2019年人教版初三下(第28章锐角三角函数)单元测试含解析

合集下载

人教版2019-2020学年九年级数学下册第28章:锐角三角函数单元测试卷(含答案)

人教版2019-2020学年九年级数学下册第28章:锐角三角函数单元测试卷(含答案)
1 0+tanα+(3)-1 的值.
3 解:∵sin(α+15°)= 2 ,∴α+15°=60°.∴α=45°.
2 ∴原式=2 2-4× 2 -1+1+3=3.
3 21.(本小题满分 9 分)如图,在△ABC 中,BC=12,tanA=4,∠B=30°,求 AC 和 AB 的长.
解:过点 C 作 CD⊥AB 交 AB 于点 D.
17.已知不等臂跷跷板 AB 长为 3 米,当 AB 的一端点 A 碰到地面时(如图 1),AB 与地面 1
的夹角为 30°;当 AB 的另一端点 B 碰到地面时(如图 2),AB 与地面的夹角的正弦值为3, 3
那么跷跷板 AB 的支撑点 O 到地面的距离 OH=5米.
18.圆锥的母线长为 11 cm,侧面积为 55π cm2,设圆锥的母线与高的夹角为 α,则 sinα 的 5

答 ACDCCCADDDACB B B B

1.sin30°的值等于(A)
1
2
3
3
A.2
B. 2
C. 2
D. 3
3 2.在 Rt△ABC 中,∠C=90°,如果 cosB= 2 ,那么 sinA 的值是(C)
1
3
2
A.1
B.2
C. 2
D. 2
3.在△ABC 中,∠C=90°,a,b,c 分别为∠A,∠B,∠C 的对边,下列各式成立的是 (D)
A.75 cm2
B.(25+25 3)cm2
25 C.(25+ 3 3)cm2
50 D.(25+ 3 3)cm2
第 12 题图
第 13 题图
13.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在 A 处接到指挥部 通知,在他们东北方向距离 12 海里的 B 处有一艘捕鱼船,正在沿南偏东 75°方向以每小时 10 海里的速度航行,稽查队员立即乘坐巡逻船以每小时 14 海里的速度沿北偏东某一方向 出发,在 C 处成功拦截捕鱼船,则巡逻船从出发到成功拦截捕鱼船所用的时间是(B)

人教版九年级下册数学《第28章 锐角三角函数》单元测试卷(解析版)

人教版九年级下册数学《第28章  锐角三角函数》单元测试卷(解析版)

