工程数学期末试题A

合集下载

工程数学本期末综合练习

工程数学本期末综合练习

工程数学本期末综合练习TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】《工程数学(本)》期末综合练习一、单项选择题1.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ).A .()BA AB 11=- B .()111---+=+B A B A C .()111---=B A AB D .1111----+=+B A B A正确答案:A2.方程组⎪⎩⎪⎨⎧=+=+=-331232121a x x a x x a x x 相容的充分必要条件是( ),其中0≠i a ,)3,2,1(=i .A .0321=++a a aB .0321=-+a a aC .0321=+-a a aD .0321=++-a a a正确答案:B3.设矩阵⎥⎦⎤⎢⎣⎡--=1111A 的特征值为0,2,则3A 的特征值为 ( ) . A .0,2 B .0,6 C .0,0 D .2,6正确答案:B4. 设A ,B 是两事件,则下列等式中( )是不正确的.A . )()()(B P A P AB P =,其中A ,B 相互独立B . )()()(B A P B P AB P =,其中0)(≠B PC . )()()(B P A P AB P =,其中A ,B 互不相容D . )()()(A B P A P AB P =,其中0)(≠A P正确答案:C5.若随机变量X 与Y 相互独立,则方差)32(Y X D -=( ).A .)(3)(2Y D X D -B .)(3)(2Y D X D +C .)(9)(4YD X D - D .)(9)(4Y D X D +正确答案:D6.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '有意义,则C 是( )矩阵.A .s n ⨯B .n s ⨯C .t m ⨯D .m t ⨯正确答案:B7.若X 1、X 2是线性方程组AX =B 的解,而21ηη、是方程组AX = O 的解,则( )是AX =B 的解.A .213231X X +B .213231ηη+ C .21X X - D .21X X + 正确答案:A8.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( ) .A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011 D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100 正确答案:C9. 下列事件运算关系正确的是( ).A .AB BA B += B .A B BA B +=C .A B BA B +=D .B B -=1 正确答案:A10.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( ).A .)3,2(-NB .)3,4(-NC .)3,4(2-ND .)3,2(2-N正确答案:D11.设321,,x x x 是来自正态总体),(2σμN 的样本,则( )是μ的无偏估计. A .321525252x x x ++ B .321x x x ++ C .321535151x x x ++ D .321515151x x x ++ 正确答案:C12.对给定的正态总体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从( ).A .χ2分布 B .t 分布 C .指数分布 D .正态分布正确答案:B二、填空题 1.设412211211)(22+-=x x x f ,则0)(=x f 的根是 .应该填写:2,2,1,1--2.设向量β可由向量组n ααα,,,21 线性表示,则表示方法唯一的充分必要条件是n ααα,,,21 .应该填写:线性无关3.若事件A ,B 满足B A ⊃,则 P (A - B )= .应该填写:)()(B P A P -4..设随机变量的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它,010,1)(2x x k x f ,则常数k = . 应该填写:π4 5.若样本n x x x ,,,21 来自总体)1,0(~N X ,且∑==ni i x n x 11,则~x . 应该填写:)1,0(nN6.行列式701215683的元素21a 的代数余子式21A 的值为= . 应该填写-567.设三阶矩阵A 的行列式21=A ,则1-A = . 应该填写:2 8.若向量组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2121α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1302α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2003k α,能构成R 3一个基,则数k . 应该填写:2≠9.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 个解向量.应该填写:310.设A B ,互不相容,且P A ()>0,则P B A ()= .应该填写:011.若随机变量X ~ ]2,0[U ,则=)(X D . 应该填写:31 12.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ的 估计. 应该填写:无偏三、计算题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=210211321,100110132B A ,求:(1)AB ;(2)1-A . 解:(1)因为2100110132-=--=A 所以 2==B A AB .(2)因为 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100100010110001132I A 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-10011012/32/11A . 2.求齐次线性方程组 ⎪⎩⎪⎨⎧=++--=++++=++++0233035962023353215432154321x x x x x x x x x x x x x x 的通解.解: A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--326001130012331203313596212331 一般解为 ⎪⎪⎩⎪⎪⎨⎧=-=--=0313543421x x x x x x ,其中x 2,x 4 是自由元 令x 2 = 1,x 4 = 0,得X 1 =)0,0,0,1,3('-;x 2 = 0,x 4 = 3,得X 2 =)0,3,1,0,3('--所以原方程组的一个基础解系为 { X 1,X 2 }.原方程组的通解为: 2211X k X k +,其中k 1,k 2 是任意常数.3.设随机变量)1,4(~N X .(1)求)24(>-X P ;(2)若9332.0)(=>k X P ,求k 的值. (已知9332.0)5.1(,8413.0)1(,9775.0)2(=Φ=Φ=Φ).解:(1))24(>-X P =1-)24(≤-X P= 1-)242(≤-≤-X P =1-()2()2(-Φ-Φ)= 2(1-)2(Φ)=.(2))44()(->-=>k X P k X P=1-)44(-≤-k X P=1-)5.1(9332.0)4(Φ==-Φk即 k -4 = , k =.4.某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5 cm ,标准差为0.15cm .从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm ),,,问:该机工作是否正常(05.0=α, 96.1975.0=u )解:零假设5.10:0=μH .由于已知15.0=σ,故选取样本函数nx U σμ-=~)1,0(N 经计算得375.10=x ,075.0415.0==n σ, 由已知条件96.121=-αu ,且 2196.167.1αμσμ-=<=-nx 故接受零假设,即该机工作正常.5.已知矩阵方程B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301111010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=350211B ,求X . 解:因为B X A I =-)(,且即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--110121120)(1A I 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-334231350211110121120)(1B A I X . 6.设向量组)1,421(1'--=,,α,)4,1684(2'--=,,α,)2,513(3'--=,,α,)1,132(4'-=,,α,求这个向量组的秩以及它的一个极大线性无关组.解:因为(1α 2α 3α 4α)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------12411516431822341 所以,r (4321,,,αααα) = 3. 它的一个极大线性无关组是 431,,ααα(或432,,ααα).7.设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ,λ为何值时方程组有非零解?在有非零解时,求出通解.解:因为A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---λ83352231⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→610110231λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→500110101λ 505==-λλ即当时,3)(<A r ,所以方程组有非零解.方程组的一般解为: ⎩⎨⎧==3231x x x x ,其中3x 为自由元. 令3x =1得X 1=)1,1,1(',则方程组的基础解系为{X 1}.通解为k 1X 1,其中k 1为任意常数.8.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取到3颗棋子颜色相同的概率.解:设1A =“取到3颗棋子中至少有一颗黑子”,2A =“取到的都是白子”,3A =“取到的都是黑子”,B =“取到3颗棋子颜色相同”,则(1))(1)(1)(211A P A P A P -=-=745.0255.01131238=-=-=C C . (2))()()()(3232A P A P A A P B P +=+=273.0018.0255.0255.031234=+=+C C .9.设随机变量X ~ N (3,4).求:(1)P (1< X < 7);(2)使P (X < a )=成立的常数a . (8413.0)0.1(=Φ,9.0)28.1(=Φ,9973.0)0.2(=Φ).解:(1)P (1< X < 7)=)23723231(-<-<-X P =)2231(<-<-X P =)1()2(-Φ-Φ = + – 1 = (2)因为 P (X < a )=)2323(-<-a X P =)23(-Φa = 所以28.123=-a ,a = 3 + 28.12⨯ = 10.从正态总体N (μ,9)中抽取容量为64的样本,计算样本均值得x = 21,求μ的置信度为95%的置信区间.(已知 96.1975.0=u )解:已知3=σ,n = 64,且n x u σμ-=~ )1,0(N 因为 x = 21,96.121=-αu ,且所以,置信度为95%的μ的置信区间为: ]735.21,265.20[],[2121=+---n u x n ux σσαα. 四、证明题1.设A 是n 阶矩阵,若3A = 0,则21)(A A I A I ++=--.证明:因为 ))((2A A I A I ++-=322A A A A A I ---++=3A I -= I所以 21)(A A I A I ++=--2.设n 阶矩阵A 满足0))((=+-I A I A ,则A 为可逆矩阵.证明: 因为 0))((2=-=+-I A I A I A ,即I A =2所以,A 为可逆矩阵. 3.设向量组321,,ααα线性无关,令2112ααβ+=,32223ααβ+=,1334ααβ-=,证明向量组321,,βββ线性无关。

