V V --<的概率是78; ⑤若对于任意的()2,430n N n a n a *∈+-++≥恒成立,则实数a 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭. 以上命题中正确的是__________(填写所有正确命题的序号).参考答案1.B 【解析】因为,R U =,{|{|0}A y y y y ===≥,所以,U C A ={|0}y y <,故选B.2.A 【解析】当2πϕ=时,(x)sin()cos 2f x x π=+=,所以(x)sin(x )f ϕ=+为偶函数;反之(x)sin(x )f ϕ=+为偶函数,则,2k k Z πϕπ=+∈;所以“2πϕ=” 是 “函数(x)sin(x )f ϕ=+为偶函数” 的充分而不必要条件,故选A. 3.D 【解析】∵54π<α<32π,∴cos α>sin α, ∴cos α-sin α>0,又∵(cos α-sin α)2=1-2cos αsin α=34, ∴cos α-sin α=2. 4.C 【解析】由题意得抽样比819612==,则四个社区总人数8088)43252112(=⨯+++=. 5.B 【解析】根据抛物线的定义,可知PFM ∆为等腰三角形,又因060=∠PFM ,所以PFM ∆为等边三角形,由于焦点和准线的位置,可知正三角形的边长为2p ,故三角形的面积2)S p =23p ,故选B. 6.D 【解析】由茎叶图知,这个学生14次数学的成绩分别79.86.83.88.93.99.98.98.94.91.95. 103.101.114.程序框图的含义是输出数学成绩在90分或90分以上的次数,共10次,故选D.7.A .【解析】以O 为原点,直线OA 为x 轴建立如图坐标系.由已知可得()()1,0,.A B 设()0OC t t =>OA OB m n =+得8.B 【解析】当所选4人中没有甲乙时,方案有44A 种;当所选4人中只有甲乙中一人时,方案有13132433C C C A 种;当所选4人中有甲乙两人时,方案有222432C A A 种,所以总的方案有240种。

故选B 。

9.B 【解析】在等差数列{}n a 中,∵359,17a a ==, ∴112417a d a d +⎧⎨+⎩=9=, 解得1a 1d==,111,14(1)43n n a n ==+--. ∵2n 1n 2n 3n 1S S S S +++---()()n+1n 22n 1n 2n 32n 3111111a a a a a a +++++++⋯+-++⋯+=()()n 12n 22n 3111a a a +++=--111111104n 18n 58n 98n 28n 58n 28n 9=--=-+-+++++++()()>, ∴数列*2n 1n {S S }n N +-∈()是递减数列,1159+=10.C 【解析】解:①对于函数()2f x x =,存在=2M ,使()f x M x ≤对 一切实数x 均成 立,所以该函数是“倍约束函数”;②对于函数2()1f x x =+,当0x =时,()1f x =,故不存在常数M>0,使()f x M x ≤对 一切实数x 均成 立,所以该函数不是“倍约束函数”; ③对于函数()s i n c o s f x x x =+,当0x =时,()1f x =,故不存在常数M>0,使()f x M x ≤对 一切实数x 均成 立,所以该函数不是“倍约束函数”; ④对于函数2()3xf x x x =-+,因为当0x =时,()0f x =;当0x ≠时,22()11431111124f x xx x x ==≤-+⎛⎫-+ ⎪⎝⎭,所以存在常数411M =,使()f x M x ≤对 一切实数x 均成 立, 所以该函数是“倍约束函数”; ⑤由题设()f x 是定义在实数集R 上的奇函数,(0)0f =,所以在1212()()f x f x x x -≤-中令12,0x x R x =∈=,于是有()f x x ≤,即存在常数1M =,使()f x M x ≤对 一切实数x 均成 立, 所以该函数是“倍约束函数”;综上可知“倍约束函数”的有①④⑤共三个,所以应选C . 考点:1、新定义;2、赋值法;3、基本初等函数的性质. 11.2-【解析】因为1(1)(2)2212555ai ai i a a i i ++-+-==++为纯虚数,所以2210,0255a a a +-=≠⇒=- 考点:纯虚数概念 12.344+【解析】设正四棱锥的侧棱长与底面边长相等为a2,则a a a BO PB h a S ABCD 224,422222=-=-==,则23424313=⨯=a V ,则1=a ,则34344224)21(222==-⨯⨯=⨯⨯⨯=a a a a PF BC S 侧;则正四棱锥的表面积为344+=S .13.2-【解析】因为二项式定理是一个恒等式,故令0x =,则有01a =;令1x =,则有5012345(121)a a a a a a -⨯=+++++,即01a =,0123451a a a a a a +++++=-,所以12345012a a a a a a ++++=--=-.14.2()()()22:10C x a y a a -+-=>的圆心为(),a a ,半径为1,圆心到直线3y x =的距离为d ==所以,CPQ ∆的面积555S =⋅==当254a =时,24104a a -取得最大值,最大值为:12所以,CPQ ∆的面积的最大值为:12.此时a =. 15.③④⑤【解析】2)]([)(X D b aX D =+ ,所以将一组数据中的每个数都变为原来的2倍,则方差也变为原来的4倍;故①错误;命题“2,10x R x x ∃∈++<”的否定是“01,2≥++∈∀x x R x ”,故②错误;在ABC ∆中,若B A >,则b a >,由正弦定理B A b a sin :sin :=,得B A sin sin >,故③正确;在正三棱锥S ABC -内任取一点P ,使得12P ABC S ABC V V --<,则A B C S A B C P h h --=21,P 在与底面ABC 平行的中截面上,则中截面将正三棱锥的体积分成7:1的两部分,所以所求概率是78,即④正确;⑤若对于任意的()2,430n N n a n a *∈+-++≥恒成立,则034)1(2≥+-++n n a n ,即1342+--≥n n n a ,令11)2(134)(22++--=+--=n n n n n n f ,显然)(n f 在[)+∞,2上为减函数,且31)2(,0)1(==f f ,即31)(m a x =n f ,即实数a 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭,故⑤正确;所以选③④⑤.。

相关文档
最新文档