人教版九年级下册数学《第28章锐角三角函数》单元测试卷(解析版)一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A.7sin35°B.C.7cos35°D.7tan35°2.当锐角A的cos A>时,∠A的值为()A.小于45°B.小于30°C.大于45°D.大于30°3.Rt△ABC中,∠C=90°,已知cos A=,那么tan A等于()A.B.C.D.4.在Rt△ABC中,∠C=90°,如果sin A=,那么sin B的值是()A.B.C.D.35.若∠B,∠A均为锐角,且sin A=,cos B=,则()A.∠A=∠B=60°B.∠A=∠B=30°C.∠A=60°,∠B=30°D.∠A=30°,∠B=60°6.如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器求边AC的长,则下列按键顺序正确的是()A.5÷tan26°=B.5÷sin26°=C.5×cos26°=D.5×tan26°=7.下列命题:①所有锐角三角函数值都为正数;②解直角三角形时只需已知除直角外的两个元素;③Rt△ABC中,∠B=90°,则sin2A+cos2A=1;④Rt△ABC中,∠A=90°,则tan C•sin C=cos C.其中正确的命题有()A.0个B.1个C.2个D.3个8.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为()A.B.C.D.9.一人乘雪橇沿坡度为1:的斜坡滑下,滑下距离S(米)与时间t(秒)之间的关系为S=10t+2t2,若滑动时间为4秒,则他下降的垂直高度为()A.72米B.36米C.米D.米10.如图,在地面上的点A处测得树顶B的仰角α=75°,若AC=6米,则树高BC为()A.6sin75°米B.米C.米D.6tan75°米二.填空题(共5小题)11.正方形网格中,∠AOB如图放置,则tan∠AOB的值为.12.比较大小:sin44°cos44°(填>、<或=).13.在△ABC中,∠C=90°,cos A=,则tan A等于.14.计算:cot44°•cot45°•cot46°=.15.计算:2cos60°+tan45°=.三.解答题(共4小题)16.在△ABC中,∠B、∠C均为锐角,其对边分别为b、c,求证:=.17.下列关系式是否成立(0<α<90°),请说明理由.(1)sinα+cosα≤1;(2)sin2α=2sinα.18.计算:3tan30°+cos245°﹣2sin60°.19.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sin B=,AD=1.(1)求BC的长;(2)求tan∠DAE的值.2019年人教版九年级下册数学《第28章锐角三角函数》单元测试卷参考答案与试题解析一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A.7sin35°B.C.7cos35°D.7tan35°【分析】根据余弦为邻边比斜边,可得答案.【解答】解:由cos B==,得BC=7cos B=7cos35°,故选:C.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.当锐角A的cos A>时,∠A的值为()A.小于45°B.小于30°C.大于45°D.大于30°【分析】明确cos45°=,余弦函数随角增大而减小进行分析.【解答】解:根据cos45°=,余弦函数随角增大而减小,则∠A一定小于45°.故选:A.【点评】熟记特殊角的三角函数值,了解锐角三角函数的增减性是解题的关键.3.Rt△ABC中,∠C=90°,已知cos A=,那么tan A等于()A.B.C.D.【分析】根据cos A=设出关于两边的代数表达式,再根据勾股定理求出第三边长的表达式即可推出tan A的值.【解答】解:∵cos A=知,设b=3x,则c=5x,根据a2+b2=c2得a=4x.∴tan A===.故选:A.【点评】求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.4.在Rt △ABC 中,∠C =90°,如果sin A =,那么sin B 的值是( )A .B .C .D .3【分析】一个角的正弦值等于它的余角的余弦值.【解答】解:∵Rt △ABC 中,∠C =90°,sin A =,∴cos A ===,∴∠A +∠B =90°,∴sin B =cos A =. 故选:A .【点评】此题考查的是互余两角三角函数的关系,属基础题,掌握正余弦的这一转换关系:一个角的正弦值等于它的余角的余弦值.5.若∠B ,∠A 均为锐角,且sin A =,cos B =,则( )A .∠A =∠B =60°B .∠A =∠B =30°C .∠A =60°,∠B =30°D .∠A =30°,∠B =60° 【分析】根据三角函数的特殊值解答即可.【解答】解:∵∠B ,∠A 均为锐角,且sin A =,cos B =,∴∠A =30°,∠B =60°.故选:D .【点评】本题考查了特殊角的三角函数值.6.如图,在△ABC 中,∠ACB =90°,∠ABC =26°,BC =5.若用科学计算器求边AC 的长,则下列按键顺序正确的是( )A .5÷tan26°=B .5÷sin26°=C .5×cos26°=D .5×tan26°=【分析】根据正切函数的定义,可得tan ∠B =,根据计算器的应用,可得答案.【解答】解:由tan∠B=,得AC=BC•tan B=5×tan26.故选:D.【点评】本题考查了计算器,利用了锐角三角函数,计算器的应用,熟练应用计算器是解题关键.7.下列命题:①所有锐角三角函数值都为正数;②解直角三角形时只需已知除直角外的两个元素;③Rt△ABC中,∠B=90°,则sin2A+cos2A=1;④Rt△ABC中,∠A=90°,则tan C•sin C=cos C.其中正确的命题有()A.0个B.1个C.2个D.3个【分析】根据锐角三角函数的定义判断所有的锐角三角函数值都是正数;根据锐角三角函数的概念结合勾股定理可以证明sin2A+cos2A=1,tan C•sin C=cos C.【解答】解:①根据锐角三角函数的定义知所有的锐角三角函数值都是正数,故正确;②两个元素中,至少得有一条边,故错误;③根据锐角三角函数的概念,以及勾股定理,得sin2A+cos2A==1,故正确;④根据锐角三角函数的概念,得tan C=,sin C=,cos C=,则tan C•cos C=sin C,故错误.故选:C.【点评】根据锐角三角函数的定义可证明锐角三角函数之间的关系式.8.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为()A.B.C.D.【分析】根据同角的余角相等得∠CAD=∠BCD,由os∠BCD=,即可求出BC的长度.【解答】解:∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos∠BCD=,∴BC==,故选:B.【点评】本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.9.一人乘雪橇沿坡度为1:的斜坡滑下,滑下距离S(米)与时间t(秒)之间的关系为S=10t+2t2,若滑动时间为4秒,则他下降的垂直高度为()A.72米B.36米C.米D.米【分析】求滑下的距离;设出下降的高度,表示出水平宽度,利用勾股定理即可求解.【解答】解:当t=4时,s=10t+2t2=72.设此人下降的高度为x米,过斜坡顶点向地面作垂线.在直角三角形中,由勾股定理得:x2+(x)2=722.解得x=36.故选:B.【点评】此题主要考查了坡角问题,理解坡比的意义,使用勾股定理,设未知数,列方程求解是解题关键.10.如图,在地面上的点A处测得树顶B的仰角α=75°,若AC=6米,则树高BC为()A.6sin75°米B.米C.米D.6tan75°米【分析】根据题意可知BC⊥AC,在Rt△ABC中,AC=6米,∠BAC=α,利用三角函数即可求出BC的高度.【解答】解:∵BC⊥AC,AC=6米,∠BAC=α,∴=tanα,∴BC=AC•tanα=6tanα(米).故选:D.【点评】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解.二.填空题(共5小题)11.正方形网格中,∠AOB如图放置,则tan∠AOB的值为2.【分析】根据正切定义:锐角A的对边a与邻边b的比进行计算即可.【解答】解:tan∠AOB==2,故答案为:2.【点评】此题主要考查了正切定义,关键是正确掌握三角函数的定义.12.比较大小:sin44°<cos44°(填>、<或=).【分析】首先根据互余两角的三角函数的关系,得cos44°=sin46°,再根据正弦值随着角的增大而增大,进行分析.【解答】解:∵cos44°=sin46°,正弦值随着角的增大而增大,又∵44°<46°,∴sin44°<cos44°.故答案为<.【点评】本题考查了锐角三角函数的增减性:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大);正切值随着角度的增大(或减小)而增大(或减小).同时考查了互余两角的三角函数的关系.13.在△ABC 中,∠C =90°,cos A =,则tan A 等于 .【分析】根据cos A =,设出关于两边的代数表达式,再根据勾股定理求出第三边长的表达式即可推出tan A 的值.【解答】解:∵cos A =知,设b =3x ,则c =5x ,根据a 2+b 2=c 2得a =4x .∴tan A ===.故答案为:.【点评】本题考查了锐角三角函数定义的应用,利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值. 14.计算:cot44°•cot45°•cot46°= 1 .【分析】根据互余两角的三角函数的关系、特殊角的三角函数值就可以求解.