《工程数学(本)》期末综合练习

《工程数学(本)》期末综合练习

《工程数学(本)》期末综合练习一、单项选择题1.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ). A .()BAAB 11=- B .()111---+=+B A B A C .()111---=B A AB D .1111----+=+B A B A正确答案:A2.方程组⎪⎩⎪⎨⎧=+=+=-331232121a x xa x x a x x 相容的充分必要条件是( ),其中0≠i a ,)3,2,1(=i .A .0321=++a a aB .0321=-+a a aC .0321=+-a a aD .0321=++-a a a 正确答案:B3.设矩阵⎥⎦⎤⎢⎣⎡--=1111A 的特征值为0,2,则3A 的特征值为 ( ) .A .0,2B .0,6C .0,0D .2,6 正确答案:B4. 设A ,B 是两事件,则下列等式中( )是不正确的. A. )()()(B P A P AB P =,其中A ,B 相互独立 B. )()()(B A P B P AB P =,其中0)(≠B P C. )()()(B P A P AB P =,其中A ,B 互不相容 D. )()()(A B P A P AB P =,其中0)(≠A P 正确答案:C5.若随机变量X 与Y 相互独立,则方差)32(Y X D -=( ). A .)(3)(2Y D X D - B .)(3)(2Y D X D + C .)(9)(4Y D X D - D .)(9)(4Y D X D + 正确答案:D6.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '有意义,则C 是( )矩阵.A .s n ⨯B .n s ⨯C .t m ⨯D .m t ⨯ 正确答案:B7.若X 1、X 2是线性方程组AX =B 的解,而21ηη、是方程组AX = O 的解,则( )是AX =B 的解. A .213231X X + B .213231ηη+ C .21X X - D .21X X + 正确答案:A8.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( ) . A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101 B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011 D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100 正确答案:C9. 下列事件运算关系正确的是( ).A .AB BA B += B .A B BA B +=C .A B BA B +=D .B B -=1 正确答案:A10.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( ). A .)3,2(-N B .)3,4(-N C .)3,4(2-N D .)3,2(2-N 正确答案:D11.设321,,x x x 是来自正态总体),(2σμN 的样本,则( )是μ的无偏估计. A .321525252x x x ++ B .321x x x ++ C .321535151x x x ++ D .321515151x x x ++ 正确答案:C12.对给定的正态总体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从( ).A .χ2分布 B .t 分布 C .指数分布 D .正态分布 正确答案:B二、填空题1.设412211211)(22+-=x x x f ,则0)(=x f 的根是 .应该填写:2,2,1,1--2.设向量β可由向量组n ααα,,,21 线性表示,则表示方法唯一的充分必要条件是n ααα,,,21 .应该填写:线性无关3.若事件A ,B 满足B A ⊃,则 P (A - B )= . 应该填写:)()(B P A P -4..设随机变量的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它,010,1)(2x x kx f ,则常数k = .应该填写:π45.若样本n x x x ,,,21 来自总体)1,0(~N X ,且∑==ni i x n x 11,则~x .应该填写:)1,0(nN 6.行列式701215683的元素21a 的代数余子式21A 的值为= . 应该填写-567.设三阶矩阵A 的行列式21=A ,则1-A = . 应该填写:28.若向量组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2121α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1302α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2003k α,能构成R 3一个基,则数k .应该填写:2≠9.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 个解向量. 应该填写:310.设A B ,互不相容,且P A ()>0,则P B A ()= . 应该填写:011.若随机变量X ~ ]2,0[U ,则=)(X D . 应该填写:31 12.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ的 估计. 应该填写:无偏三、计算题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=210211321,100110132B A ,求:(1)AB ;(2)1-A . 解:(1)因为210110132-=--=A 12111210211110210211321-=-===B 所以2==B A AB .(2)因为 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100100010110001132I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→10010011001012/32/1001100100110010101032所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-10011012/32/11A .2.求齐次线性方程组 ⎪⎩⎪⎨⎧=++--=++++=++++0233035962023353215432154321x x x x x x x x x x x x x x 的通解.解: A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--326001130012331203313596212331⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→100001130012331⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→100000130001031 一般解为 ⎪⎪⎩⎪⎪⎨⎧=-=--=0313543421x x x x x x ,其中x 2,x 4 是自由元令x 2 = 1,x 4 = 0,得X 1 =)0,0,0,1,3('-; x 2 = 0,x 4 = 3,得X 2 =)0,3,1,0,3('--所以原方程组的一个基础解系为 { X 1,X 2 }.原方程组的通解为: 2211X k X k +,其中k 1,k 2 是任意常数.3.设随机变量)1,4(~N X .(1)求)24(>-X P ;(2)若9332.0)(=>k X P ,求k 的值. (已知9332.0)5.1(,8413.0)1(,9775.0)2(=Φ=Φ=Φ).