【解答】解:cot44°•cot45°•cot46°=cot44°•cot46°•cot45°=1•cot45°=1.【点评】本题考查了互余两角的三角函数的关系、特殊角的三角函数值.15.计算:2cos60°+tan45°= 2 .【分析】直接利用特殊角的三角函数值代入求出即可.【解答】解:2cos60°+tan45°=2×+1=2.故选:2.【点评】此题主要考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是解题关键.三.解答题(共4小题)16.在△ABC 中,∠B 、∠C 均为锐角,其对边分别为b 、c ,求证:=. 【分析】如图,过A 作AD ⊥BC 于D ,如果利用三角函数可以分别在△ABD 和△ADC 中可以得到sin sB ,sin C 的表达式,由此即可证明题目的结论.【解答】证明:过A 作AD ⊥BC 于D ,在Rt △ABD 中,sin B =,∴AD =AB sin B ,在Rt △ADC 中,sin C =, ∴AD =AC sin C ,∴AB sin B=AC sin C,而AB=c,AC=b,∴c sin B=b sin C,∴=.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.解题的关键是作辅助线把普通三角形转化为直角三角形解决问题.17.下列关系式是否成立(0<α<90°),请说明理由.(1)sinα+cosα≤1;(2)sin2α=2sinα.【分析】(1)利用三角函数的定义和三角形的三边关系得到该结论不成立;(2)举出反例进行论证.【解答】解:(1)该不等式不成立,理由如下:如图,在△ABC中,∠B=90°,∠C=α.则sinα+cosα=+=>1,故sinα+cosα≤1不成立;(2)该等式不成立,理由如下:假设α=30°,则sin2α=sin60°=,2sinα=2sin30°=2×=1,∵≠1,∴sin2α≠2sinα,即sin2α=2sinα不成立.【点评】本题考查了同角三角函数的关系.解题的关键是掌握锐角三角函数的定义和特殊角的三角函数值.18.计算:3tan30°+cos245°﹣2sin60°.【分析】根据特殊角的三角函数值,即可解答.【解答】解:3tan30°+cos245°﹣2sin60°===.【点评】考查了特殊角的三角函数值,属于识记性题目,基础题.19.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sin B=,AD=1.(1)求BC的长;(2)求tan∠DAE的值.【分析】(1)先由三角形的高的定义得出∠ADB=∠ADC=90°,再解Rt△ADC,得出DC=1;解Rt△ADB,得出AB=3,根据勾股定理求出BD=2,然后根据BC=BD+DC 即可求解;(2)先由三角形的中线的定义求出CE的值,则DE=CE﹣CD,然后在Rt△ADE中根据正切函数的定义即可求解.【解答】解:(1)在△ABC中,∵AD是BC边上的高,∴∠ADB=∠ADC=90°.在△ADC中,∵∠ADC=90°,∠C=45°,AD=1,∴DC=AD=1.在△ADB中,∵∠ADB=90°,sin B=,AD=1,∴AB==3,∴BD==2,∴BC=BD+DC=2+1;(2)∵AE是BC边上的中线,∴CE=BC=+,∴DE=CE﹣CD=+﹣1=﹣,∴tan∠DAE===﹣.【点评】本题考查了解直角三角形,三角形的高、中线的定义,勾股定理,难度中等,分别解Rt△ADC与Rt△ADB,得出DC=1,AB=3是解题的关键.期末复习:人教版九年级数学下册第28章锐角三角函数单元检测试卷(解析版)一、单选题(共10题;共30分)1.sin60°的值为()A. B. C. D.2.在△ABC中,∠C =90o,若cosB= ,则∠B的值为().A. B. C. D.3.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A. B. C. D.4.在中,,,则的值等于()A. B. C. D.5.在△ABC中,∠C=90°,AC=9,sinB=,则AB=( )A. 15B. 12C. 9D. 66.一个物体从A点出发,沿坡度为1:7的斜坡向上直线运动到B,AB=30米时,物体升高()米.A. B. 3 C. D. 以上的答案都不对7.如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器求边AC的长,则下列按键顺序正确的是()A. 5÷tan26°=B. 5÷sin26°=C. 5×cos26°=D. 5×tan26°=8.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,则∠C的度数是()A. 45°B. 75°C. 105°D. 120°9.在中,,,,则cosA等于()A. B. C. D.10.在学习解直角三角形以后,重庆八中数学兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB的影子一部分落在平台上的影长BC为6米,落在斜坡上的影长CD为4米,AB⊥BC,同一时刻,光线与旗杆的夹角为37°,斜坡的坡角为30°,旗杆的高度AB约为()米.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.73)A. 10.61B. 10.52C. 9.87D. 9.37二、填空题(共10题;共30分)11.如图所示,在建筑物AB的底部a米远的C处,测得建筑物的顶端A点的仰角为α,则建筑物AB的高可表示为________.12.如图,在边长为1的小正反形组成的网格中,△ABC的三个顶点均在格点上,则tanB的值为________.13.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D 处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是________m(结果保留根号)14.如图,在菱形ABCD中,AE⊥BC,E为垂足,若cosB=,EC=2,P是AB边上的一个动点,则线段PE的长度的最小值是________ .15.如图,△ABC中,∠C=90°,AC=3,AB=5,点D是边BC上一点.若沿AD将△ACD翻折,点C刚好落在AB边上点E处,则BD=________.16.如下图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD于点E,则线段DE的长为________.17.如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角∠AMB为22.5°,沿射线MB方向前进200米到达湖边点N 处,测得塔尖点A在湖中的倒影A′的俯角∠A′NB为45°,则电视塔AB的高度为________米(结果保留根号).18.在Rt△ABC中,∠ACB=90°,a=2,b=3,则tanA=________19.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是________.20.如图.一-艘渔船正以60海里/小时的速度向正东方向航行,在处测得岛礁在东北方向上,继续航行1.5小时后到达处此时测得岛礁在北偏东方向,同时测得岛礁正东方向上的避风港在北偏东方向为了在台风到来之前用最短时间到达处,渔船立刻加速以75海里/小时的速度继续航行________小时即可到达(结果保留根号)三、解答题(共8题;共60分)21.如图,锐角△ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tanB的值.22.如图为护城河改造前后河床的横断面示意图,将河床原竖直迎水面BC改建为坡度1:0.5的迎水坡AB,已知AB=4米,则河床面的宽减少了多少米.(即求AC的长)23.中考英语听力测试期间T需要杜绝考点周围的噪音.如图,点A是某市一中考考点,在位于考点南偏西15°方向距离500米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,消防车需沿北偏东75°方向的公路CF前往救援.已知消防车的警报声传播半径为400米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(≈1.732)24.热气球的探测器显示,从热气球底部A处看一栋高楼顶部B的仰角为30°,看这栋楼底部C的俯角为45°,已知楼高是120m,热气球若要飞越高楼,问至少要继续上升多少米?(结果保留根号)25.如图:我渔政310船在南海海面上沿正东方向匀速航行,在A点观测到我渔船C在北偏东60°方向的我国某传统渔场捕鱼作业.若渔政310船航向不变,航行半小时后到达B点,观测到我渔船C在东北方向上.问:渔政310船再按原航向航行多长时间,离渔船C的距离最近?(渔船C捕鱼时移动距离忽略不计,结果不取近似值)26.如图,某煤矿因不按规定操作发生瓦斯爆炸,救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A,B两个探测点探测到地下C处有生命迹象.已知A,B两点相距8米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度(结果保留根号).27.如图所示,一条自西向东的观光大道l上有A、B两个景点,A、B相距2km,在A处测得另一景点C位于点A的北偏东60°方向,在B处测得景点C位于景点B的北偏东45°方向,求景点C到观光大道l的距离.(结果精确到0.1km)28.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到1 cm)(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.414)答案解析部分一、单选题1.【答案】B【考点】特殊角的三角函数值【解析】【解答】解:sin60°= .故答案为:B.【分析】由特殊角的三角函数值可求解。