解:(1))24(>-X P =1-)24(≤-X P= 1-)242(≤-≤-X P =1-()2()2(-Φ-Φ) = 2(1-)2(Φ)=0.045. (2))44()(->-=>k X P k X P =1-)44(-≤-k X P=1-)5.1(9332.0)4(Φ==-Φk )5.1()5.1(1)4(-Φ=Φ-=-Φk即 k -4 = -1.5, k =2.5.4.某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5 cm ,标准差为0.15cm.从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm )10.4,10.6,10.1,10.4问:该机工作是否正常(05.0=α, 96.1975.0=u )?解:零假设5.10:0=μH .由于已知15.0=σ,故选取样本函数nx U σμ-=~)1,0(N经计算得375.10=x ,075.0415.0==nσ,67.1075.05.10375.10=-=-nx σμ由已知条件96.121=-αu,且2196.167.1αμσμ-=<=-nx故接受零假设,即该机工作正常.5.已知矩阵方程B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301111010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=350211B ,求X . 解:因为B X A I =-)(,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-101210011110001011100201010101001011)(I A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→11100121010120001110100011110010101 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--110121120)(1A I所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-334231350211110121120)(1B A I X .6.设向量组)1,421(1'--=,,α,)4,1684(2'--=,,α,)2,513(3'--=,,α,)1,132(4'-=,,α,求这个向量组的秩以及它的一个极大线性无关组. 解:因为(1α 2α 3α 4α)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------12411516431822341 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→1100770075002341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000200011002341 所以,r (4321,,,αααα) = 3.它的一个极大线性无关组是 431,,ααα(或432,,ααα).7.设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ,λ为何值时方程组有非零解?在有非零解时,求出通解. 解:因为A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---λ83352231⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→610110231λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→500110101λ505==-λλ即当时,3)(<A r ,所以方程组有非零解.方程组的一般解为: ⎩⎨⎧==3231x x x x ,其中3x 为自由元.令3x =1得X 1=)1,1,1(',则方程组的基础解系为{X 1}. 通解为k 1X 1,其中k 1为任意常数.8.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取到3颗棋子颜色相同的概率.解:设1A =“取到3颗棋子中至少有一颗黑子”,2A =“取到的都是白子”,3A =“取到的都是黑子”,B =“取到3颗棋子颜色相同”,则 (1))(1)(1)(211A P A P A P -=-=745.0255.01131238=-=-=C C .(2))()()()(3232A P A P A A P B P +=+=273.0018.0255.0255.031234=+=+C C .9.设随机变量X ~ N (3,4).求:(1)P (1< X < 7);(2)使P (X < a )=0.9成立的常数a . (8413.0)0.1(=Φ,9.0)28.1(=Φ,9973.0)0.2(=Φ). 解:(1)P (1< X < 7)=)23723231(-<-<-X P =)2231(<-<-X P =)1()2(-Φ-Φ = 0.9973 + 0.8413 – 1 = 0.8386 (2)因为 P (X < a )=)2323(-<-a X P =)23(-Φa = 0.9 所以28.123=-a ,a = 3 + 28.12⨯ = 5.56 10.从正态总体N (μ,9)中抽取容量为64的样本,计算样本均值得x = 21,求μ的置信度为95%的置信区间.(已知 96.1975.0=u ) 解:已知3=σ,n = 64,且nx u σμ-= ~ )1,0(N因为 x = 21,96.121=-αu,且735.064396.121=⨯=-nuσα所以,置信度为95%的μ的置信区间为: ]735.21,265.20[],[2121=+---nux nux σσαα.四、证明题1.设A 是n 阶矩阵,若3A = 0,则21)(A A I A I ++=--. 证明:因为 ))((2A A I A I ++-=322A A A A A I ---++ =3A I -= I所以 21)(A A I A I ++=--2.设n 阶矩阵A 满足0))((=+-I A I A ,则A 为可逆矩阵.证明: 因为 0))((2=-=+-I A I A I A ,即I A =2 所以,A 为可逆矩阵.3.设向量组321,,ααα线性无关,令2112ααβ+=,32223ααβ+=,1334ααβ-=,证明向量组321,,βββ线性无关。

工程大学2023-2023学年第1学期《高等数学(上)》期末考试试卷(A卷)及标准答案

工程大学2023-2023学年第1学期《高等数学(上)》期末考试试卷(A卷)及标准答案

工程大学2023-2024学年第1学期《高等数学(上)》期末考试试卷(A卷)及标准答案试卷题目:高等数学(上)期末考试试卷(A卷)科目:高等数学(上)时间:2024年1月一、选择题(共30题,每题2分,共60分)1.在直角坐标系中,抛物线y = x^2 - 2x 的顶点坐标是()A. (1, -1)B. (1, 2)C. (2, 1)D. (-1, 1)2.设函数f(x) = sin(2x + π/3),则函数 f(x) 的一个周期是()A. π/3B. π/2C. πD. 2π3.函数 y = 3ln(2x + 1) 的图像在 x 轴上的截距是()A. -1/2B. 1/2C. 0D. -14.设函数 f(x) = x^3 + 4x^2 + 5x,则 f(x) 的极值点是()A. (-1, -1)B. (0, 0)C. (0, 5)D. (-5, 0)5.已知曲线 C 的参数方程为 x = t^2 - 4, y = t - 1,则曲线 C 属于()A. 抛物线B. 椭圆C. 双曲线D. 直线…二、填空题(共10题,每题3分,共30分)1.函数 f(x) = sin(2x) 的最小正周期是 _______。