2019春人教版数学九年级下册第28章锐角三角函数单元检测题含答案

2019春人教版数学九年级下册第28章锐角三角函数单元检测题含答案

《锐角三角函数》单元检测题一、选择题(每小题只有一个正确答案)1.sin30°的值等于()A.12B.33C.32D. 32.已知∠A为锐角,且sin A=22,那么∠A等于()A. 15°B. 30°C. 45°D. 60°3.在Rt ABC∆中,90C∠=︒,1cos2B=,则sin A的值为()A.12B.22C.32D. 34.在△ABC中,若|cosA-12|+(1-tanB)2=0,则∠C的度数是( )A. 45°B. 60°C. 75°D. 105°5.如图所示,平地上一棵树高为6米,两次观察地面上的影子,第一次是当阳光与地面成60时,第二次是阳光与地面成30时,第二次观察到的影子比第一次长()A. 633- B. 43 C. 63 D. 323-6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AB=c,∠A=α,则CD长为()A. c•sin2αB. c•cos2αC. c•sinα•tanαD. c•sinα•cosα7.根据所给条件解直角三角形,结果不能确定的是( )①已知一直角边及其对角;②已知两锐角;③已知斜边和一锐角;④已知一直角边和一斜边;⑤已知直角边和一锐角.A. ②③B. ②④C. 只有②D. ②④⑤8.如图,为安全起见,萌萌拟加长滑梯,将其倾斜角由45°降至30°.已知滑梯AB的长为3m,点D、B、C在同一水平地面上,那么加长后的滑梯AD的长是()A. 22B. 23C. 32D. 339.临沂高铁即将开通,这将极大方便市民的出行.如图,在距离铁轨200米处的B处,观察由东向西的动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上,10秒钟后,动车车头到达C处,恰好位于B处西北方向上,则这时段动车的平均速度是()米/秒.A. ()2031+ B. ()2031- C. 200 D. 30010.如图,放置的1OAB,112B A B,223B A B,…都是边长为2的等边三角形,边AO在y轴上,点1B,2B,3B,…都在直线33y x=上,则2017A的坐标是()A. (2017,3)3C. (2017,2018) 3,2019)二、填空题11.计算:tan45°﹣2cos60°=________.12.在直角坐标系中,O为原点,点A(a,3)在第一象限,OA与X轴所夹的锐角为α,tanα=,则b=_______.13.在Rt△ABC中,∠C=90°,且sin 30°=12,sin 45°2,sin 60°3,cos 30°3,cos 45°2,cos 60°=12;观察上述等式,当∠A与∠B互余时,请写出∠A的正弦函数值与∠B的余弦函数值之间的关系:______________.14.若∠A是锐角,且sinA是方程2x2-x=0的一个根,则sinA=________.15.如图所示,BD⊥AC 于点D , D E∥AB , EF⊥AC 于点F , 若BD 平分∠ABC , 则与∠CEF 相等的角(不包括∠CEF)的个数是________.三、解答题 16.计算:(1)2(2cos 45°-sin 60°)+244; (2)sin 60°·cos 60°-tan 30°·tan 60°+sin 245°+cos 245°. 17.如图,△ABC 中,∠ABC =60°,AB =2,BC =3,AD ⊥BC 垂足为D .求AC 长.18.如图所示,一测量员站在岸边的A 处,刚好正对河岸另一边B 处的一棵大树,这位测量员沿河岸向右走了50 m 到达C 处,在C 处测得∠ACB =38°,求河的宽度.(精确到 m ,t an 38°≈19.在等腰直角三角形ABC 中, 90C ∠=, 10AC =, D 是AC 上一点,若1tan 5DBC ∠=,求AD 的长.20.如图,矩形OABC 的两边在坐标轴上,点A 的坐标为(10,0),抛物线y=ax 2+bx+4过点B ,C 两点,且与x 轴的一个交点为D (﹣2,0),点P 是线段CB 上的动点,设CP=t (0<t <10).(1)请直接写出B 、C 两点的坐标及抛物线的解析式;(2)过点P 作PE⊥BC,交抛物线于点E ,连接BE ,当t 为何值时,∠PBE 和Rt △OCD 中的一个角相等? (3)点Q 是x 轴上的动点,过点P 作PM∥BQ,交CQ 于点M ,作PN∥CQ,交BQ 于点N ,当四边形PMQN 为正方形时,求t 的值.参考答案1.A2.C3.A4.C5.B6.D7.C8.C9.A10.D 11.0 12.213.sin A =cos B 14.1215.416.解析:(1)原式=23266622=222422⎛⎫⨯⨯-+-+ ⎪⎪⎝=2; (2)原式=223132231133=1=223224224⎛⎫⎛⎫⨯-⨯++-++ ⎪ ⎪ ⎪ ⎪. 17.7.解析: AD BC ⊥,垂足为D ∴ 90ADB ADC ∠=∠=︒在ABD ∆ 中, 90,60,2ADB B AB ∠=︒∠=︒=∴ sin ,cos AD BDB B AB AB==即31,2222AD BD == 解得: 3,1AD BD == BC=3∴ CD=2在Rt ADC ∆中, 227AC AD CD =+=18.解析:在Rt△BAC 中,∠ACB=38°. 则AB=AC•tan38°≈50×=≈(米). 答:河的宽度约为米. 19.AD=8 解析:如图,∵△ABC 为等腰直角三角形, ∴BC=AC=10,在Rt △BCD 中,∵tan ∠DBC=CDBC, ∴CD=15×10=2, ∴AD=AC-CD=10-2=8. 20.(1)215463y x x =-++;(2)t=3;(3)103或203解:(1)在y =ax 2+bx +4中,令x =0可得y =4, ∴C (0,4),∵四边形OABC 为矩形,且A (10,0), ∴B (10,4),把B 、D 坐标代入抛物线解析式可得1001044{4240a b a b ++=-+=,解得16{ 53a b =-=,∴抛物线解析式为y =16-x 2+53x +4; (2)由题意可设P (t ,4),则E (t , 16-t 2+53t +4), ∴PB =10﹣t ,PE =16-t 2+53t +4﹣4=16-t 2+53t ,∵∠BPE =∠COD =90°,当∠PBE =∠OCD 时, 则△PBE ∽△OCD ,∴PE PBOD OC=,即BP •OD =CO •PE , ∴2(10﹣t )=4(16-t 2+53t ),解得t =3或t =10(不合题意,舍去),∴当t =3时,∠PBE =∠OCD ;当∠PBE =∠CDO 时, 则△PBE ∽△ODC ,∴PE PBOC OD=,即BP •OC =DO •PE , ∴4(10﹣t )=2(16-t 2+53t ),解得t =12或t =10(均不合题意,舍去)综上所述∴当t =3时,∠PBE =∠OCD ;(3)当四边形PMQN 为正方形时,则∠PMC =∠PNB =∠CQB =90°,PM =PN , ∴∠CQO +∠AQB =90°,∵∠CQO +∠OCQ =90°, ∴∠OCQ =∠AQB , ∴Rt △COQ ∽Rt △QAB , ∴CO OQAQ AB=,即OQ •AQ =CO •AB , 设OQ =m ,则AQ =10﹣m ,∴m (10﹣m )=4×4,解得m =2或m =8,①当m =2时,CQ =BQ =∴sin ∠BCQ =BQ BC sin ∠CBQ =CQBC,∴PM =PC •sin ∠PCQ ,PN =PB •sin ∠CBQ 10﹣t ),(10﹣t ),解得t =103, ②当m =8时,同理可求得t =203, ∴当四边形PMQN 为正方形时,t 的值为103或203。