2.函数 y = x^3 + 4x^2 的导函数是 _______。

…三、解答题(共4题,每题20分,共80分)1.求方程组 x^2 + y^2 = 4, x - y = 1 的解。

2.计算不定积分∫(cos^2x + 2sinx)dx。

…四、大题(共2题,每题20分,共40分)1.设 y = ax^2 + bx + c,其中 a, b, c 均为常数,且a ≠ 0。

若曲线 y = ax^2 + bx + c 的顶点坐标为 (1, -1),且该曲线与直线 y = x + 1 相切于点 (2, 3),求曲线方程。

2.设函数 f(x) = e^x / (1 + e^x),求f’(x) 和f’’(x)。

工程数学试题A及答案

工程数学试题A及答案

工程数学试题A及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^3 - 3x^2 + 2 \)的导数是:A. \( 3x^2 - 6x \)B. \( 3x^2 - 6x + 2 \)C. \( x^3 - 3x^2 + 2 \)D. \( 3x^2 - 6x + 3 \)答案:A2. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值是:A. 0B. 1C. \( \pi \)D. \( \infty \)答案:B3. 函数\( y = e^x \)的不定积分是:A. \( e^x + C \)B. \( \ln x + C \)C. \( x e^x + C \)D. \( \frac{1}{x} + C \)答案:A4. 微分方程\( y' + 2y = 0 \)的通解是:A. \( y = Ce^{-2x} \)B. \( y = Ce^{2x} \)C. \( y = C\sin(2x) \)D. \( y = C\cos(2x) \)答案:A5. 矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)的行列式是:A. 5B. -2C. 2D. -5答案:B6. 函数\( f(x) = x^2 \)在区间\( [1, 2] \)上的定积分是:A. 1B. 2C. 3D. 4答案:C7. 函数\( y = \ln x \)的二阶导数是:A. \( \frac{1}{x^2} \)B. \( \frac{1}{x} \)C. \( x \)D. \( x^2 \)答案:A8. 矩阵\( A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)的逆矩阵是:A. \( \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \)B. \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)C. \( \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)D. \( \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \)答案:C9. 函数\( y = x^3 \)的不定积分是:A. \( \frac{x^4}{4} + C \)B. \( \frac{x^3}{3} + C \)C. \( \frac{x^2}{2} + C \)D. \( \frac{x}{3} + C \)答案:B10. 函数\( y = \sin x \)的不定积分是:A. \( \cos x + C \)B. \( \sin x + C \)C. \( -\cos x + C \)D. \( -\sin x + C \)答案:A二、填空题(每题4分,共20分)1. 函数\( f(x) = x^2 - 4x + 4 \)的极小值点是 \( x =\_\_\_\_\_ \)。

工程数学期末考试复习题(212页)

工程数学期末考试复习题(212页)

工程数学期末考试复习题《工程数学》综合练习一、单项选择题1.设B A ,都是n 阶方阵,则下列命题正确的是( ). A .AB A B = B .222()2A B A AB B -=-+ C .AB BA = D .若AB O =,则A O =或B O = 正确答案:A2.向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡732,320,011,001的秩是( ). A . 1 B . 3 C . 2 D . 4正确答案: B3.n 元线性方程组有解的充分必要条件是( ).A . )()(b A r A r =B .不是行满秩矩阵C .D .正确答案:A4. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球的概率是( ).A .256 B . 103 C . 203 D . 259正确答案:D 5.设是来自正态总体的样本,则( )是μ无偏估计.A .321515151x x x ++ B . 321x x x ++ C . 321535151x x x ++ D . 321525252x x x ++正确答案: C6.若是对称矩阵,则等式( )成立.A . I AA=-1B . A A ='C . 1-='A A D . A A =-1正确答案:B7.=⎥⎦⎤⎢⎣⎡-15473( ).A . ⎥⎦⎤⎢⎣⎡--3547 B . 7453-⎡⎤⎢⎥-⎣⎦C . 7543-⎡⎤⎢⎥-⎣⎦ D .7543-⎡⎤⎢⎥-⎣⎦正确答案:D8.若( )成立,则元线性方程组AX O =有唯一解.A .B . A O ≠C .D . A 的行向量线性相关正确答案:A9. 若条件( )成立,则随机事件,互为对立事件.A . ∅=AB 或A B U += B . 0)(=AB P 或()1P A B +=C . ∅=AB 且A B U +=D . 0)(=AB P 且1)(=+B A P 正确答案:C10.对来自正态总体(未知)的一个样本,记∑==3131i i X X ,则下列各式中( )不是统计量.A . XB .∑=31i iXC . ∑=-312)(31i i X μD . ∑=-312)(31i i X X正确答案: C二、填空题1.设B A ,均为3阶方阵,2,3A B ==,则13A B -'-= .应该填写:-182.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得 ,则称λ为A 的特征值. 应该填写:AX X λ= 3.设随机变量012~0.20.5X a ⎛⎫ ⎪⎝⎭,则a = .应该填写:0.3 4.设为随机变量,已知3)(=X D ,此时.应该填写:275.设θˆ是未知参数θ的一个无偏估计量,则有 .应该填写:ˆ()E θθ= 6.设B A ,均为3阶方阵,6,3A B =-=,则13()A B -'-= .应该填写:87.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得 ,则称X 为A 相应于特征值λ的特征向量.应该填写:AX X λ=8.若5.0)(,8.0)(==B A P A P ,则=)(AB P .应该填写:0.3 9.如果随机变量的期望2)(=X E ,9)(2=X E ,那么=)2(X D .应该填写:2010.不含未知参数的样本函数称为 . 应该填写:统计量三、计算题1.设矩阵,且有,求X .解:利用初等行变换得即由矩阵乘法和转置运算得2.求线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=++--=+-+-=-+-2284212342272134321432143214321x x x x x x x x x x x x x x x x 的全部解.解: 将方程组的增广矩阵化为阶梯形⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------0462003210010101113122842123412127211131 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000002200010101113106600022000101011131 方程组的一般解为:(其中为自由未知量)令=0,得到方程的一个特解)0001(0'=X .方程组相应的齐方程的一般解为: ⎪⎩⎪⎨⎧-===4342415xx x x x x (其中为自由未知量)令=1,得到方程的一个基础解系)1115(1'-=X .于是,方程组的全部解为:10kX X X +=(其中k 为任意常数)3.设)4,3(~N X ,试求: (1))95(<<X P ;(2))7(>X P . (已知,8413.0)1(=Φ9987.0)3(,9772.0)2(=Φ=Φ)解:(1))3231()23923235()95(<-<=-<-<-=<<X P X P X P 1574.08413.09987.0)1()3(=-=Φ-Φ=(2))23723()7(->-=>X P X P )223(1)223(≤--=>-=X P X P 0228.09772.01)2(1=-=Φ-=4.据资料分析,某厂生产的一批砖,其抗断强度)21.1,5.32(~N X ,今从这批砖中随机地抽取了9块,测得抗断强度(单位:kg /cm 2)的平均值为31.12,问这批砖的抗断强度是否合格().解: 零假设.由于已知,故选取样本函数已知,经计算得,由已知条件,故拒绝零假设,即这批砖的抗断强度不合格。

15~16_1_工程数学(1)试卷A

15~16_1_工程数学(1)试卷A

.
⎡5⎤
⎡−1⎤
7、设向量
u
=
⎢ ⎢
2
⎥ ⎥

v
=
⎢ ⎢
4
⎥ ⎥
正交,则
λ
=
.
⎢⎣−1⎥⎦
⎢⎣ λ ⎥⎦
8、矩阵
A
=
⎡4 ⎢⎣2
−3⎤ −1⎥⎦ 的特征值为
,对应的特征向量为
.
9、二次型 f (x1, x2 , x3 ) = 3x12 + x22 + 5x32 + 8x2 x3 对应的矩阵 A =

八、(10 分) 设 u1, u2 , u3 是两两正交的 3 维单位向量,令 A = E − 2u1u1T , 其中 E 是单位阵. (1)验证 u1, u2 , u3 是 A 的特征向量,并指出对应的特征值 λ1, λ2 , λ3 ; (2)给出正交变换 x = P y ,将二次型 f ( x) = xT Ax 化为标准形,并写出新的二次型; (3)证明 A = λ1u1u1T + λ 2u2u2T + λ3u3u3T .
的是
.
⎡ 1 −1 5 ⎤
5、设矩阵
A
=
⎢ ⎢
2
0
7
⎥ ⎥
,
则方程 Ax
= 0 的通解为
.
⎢⎣−3 −5 −3⎥⎦
6、设向量 u,v 是方程 ( A − λ E) x = b 的两个不同的解, E 是单位阵, 则 u 、 v 、 u + v 、
u − v 中一定是矩阵 A 对应特征值 λ 的特征向量为
东华大学 2015--2016 学年第一学期期末试题 A 卷
踏实学习,弘扬正气;诚信做人,诚实考试;作弊可耻,后果自负。

14~15_2_工程数学(1)试卷A

东华大学 2014--2015 学年第二学期期末试题A 卷踏实学习,弘扬正气;诚信做人,诚实考试;作弊可耻,后果自负。

考试科目 工程数学(1) 使用专业 卓越工程教师 班号____ 学号 姓名 考试教室 一 二 三 四 五 六 七 八 九 总分 试题 得分一、填空题(每小题4分,共40分).1、设ABC Δ的三个顶点分别是(1,0),(2,5),(1,3),A B C − 则ABC Δ的面积为 .2、已知2424,1236A B −⎛⎞⎛⎞==⎜⎟⎜⎟−−−⎝⎠⎝⎠,则AB = .3、若向量组123(,1,1),(1,,1),(1,1,)TTTαλαλαλ===的秩为2,则=λ . 4、设三阶矩阵A 的特征值为1,1,4,−则2A E −特征值为 ,2A E −= .5、设矩阵322232223A ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠, 则行列式A = ,伴随矩阵*A 的逆阵*1()A −= .6、设=Ax b ,其中1213A −⎛⎞=⎜⎟−⎝⎠, 12b ⎛⎞=⎜⎟⎝⎠,则=x . 7、行列式1201035001561234= . 8、设A 为43×矩阵,0≠b ,且()3R A =,则线性方程组b Ax = . (有唯一解; 有无穷多解; 无解; 可能无解)9、设111232121A ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,则解空间{}x Ax O =的基为 ,维数为 . 10、矩阵21102043A t −⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠的特征值为 ,又当t = 时,矩阵A 可对角化.二、(7分)已知行列式213142751D−=−,求D的第三行余子式313233,,M M M的和.三、(7分)设301111114A⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,且2,AB A B=+用初等行变换法求矩阵.B四、(7分)确定向量312b⎛⎞⎜⎟=−⎜⎟⎜⎟⎝⎠是否为1231020,1,2110a a a⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟===−⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠的线性组合?若是,求出其表示式.五、(8分)设向量12,1⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠α求与α正交的所有向量x y z ⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠。

工程应用数学A期末考试模拟试卷答案


方程 y′′ + py′ + qy = 0 的通解
(1) ∆ = p 2 − 4q > 0 时,有实根 r1 ≠ r2 (2) ∆ = p 2 − 4q > 0 时,有实根 r1 = r2 (2) ∆ < 0 时,有复根 r1,2= α ± β i 三、求极限.(满分 20 分)
通解 = y C1e r1x + C2 e r2 x 通解 = y e r1x ( C1 + C2 x ) 通解 y eα x ( C1 cos β x + C2 sin β x ) =
v(t ) = 2t 3 − 21t 2 + 60t + 40 ,计算该时间段内车辆的平均行驶速度.(满分 6 分)
= v 解:

6
1
v(t )dt 1 6 3 = ∫ ( 2t − 21t 2 + 60t + 40 ) = dt 78.5 . 5 5 1
知识点:讨论函数 f ( x) 在闭区间 a, b 上的函数平均值(或平均高),本质上是
1
知识点:同上题. 4. lim
esin x − e x x → 0 x − sin x
e x ( esin x − x − 1) x − sin x e x ( sin x − x ) = lim = −1 x →0 x − sin x
解:原式 = lim
x →0
知识点:等价无穷小替换公式.
当 x → 0 时,有 α ( x ) → 0 ,则下列等价关系成立: ① sin α ( x ) 等价 α ( x ) ② arc sin α ( x ) 等价 α ( x ) ③ tan α ( x ) 等价 α ( x )

电大国开大学期末复习资料:《工程数学》期末考试练习题(2024秋版本)(简化版)