人教版初3数学9年级下册 第28章(锐角三角函数)单元测试1(含解析)

人教版初3数学9年级下册 第28章(锐角三角函数)单元测试1(含解析)

人教版九下第28章锐角三角函数单元测试一、选择题(共10小题)1. 在△ABC中,∠C=90∘,AC=6,BC=2,那么下列各式中正确的是( )A. tan A=13B. cot A=13C. sin A=13D. cos A=132. 如图,已知Rt△ABC,CD是斜边AB边上的高,那么下列结论正确的是( )A. CD=AB⋅tan BB. CD=AD⋅cot AC. CD=AC⋅sin BD. CD=BC⋅cos A3. 在Rt△ABC中,sin A的值为12,则cos A的值等于( )A. 12B. 22C. 32D. 34. 如图,在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(0,3),以点A为圆心,AB的长为半径画弧,交x轴的负半轴于点C,连接BC,则∠C的正弦值为( )A. 13B. 3 C. 1010D. 310105. 如图,点E在矩形ABCD的边CD上,AB=2BC,则tan∠CBE+tan∠DAE的值是( )A. 2B. 2+3C. 2−3D. 2+236. 在△ABC中,AB=23,∠BAC=30∘.下列线段BC的长度不能使△ABC的形状和大小都确定的是( )A. 2B. 4C. 3D. 237. 如图,为加快5G网络建设,某通信公司在一个坡度i=1:2.4的山坡AB上建了一座信号塔CD,信号塔底端C到山脚A的距离AC=13米,在距山脚A水平距离18米的E处,有一高度为10米的建筑物 EF ,在建筑物顶端 F 处测得信号塔顶端 D 的仰角为 37∘(信号塔及山坡的剖面和建筑物的剖面在同一平面上),则信号塔 CD 的高度约是 ( )(参考数据:sin37∘≈0.60,cos 37∘≈0.80,tan37∘≈0.75)A. 22.5 米B. 27.5 米C. 32.5 米D. 45.0 米8. 如图,某梯子长 10 米,斜靠在竖直的墙面上,当梯子与水平地面所成角为 α 时,梯子顶端靠在墙面上的点 A 处,底端落在水平地面的点 B 处,现将梯子底端向墙面靠近,使梯子与地面所成角为 β,已知 sin α=cos β=35,则梯子顶端上升了 ( )A. 1 米B. 1.5 米C. 2 米D. 2.5 米9. 在 Rt △ABC 中,AC =8,BC =6,则 cos A 的值等于 ( )A. 45B. 74C. 45 或 74D. 45 或 27710. 如图,电线杆 CD 的高度为 ℎ,两根拉线 AC 与 BC 互相垂直,∠CAB =α(A ,D ,B 三点在同一条直线上),则拉线 BC 的长度为 ( )A. ℎsin αB. ℎcos αC. ℎtan αD. ℎ⋅cos α二、填空题(共8小题)11. 如果在平面直角坐标系 xOy 中,点 P 的坐标为 (3,4),射线 OP 与 x 轴的正半轴所夹的角为 α,那么 α 的余弦值等于 .+∣tan B−3∣=0,那么△ABC的形状是.12. 若cos A−1213. 如图,点C在线段AB上,且AC=2BC,分别以AC,BC为边在线段AB的同侧作正方形ACDE,BCFG,连接EC,EG,则tan∠CEG=.14. 如果矩形一边的两个端点与它对边上的一点所构成的角是直角,那么我们就把这个点叫做矩形的“直角点”,如图,如果E是矩形ABCD的一个“直角点”,且CD=3EC,那么AD:AB的值是.15. 某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角为45∘的传送带AB调整为坡度i=1:3的新传送带AC(如图所示).已知原传送带AB的长是42 m,那么新传送带AC的长是m.16. 如图,某校为了筹备校园艺术节,要在通往舞台的台阶上铺上红色地毯.如果地毯的宽度恰好与台阶的宽度一致,台阶的侧面如图所示,台阶的坡角为30∘,∠BCA=90∘,台阶的高BC为2 m,那么m长的地毯恰好能铺好台阶(精确到0.1 m;参考数据:2≈1.414,3≈1.732).17. 如图,在△ABC和△DEF中,∠B=40∘,∠E=140∘,AB=EF=5,BC=DE=8,则这两个三角形面积的大小关系为S△ABC S△DEF(填“>”“=”或“<”).18. 如图,矩形ABCD中,E为边AB上一点,将△ADE沿DE折叠,使点A的对应点F恰好落在,则矩形ABCD 边BC上,连接AF交DE于点N,连接BN.若BF⋅AD=15,tan∠BNF=52的面积为.三、解答题(共6小题)19. 计算:4sin260∘−2sin30∘−cot45∘.tan60∘−2cos45∘20. 已知二次函数y=ax2+x+c的图象经过点A(4,0),B(−2,0),与y轴交于点C,求∠ACB的正切值.21. 如图,已知△ABC和△DCE都是等边三角形,点B,C,E在同一直线上,连接BD交AC边于点F.(1)如果∠ABD=∠CAD,求证:BF2=DF⋅DB;(2)如果AF=2FC,S四边形ABCD=18,求S△DCF的值.22. 在数学综合实践活动课上,某小组要测量学校升旗台旗杆的高度.如图,测得BC∥AD,斜坡AB的长为6 m,坡度i=1:3,在点B处测得旗杆顶端的仰角为70∘,点B到旗杆底部C的距离为4 m.(参考数据:sin70∘≈0.94,cos70∘≈0.34,tan70∘≈2.75,结果精确到1 m)(1)求斜坡AB的坡角α的度数;(2)求旗杆顶端离地面的高度ED.23. 由于发生山体滑坡灾害,武警救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧地面上探测点A,B相距2米,探测线与该地面的夹角分别是30∘和60∘(如图所示),试确定生命所在点C的深度(参考数据:2≈1.414,3=1.732,结果精确到0.1)24. 如图所示,一幢楼房AB的后面有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60∘时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(参考数据:3≈1.73)(1)求楼房的高度约为多少米;(结果精确到0.1米)(2)过了一会儿,当α=45∘时,小猫(填“能”或“不能”)晒到太阳.答案1. A【解析】∵∠C=90∘,BC=6,AC=2,∴AB=62+22=210.A.tan A=BCAC =26=13,正确;B.cot A=ACBC =62=3,故不正确;C.sin A=BCAB =2210=1010,故不正确;D.cos A=ACAB =6210=31010,故不正确.2. D3. C【解析】∵sin A=12,∴∠A=30∘,∴cos A=cos30∘=32.