工程数学期末考试练习题(共224题)目录【知识点1】【行列式的递归定义】单选6题 (2)【知识点2】【余子式与代数余子式】单选6题 (2)【知识点3】【行列式的性质】单选8题 (3)【知识点4】【矩阵的运算】单选8题 (3)【知识点5】【方阵乘积行列式定理】单选8题 (4)【知识点6】【可逆矩阵(逆矩阵)】单选7题/判断1题 (4)【知识点7】【高斯消元法解线性方程组】单选8题 (5)【知识点8】【极大线性无关组,向量组的秩】单选6题 (5)【知识点9】【(非)齐次线性方程组解的性质及解的结构】单选8题 (6)【知识点10】【特征值与特征向量的求法】单选6题 (7)【知识点11】【随机事件的概率和性质】单选8题 (7)【知识点12】【古典概型】单选8题 (7)【知识点13】【概率的加法公式,条件概率与乘法公式】单选8题 (8)【知识点14】【离散型随机变量的概率分布】单选8题 (8)【知识点15】【连续型随机变量的概率密度,分布函数】单选8题 (9)【知识点16】【方差与方差的性质】单选8题 (9)【知识点17】【正态分布和它的数字特征】单选8题 (10)【知识点18】【统计量】单选4题 (10)【知识点19】【置信区间】单选4题 (10)【知识点20】【假设检验】单选4题 (11)【判断题1】【特殊矩阵】判断8题 (11)【判断题2】【矩阵的秩】判断7题/选择1题 (11)【判断题3】【线性方程组的相容性定理】判断10题 (12)【判断题4】【向量组的线性相关性】判断10题 (13)【判断题5】【矩阵特征值、特征向量的定义】判断8题 (13)【判断题6】【随机事件的关系与运算】判断8题 (13)【判断题7】【事件的独立性,全概公式】判断8题 (14)【判断题8】【数学期望与期望的性质】判断8题 (14)【判断题9】【二项分布和它的数字特征】判断8题 (14)【判断题10】【无偏性与有效性】判断8题 (15)工程数学期末考试练习题说明:题型为单项选择题和判断题,涵盖 1-7 章的内容,其中单项选择题涉及20 个知识点,判断题涉及 10 个知识点,每个知识点下有 6-8 道题目可供练习,预祝大家取得好成绩!【知识点 1】【行列式的递归定义】单选6题1.110240001−−= ( -2 )2.若行列式210140700a−−=,则a =( -1 )3.若行列式000100020200100a a=,则a =( 1 )4.10011111x −−−是关于x 的一个一次多项式,则该多项式一次项的系数是(1). 5.求解二元线性方程组1212321221x x x x −=⎧⎨+=⎩,则x 1=( 2 ),x 2=( -3 )6.计算三阶行列式124221342D −=−=−−( -14 )【知识点 2】【余子式与代数余子式】单选6题1.n 阶行列式n D 中元素ij a 的代数余子式ij A 与余子式ij M 之间的关系是( ()1i jij ij A M +=− )2.三阶行列式120438012−−的余子式23M =(1201− ) 3.三阶行列式12438012−−的代数余子式32A =( 1048−)4.三阶行列式11111111x −−−中元素x 的代数余子式23A =( 1111−− )5.行列式512107的元素21a的代数余子式21A的值为(-56)6.设111213212223313233a a aD a a aa a a=,21233133a aMa a=,23213331a aNa a=,则12a的余子式(是M)【知识点3】【行列式的性质】单选8题1.设1231231232a a ab b bc c c=,则123112233123333a a aa b a b a bc c c−−−=(-2)2.设1231231232a a ab b bc c c=,则123112233123222a a aa b a b a bc c c+++=(2)3.设1231231232a a ab b bc c c=,则123112233123333a a aa b a b a bc c c+++=−−−(-2)4.若1101200153x−−=−,则x=(3)5.若1101200151x−−=+,则x=(-1)6.行列式114228153−−−=(0)7.下列等式成立的是(111111a b a bc d c d+=++),其中a,b,c,d为常数8.行列式111111111D=−=−−(4)【知识点4】【矩阵的运算】单选8题1.若A为3×4矩阵,B为2×5矩阵,且乘积AC B''有意义,则C为(5×4)矩阵.2. 若A为3×4矩阵,B为2×5矩阵,且乘积AC B'有意义,则C为(2×4)矩阵.3.若A为3×4矩阵,B为4×3矩阵,则下列运算可以进行的是(AB)4.设4034A ⎢⎥=⎢⎥⎢⎥−⎣⎦,120314B −⎡⎤=⎢⎥−⎣⎦,则()A B ''+=( 063518−⎡⎤⎢⎥−⎣⎦ ) 5.已知10102A a ⎡⎤=⎢⎥−⎣⎦,10210112B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,若1131AB ⎡⎤=⎢⎥⎣⎦,则a =( -1 ) 6.设147426310A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则2A =( 28148412620⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ )7.设147440310A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,101426115B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则A B +=( 248866425⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ )8.已知50302A a ⎡⎤=⎢⎥−⎣⎦,500832B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,若A B '=,则a =( -8 ) 【知识点5】【方阵乘积行列式定理】单选8题1.A ,B 都是n 阶矩阵(n >1),则下列命题正确的是( AB A B = )2.设A ,B 均为n 阶方阵,则下列等式成立的是( AB BA = )3.设A ,B 均为n 阶方阵,0k >且1k ≠,则下列等式正确的是( ()nkA k A −=− )4.设A ,B 均为3阶方阵,且1A =−,3B =−,则A B '=( 3 )5.设A ,B 均为n 阶方阵,则下列命题中正确的是( AB A B = )6.设A ,B 均为3阶方阵,且1A =−,1B =,则1AB −=( -1 ) 7. A ,B 是3阶方阵,其中3A =,2B =,则12A B −'⋅=( 12 )8. A ,B 都是n 阶方阵(n >1),则下列命题正确的是( AB A B = ) (题干或为“设A ,B 均为n 阶方阵,n >1,则下列等式正确的是”) 【知识点 6】【可逆矩阵(逆矩阵)】单选7题/判断1题1.设方阵A 可逆,且A 是对称矩阵,则等式( ()11A A −−'= )成立2.设方阵A 可逆,则下列命题中不正确的是( 线性方程组AX O =必有非零解 )3.设方阵A 可逆,则下列命题中正确的是( A O ≠ )4.设A ,B 均为n 阶可逆矩阵,则下列运算关系正确的是( ()11AB BA −−= )5.方阵A 可逆的充分必要条件是( 0A ≠ )6.设A ,B 均为n 阶可逆矩阵,则下列运算关系正确的是( ()111AB B A −−−= )7.设矩阵011112210A ⎡⎤⎢⎥=⎢⎥⎢⎥−⎣⎦,判断A 是否可逆?( 是 )8.设A ,B 为三阶可逆矩阵,且0k >,则下式( AB A B '= )成立【知识点 7】【高斯消元法解线性方程组】单选8题1. 用消元法得123233241 0 2x x x x x x +−=⎧⎪+=⎨⎪−=⎩的解123x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦为( []11,2,2'−− )2.方程组12122125x x x x +=⎧⎨+=⎩的解12x x ⎡⎤⎢⎥⎣⎦为( []3,1'− )3.方程组1212233x x x x −=⎧⎨+=⎩的解12x x ⎡⎤⎢⎥⎣⎦为( []2,1' )4.线性方程组122310x x x x +=⎧⎨+=⎩( 一般解为13231x x x x =+⎧⎨=−⎩(3x 是自由未知量) )5.