故选C.4. D【解析】由题意知OA=4,OB=3,在Rt△AOB中,AB=OA2+OB2=32+42=5,∴AC=AB=5,∴OC=AC−AO=1,在Rt△BOC中,BC=OC2+OB2=12+32=10,∴sin C=OBBC =310=31010.5. A6. A【解析】如图(1),过点B作BD⊥AC于点D,×23=3,则BD=AB sin30∘=12故当BC=3,即点D与点C重合时,△ABC的形状和大小唯一确定,即C选项不符合题意;当BC=2时,如图(2),则BC1=BC2=2,此时△ABC1与△ABC2的形状和大小不相同,即选项A符合题意;当BC=23时,△ABC是等腰三角形,如图(3),此时△ABC的形状与大小确定,故选项D不符合题意;当BC=4时,如图(4),△ABC是钝角三角形,形状与大小确定,故选项B不符合题意.7. B8. C【解析】如图所示,在Rt△ABC中,AC=sinα×AB=35×10=6(米);在Rt△DEC中,DC=cosβ×DE=35×10=6(米),EC=DE2−DC2=100−36=8(米);∴AE=EC−AC=8−6=2(米).9. C【解析】存在两种情况:①当AB为斜边时,∠C=90∘,∵AC=8,BC=6,∴AB=AC2+BC2=82+62=10.∴cos A=ACAB =810=45,②当AC为斜边时,∠B=90∘,∵AC=8,BC=6,∴AB=AC2−BC2=82−62=27,∴cos A=ABAC =278=74.综上所述,cos A的值等于45或74.10. B11. 35【解析】过P作PA⊥x轴于A,∵P(3,4),∴PA=4,OA=3,由勾股定理得:OP=5,∴α的余弦值是OAOP =35.答案为:35.12. 等边三角形【解析】由题意得cos A−12=0,tan B−3=0,∴cos A=12,tan B=3,∴∠A=60∘,∠B=60∘,∴∠C=60∘,∴△ABC的形状是等边三角形.13. 12【解析】设BC=a,则AC=2a.∵正方形ACDE,∴EC=(2a)2+(2a)2=22a,∠ECD=12∠ACD=45∘.同理:CG=2a,∠GCD=12∠BCD=45∘.∴tan∠CEG=CGCE =2a22a=12.14. 2315. 8【解析】作AD⊥直线CB于点D,∵∠ABD=45∘,∴AD=BD,∵AB=42,∴AD=BD=AB sin45∘=42×22=4,∵新传带AC的坡度i=1:3,∴ADDC =4DC=13,则DC=43,∴AC=AD2+DC2=8(m).16. 5.517. =【解析】如图1,过点D作DH⊥EF,交FE的延长线于点H,∵∠DEF=140∘,∴∠DEH=40∘.∴DH=sin∠DEH⋅DE=8sin40∘,∴S△DEF=12EF⋅DH=20sin40∘.如图2,过点A作AG⊥BC于点G.∵AG=sin B⋅AB=5sin40∘,∴S△ABC=12BC⋅AG=20sin40∘,∴S△DEF=S△ABC.18. 155【解析】由折叠的性质可得AE=EF,AD=DF,AN=NF,∠EAN=∠EFN,∴∠BEF=2∠EAN.在Rt△ABF中,∵AN=NF,∴BN=AN=NF,∴∠EAN=∠EBN,∠BNF=2∠EAN,∴∠BEF=∠BNF,∵tan∠BNF=52,∴tan∠BEF=52,∴BFBE =52,设BF=5k(k>0),则BE=2k,∴AE =EF =BF 2+BE 2=3k ,∴AB =CD =5k .由折叠的性质可得 ∠EFD =∠EAD =90∘,∴∠BFE +∠CFD =90∘,又 ∵∠BEF +∠BFE =90∘,∴∠CFD =∠BEF .∴ 在 Rt △CFD 中,tan ∠CFD =CD CF =52, ∴CF =25k ,∴AD =BC =35k .∵BF ⋅AD =15,∴5k ⋅35k =15,解得 k =1(会去负值),∴AB =5,BC =35,∴矩形ABCD 的面积=AB ⋅BC =5×35=155.19. 原式==3−2=3+2.20. 解法一:根据题意,得 0=16a +4+c,0=4a−2+c.解得 a =−12,c =4.∴ 二次函数的解析式为 y =−12x 2+x +4.∴ 点 C (0,4).作 BH ⊥AC ,垂足为点 H .可求得 AH =BH =32,AC =42.∴CH =2.∴tan ∠ACB =3.【解析】解法二:设二次函数的解析式为 y =a (x−4)(x +2).展开,得 y =ax 2−2ax−8a .比较系数,得 −2a =1.a =−12.∴ 二次函数的解析式为 y =−12x 2+x +4.(下同解法一).21. (1) ∵△ABC ,△DCE 均为等边三角形,∴AB =AC ,∠BAC =∠ACB =∠DCE =60∘,∴∠ACD =180∘−∠ACB−∠DCE =60∘,∴∠BAC =∠ACD ,在 △ABF 和 △CAD 中, ∠BAC =∠ACD,∠ABD =∠CAD,AB =AC,∴△ABF ≌△CAD ,∴AD =BF ,∵∠ABD =∠FAD ,∠ADB =∠ADB ,∴△ADF ∽△BDA ,∴AD BD =DF AD ,即 AD 2=DF ⋅DB ,∵AD =BF ,∴BF 2=DF ⋅DB .(2) ∵∠AFB =∠DFC ,∠BAF =∠DCF ,∴△DCF ∽△ABF ,∴BF DF =AF FC ,∵AF =2FC ,∴BF DF =AF FC =2,∴BF =2FD ,设 S △DCF =x ,∵S △ADF S △DCF =AF FC =2,∴S △ADF =2x ,同理可得,S △ABF =4x ,S △BCF =2x ,∵S 四边形ABCD =18,∴S △DCF +S △ADF +S △ABF +S △BCF =18,即 x +2x +4x +2x =18,解得 x =2,即 S △DCF =2.22. (1) 如图,作 BF ⊥AD 于点 F ,∵i =tan ∠BAF =BF AF =13=33, ∴∠BAF =30∘,即 α=30∘.(2) ∵∠BAF =30∘,AB =6,∴CD=BF=12AB=3.在Rt△BCE中,∵∠EBC=70∘,BC=4,∴EC=BC⋅tan∠EBC=4tan70∘≈11,∴ED=EC+CD=11+3=14(m).答:旗杆顶端离地面的高度ED约为14 m.23. 如图所示,过点C作CD⊥AB,交AB的延长线于点D,由题意可知,∠CAD=30∘,∠CBD=60∘,设CD=x米,则BD=xtan60∘,AD=xtan30∘,∵AB=2米,AD=AB+BD,∴AD=2+BD,∴2+xtan60∘=xtan30∘,解得,x≈1.7.即生命所在点C的深度是1.7米.24. (1)当α=60∘时,在Rt△ABE中,∵tan60∘=ABAE =AB10,∴AB=10⋅tan60∘=103≈10×1.73=17.3(米).即楼房的高度约为17.3米.(2)能【解析】当α=45∘时,小猫仍可以晒到太阳.理由如下:假设没有台阶,当α=45∘时,从点B射下的光线与地面AD的交点为点F,与MC的交点为点H,如图所示.∵∠BFA=45∘,∴tan45∘=ABAF=1,此时的影长AF=AB≈17.3米,∴CF=AF−AC≈17.3−17.2=0.1(米),∴CH=CF=0.1米,∴楼房的影子落在台阶MC这个侧面上,∴小猫能晒到太阳.。