齐次线性方程组AX O =的系数矩阵经初等行变换化为102101020000A ⎡⎤⎢⎥→→−⎢⎥⎢⎥⎣⎦则方程组的一般解为( 1342422x x x x x =−−⎧⎨=⎩(34,x x 是自由未知量) )6.非齐次线性方程组AX B =的增广矩阵经初等行变换化为[]102501020000A B ⎡⎤⎢⎥→→⎢⎥⎢⎥⎣⎦则方程组的一般解为( 132252x x x =−+⎧⎨=⎩(3x 是自由未知量) )7.线性方程组12341234134332462 3x x x x x x x x x x x +++=⎧⎪+++=⎨⎪+−=⎩一般解的自由未知量的个数为( 2 )8.设4元线性方程组AX B =有解且()1r A =,那么AX B =的相应齐次方程组的一般解中含有( 3 )个自由未知量【知识点 8】【极大线性无关组,向量组的秩】单选6题1.向量组100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,121⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,304⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦的秩为( 3 ) 2.向量组[]1,2,3,[]1,2,0,[]1,0,0,[]0,0,0的秩为( 3 )3.设向量组为11100α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,20011α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,31010α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,41111α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,则(123,,ααα)是极大无关组4.向量组[]10,0,0α=,[]21,0,0α=,[]30,1,0α=,[]40,0,1α=的极大线性无关组是( 234,,ααα )5.向量组11001α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,20100α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,31111α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,41110α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,51101α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的极大线性无关组是( 1234,,,αααα )6.求向量组11001α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,20100α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦31111α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,41110α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,51101α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的秩是( 4 )【知识点 9】【(非)齐次线性方程组解的性质及解的结构】单选8题 1.设线性方程组AX B =的两个解为12,X X ,(12X X ≠),则下列向量中(212X X −)一定是AX B =的解2.若0X 是线性方程组AX O =的解,1X 是线性方程组AX B =的解,则有 ( 10X X +是AX B =的解 )3.非齐次线性方程组AX B =的增广矩阵经初等行变换化为[]100001020011/2A B ⎡⎤⎢⎥→→−⎢⎥⎢⎥⎣⎦,则(方程组AX B =的通解为1230212x x x ⎧⎪=⎪=−⎨⎪⎪=⎩ )4.设齐次线性方程组AX O =的方程组的一般解为1342344576x x x x x x =−⎧⎨=−⎩(其中34,x x 是自由未知量)则它的一个基础解系为( [][]124710,5601X X ''==−− ) 5.设齐次线性方程组AX O =的方程组的一般解为 13232x x x x =−⎧⎨=⎩(其中3x 是自由未知量),则它的一个基础解系为([]1121X '=−) 6.设齐次线性方程组AX O =的方程组的一般解为13233x x x x =−⎧⎨=⎩(其中3x 是自由未知量),则它的一个基础解系为([]1311X '=−)7.设线性方程组AX B =的系数矩阵A 的秩为r ,增广矩阵[]|A B 的秩为r+1,那么方程组:( 无解 )8.如果线性方程组AX B =的系数矩阵A 的列向量线性无关,那么方程组: ( 解的情况取决于向量B )【知识点 10】【特征值与特征向量的求法】单选6题1.矩阵4001A ⎡⎤=⎢⎥−⎣⎦的特征值为( -1,4 ) 2.已知矩阵A 的特征值为-1,4,则2A 的特征值为( -2,8 )3.已知矩阵A 的特征值为2,0,则12A 的特征值为( 1,0 )4.已知矩阵A 的特征值为-1,4,则1A −的特征值为( -1,14)5.设矩阵A 有一个特征值λ,对应的特征向量为ν,那么矩阵T A 的特征值和特征向量是( ,T λν )6.已知矩阵A 的特征多项式为()256f λλλ=−+,那么矩阵A 的特征值为( 2,3)【知识点 11】【随机事件的概率和性质】单选8题1.甲、乙二人射击,A , B 分别表示甲、乙射中目标,则()P AB 表示( 至少有一人没射中目标的概率 )2.甲、乙二人射击,A , B 分别表示甲、乙射中目标,则()P AB 表示( 两人都射中目标的概率 )3.下列所列的概率性质中不正确是(对于任意两个事件A ,B ,有()()()P A B P A P B +=+ )4. 下列所列的概率性质中正确是( 对任一事件A ,有()01P A ≤≤ )5.某购物抽奖活动中,每人中奖的概率为0.3.则{}31A =个抽奖者中恰有人中奖的概率()P A =( 1230.70.3C ⨯⨯ )6.某购物抽奖活动中,每人中奖的概率为0.4.则{}41A =个抽奖者中恰有人中奖的概率()P A =( 1340.60.4C ⨯⨯ )7.关于概率的公式错误的是( ()()()P A B P A P B +=+ ) 8.设()0p AB =,则正确的是( ()()p A B p A −= ) 【知识点 12】【古典概型】单选8题1.掷两颗均匀的骰子,事件“点数之和为5”的概率是( 19 )2.掷两颗均匀的骰子,事件“点数之和为3”的概率是( 118 )3.同时掷3枚均匀硬币,恰好有1枚正面向上的概率为( 38 )4.同时掷3枚均匀硬币,恰好有2枚正面向上的概率为( 38)5.设袋中有3个红球,2个白球,现从中随机抽取2个球,则2个球恰好不同色的概率是( 35)6.袋中有5个黑球,3个白球,一次随机地摸出4个球,其中恰有3个白球的概率为( 485C )7.设袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两次都取到白球的概率是( 425)8.袋中有5个球,3个新2个旧,每次取1个,无放回地取两次,则第二次取到新球的概率是( 35)【知识点 13】【概率的加法公式,条件概率与乘法公式】单选8题 1.已知()0P B >,12A A =Φ,则( ()()()1212|||P A A B P A B P A B +=+⎡⎤⎣⎦ )成立 2.设A ,B 是两事件,则下列等式中(()()()P AB P A P B =,其中A ,B 互不相容 )是不正确的3.已知()0.3P A =,()0.5P B =,则当事件A ,B 互不相容时,()P A B +=( 0.8 )4.设A ,B 为两个事件,且B A ⊂,则()P A B +=( ()P A )5.若事件A 与B 互斥,则下列等式中正确的是( ()()()P A B P A P B +=+ )6.设A ,B 为两个事件,且B A ⊂,则()P A B −=( ()()P A P B − )7.假设生男孩和生女孩是等可能的,现考虑有两个小孩的家庭。