人教版九年级数学下第二十八章锐角三角函数单元练习题(含答案解析)

人教版九年级数学下第二十八章锐角三角函数单元练习题(含答案解析)
(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin 58°≈0.85,cos 58°≈0.53,
tan 58°≈1.60,sin 76°≈0.97.cos 76°≈0.24,tan 76°≈4.00)
23.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求tanB的值.
13.
【分析】
在直角三角形中,将AB的值代入余弦值中,可求出BC边的长.
【详解】
解:在Rt△ABC中,
∵∠C=90°,AB=8,cosB= ,
∴ = ,
∴BC= ,
故答案为 .
【点睛】
本题考查了解直角三角形,应用余弦函数的定义来求直角三角形的边是解题的关键.
14.
【详解】
过P作PA⊥OA,
∵P点坐标为(4,3),
18.在△ABC中,(tanA﹣ )2+| ﹣cosB|=0,则∠C的度数为_____.
19.已知在Rt△ABC中,∠C=90°,tanA= ,则sinA=________.
20.如图所示方格纸中每个小正方形的边长为1,其中有三个格点A、B、C,则sin∠ABC=_____.
三、解答题
21.计算:cos245° + +cos230°.
10.在Rt△ABC中,∠C=90°,若AC=4,AB=5,则cosB的值( )
A. B. C. D.
二、填空题
11.如图是4×4的正方形网格,点C在∠BAD的一边AD上,且A、B、C为格点,sin∠BAD的值是___________.
12.比较大小:cos 36°________cos 37°.
13.在Rt△ABC中,斜边AB的长是8,cosB= ,则BC的长是__________.