电大《工程数学》期末复习题

3 7 7. ( 4 5 7 4 A. 5 3 7 5 C. 4 3 正确答案:D
1
)成立. B. A A D. A 1 A
).
7 4 B. 5 3 7 5 D. 4 3
《工程数学》综合练习
一、单项选择题 1.设 A, B 都是 n 阶方阵,则下列命题正确的是( A. AB A B ). B. ( A B) 2 A2 2 AB B 2
C. AB BA D.若 AB O ,则 A O 或 B O 正确答案:A 1 1 0 2 2.向量组 ). 0, 1,2, 3 的秩是( 0 0 3 7 A. 1 B. 3 C. 2 D. 4 正确答案: B 3. n 元线性方程组 AX b 有解的充分必要条件是( ). A. r ( A) r ( Ab) B. A 不是行满秩矩阵 C. r ( A) n D. r ( A) n 正确答案:A 4. 袋中有 3 个红球,2 个白球,第一次取出一球后放回,第二次再取一球,则两球 都是红球的概率是( ). 6 3 3 9 A. B. C. D. 25 10 20 25 正确答案:D 5.设 x1 , x 2 , , x n 是来自正态总体 N ( , 2 ) 的样本,则( )是 无偏估计. 1 1 1 A. x1 x 2 x3 B. x1 x 2 x3 5 5 5 1 1 3 2 2 2 C. x1 x 2 x3 D. x1 x 2 x3 5 5 5 5 5 5 正确答案: C 6.若 A 是对称矩阵,则等式( A. AA 1 I C . A A 1 正确答案:B
1
8.若( )成立,则 n 元线性方程组 AX O 有唯一解. A. r ( A) n B. A O C. r ( A) n D. A 的行向量线性相关 正确答案:A 9. 若条件( )成立,则随机事件 A , B 互为对立事件. A. AB 或 A B U B. P ( AB ) 0 或 P ( A B ) 1 C. AB 且 A B U D. P ( AB ) 0 且 P ( A B ) 1 正确答案:C 10. 对来自正态总体 X ~ N ( , 2 ) ( 未知) 的一个样本 X 1 , X 2 , X 3 , 记X 则下列各式中( )不是统计量. A. X
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n0
n 1

B、
( z 1)
n 0
1
n2


C、 在 0 z 1 1内, 为

( z 1)
n0
n 1
, 在 1 z 1 内, 为
( z 1)
n 0

1
n2

D、 在 0 z 1 1内, 为
1 , 在 内, 为 ( z 1) n 1 。 1 z 1 n2 n0 n 0 ( z 1)
3、 z 0 是
1 的几阶极点[ sin z z
]: D、4 阶
A、3 阶; B、2 阶; C、1 阶;
2
4、如果 z0 为 f ( z ) 的本性奇点,则 f ( z ) 在 z0 的去心邻域中的洛朗级数含 z z0 的 多少个负幂项[ ]:
A、0 个; B、有限个; C、6 个;D、无穷多个。 5、 设总体 X N ( , 2 ) , 、 未知,( X 1 , X 2 , X 3 )为 X 的样本,则下
2

二、 选择题(每小题 3 分,共 30 分)
1、 z n i n
A、0;
1 在 n 的极限是[ ]: n B、无; C、 i ; D、 i 。 1 在 z 1 处展开为洛朗级数,其表达式为[ z 3z 2
2
2、 将 f ( z ) A、


]:
( z 1)
6
9、
in 的敛散性是[ n 1 n!

]:
A、 绝对收敛;B、发散;C、收敛,但不绝对收敛;D、无法判断。
3
10、 (t ) 的傅里叶变换是[ A、
]:

1 ; i
B、 i ;
C、 e ; D、1。
三、 (10 分)设总体 X 的概率密度为
( 1) x ,0 1 f ( x) 0, 其它
其中 1 是未知参数, X 1 , X 2 ,…, X n 为一个样本,试求参数 的极大似 然估计量。
4
四、 (10 分)利用留数定理计算
sin 2 z z 2 z 2 ( z 1) dz
五 、( 10 分 ) 利 用 拉 普 拉 斯 变 换 求 解
y ''' 3 y '' 3 y ' y 1 ,
一、填空题(每小题 3 分,共 30 分) 1、 从总体中抽取样本时,抽样方法必须满足 2、 (X1, X2, X3, , Xn)是总体 X 的样本,则样本方差为 样本 k 阶原点矩为 。 3、在作参数假设检验时,常犯两类错误即 和 4、 sin i cos 的三角表示是 5、若 Re(z 2) 1 ,则点 z 的轨迹为 。
H m ( x) H n ( x)dx 0 ;D、 e x H m ( x) H n ( x)dx 0 。

7、下列关于勒让德多项式不正确的是[ A、
]:
1 1

1
1
Pn ( x) Pm ( x)dx 0 , m n ; B、 x 2 Pn ( x) Pm ( x)dx 0 , m n ;
y ' ' (0) y ' (0) 1 , y (0) 2 。
5
六、 (10 分)求解下列定解问题
utt a 2 u xx , (0 x l , t 0), u(0, t ) 0, u x (l , t ) 0, 3x u( x,0) x 2 2lx, ut ( x,0) 3 sin . 2l
。 ,


6、方程 z 3 8 0 的所有根是



7、 Ln(3 4i) =
,主值为

1
2z 5 z 3 8、函数 f ( z ) 的解析区域是 4z 2 1
,该区域上
的导函数是 9、
1 的幂级数展开式为 1 z3
。 ,收敛域为 。
10、
z 1
dz = z 2z 2
2
列样本函数中是统计量的有[
]:
A、 X 1 X 2 ;B、 X 1 X 2 ;C、
X1

;D、
2 X 12 X 2 X 32
2

6、下列关于埃尔米特多项式不正确的是[ A、 H 0 ( x) 1; C、 B、 H1 ( x) 2 x ;

2
]:



D、 P 1 ( x) x 。
C、 P0 ( x) 1;
8、 为总体 X 的未知参数, 的估计量是 ˆ ,则有[ A、 ˆ 是一个数,近似等于 ; C、 ˆ 式一个统计量,且 E( ˆ )= ;
]:
B、 ˆ 是一个随机变量; D、当 n 越大, ˆ 的值可任意靠近 。
相关文档
最新文档