2019-2020人教版九年级数学下册第28章《锐角三角函数》单元测试卷含答案

2019-2020人教版九年级数学下册第28章《锐角三角函数》单元测试卷含答案

九年级数学(下)第28章《锐角三角函数》测试卷班级 姓名 得分一、选择题:(每小题3分,共30分) 1.cos60°的值等于( ) A 、B 、C 、D 、12、在直角三角形中,各边的长度都扩大3倍,则锐角A 的三角函数值( ) A 、也扩大3倍 B 、缩小为原来的31C 、都不变D 、有的扩大,有的缩小 3、以直角坐标系的原点O 为圆心,以1为半径作圆。

若点P 是该圆上第一象限内的一点,且OP 与x 轴正方向组成的角为α,则点P 的坐标为( )A 、 (cosα,1)B 、 (1,sinα)C 、 (sinα,cosα)D 、(cosα,sinα) 4、如图,在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连结BD ,若cos ∠BDC=53,则BC 的长是( ) A 、4cm B 、6cm C 、8cm D 、10cm 5、已知α为锐角,sinα=cos500则α等于 ( )A 、20°B 、30°C 、40°D 、50°6、若tan(α+10°)=3,则锐角α的度数是 ( )A 、20°B 、30°C 、35°D 、50° 7、如果α、β都是锐角,下面式子中正确的是( ) A 、sin(α+β)=sinα+sinβB 、cos(α+β)=21时,α+β=60° C 、若α≥β时,则cosα≥cosβ D 、若cosα>sinβ,则α+β>90° 8、小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上, 量得CD=8米,BC=20米,CD 与地面成30º角,且此时测得 1米杆的影长为2米,则电线杆的高度为( )A .9米B .28米C .()37+米 D.()3214+米 9、如图,两建筑物的水平距离为am,从A 点测得D 点的俯角为α, 测得C 点的俯角为β,则较低建筑物CD 的高为 ( ) A. am B.(a·tanα)mC.(a/tanα)mD.a(tanα-tanβ)m10、如图,钓鱼竿AC 长6m ,露在水面上的鱼线BC 长23m , 某钓者想看看鱼钓上的情况,把鱼竿AC 转动到C A '的位置,此时露在水面上的鱼线C B ''为33,则鱼竿转过的角度是( ) A .60° B .45° C .15° D .90° 二、填空题:(每小题3分,共24分) 11、在Rt △ABC 中,∠C =90°,a =2,b =3,则cosA = ,sinB = ,tanB212223第4题图第8题图第9题图第10题图= . 12、直角三角形ABC 的面积为24cm 2,直角边AB 为6cm ,∠A 是锐角,则sinA = . 13、已知tan α=125,α是锐角,则sin α= . 14、2cos45°-21tan60°= ; 15、如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为 . (结果保留根号).16、等腰三角形底边长10cm ,周长为36cm ,则一底角的正切值为 . 17、某人沿着坡度i=1:3的山坡走了50米,则他离地面 米高。

人教版初3数学9年级下册 第28章(锐角三角函数)单元测试卷(含解析)

人教版九年级数学下册 第二十八章 锐角三角函数单元测试卷一、选择题1.如图,在Rt △ABC 中,∠ACB =90°,AB =5,BC =3,CD ⊥AB 于点D ,sin ∠BCD 等于( )A .34B .35C .45D .342.如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为( )A . 2+3B . 23C . 3+3D . 333.如图,已知Rt △ABC 中,斜边BC 上的高AD =3,cos B =35,则AC 的长为( )A . 3B . 3.5C . 4.8D . 54.如图,△ABC 中,AC =5,cos B =22,sin C =35,则△ABC 的面积为( )A .212B . 12C . 14D . 215.在Rt △ABC 中,AD 为斜边上的高,S △ABC =4S △ABD ,则cos B 等于( )A .12B .22C .35D .326.在Rt △ABC 中,∠C =90°,若AB =4,sin A =35,则斜边上的高等于( )A .6425B .165C .4825D .1257.若一等腰三角形的底边为2,底边上的高是3,则其顶角的大小为( )A . 60° B . 90° C . 120° D . 150°8.如图,在△ABC 中,∠A =30°,∠B =45°,AC =23,则AB 的长为( )A . 3+3B . 2+22C . 23D . 69.在Rt △ABC 中,∠C =90°,若斜边上的高为h ,sin A =35,则AB 的长等于( )A .54h B .53h C .2512h D .1225h10.在△ABC 中,∠A ,∠B 均为锐角,且sin A =12,cos B =32,AC =40,则△ABC 的面积是( )A . 800B . 8003C . 400D . 400311.等腰△ABC 的底角是30°,底边长为23,则△ABC 的周长为( )A . 4+23 B . 43+6 C . 63 D . 10312.如图,在直角△ABC 中,∠C =90°,BC =1,tan A =12,下列判断正确的是( )A . ∠A =30°B .AC =12C .AB =2D .AC =213.由直角三角形中的已知元素,求出所有未知元素的过程,叫做解直角三角形.已知一个直角三角形中:①两条边的长度,②两个锐角的度数,③一个锐角的度数和一条边的长度.利用上述条件中的一个,能解这个直角三角形的是( )A . ①② B . ①③ C . ②③ D . ①②③二、填空题14.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,tan ∠ACD =34,AB =5,那么CD 的长是__________.15.如图,点P 到坐标原点O 的距离OP =6,线段OP 与x 轴正半轴的夹角为α,且cos α=23,则点P 的坐标为______________.16.在Rt △ABC 中,∠C =90°,BC =10,若△ABC 的面积为5033,则∠A =________.三、解答题17.在△ABC 中,∠A =30,tan B =13,BC =10.求AB 的长.18.如图,在Rt △ABC 中,∠C =90°,点D 是BC 边上的一点,CD =6,cos ∠ADC =35,tan B =25,求BD 的长.19.在△ABC中,已知∠C=90°,b+c=30,∠A-∠B=30°.解这个直角三角形.20.已知:如图,△ABC中,AC=12 cm,AB=122cm,sin A=13(1)求△ABC的面积S;(2)求tan B.21.如图,在Rt△ABC中,∠C=90°,点D是BC边的中点,CD=2,tan B=3.4(1)求AD和AB的长;(2)求sin ∠BAD的值.答案解析1.【答案】B【解析】∵∠ACB =90°,CD ⊥AB ,∵∠BCD +∠B =90°,∠A +∠B =90°,∴∠A =∠BCD ,∴sin ∠BCD =sin A =BCAB=35,故选B.2.【答案】A【解析】如图,∵在△ABC 中,AC ⊥BC ,∠ABC =30°,∴AB =2AC ,BC =AC tan30°=3AC .∵BD =BA ,∴DC =BD +BC =(2+3)AC ,∴tan ∠DAC =DCAC =(2+3)ACAC =2+3.故选A.3.【答案】D【解析】∵在Rt △ABC 中,cos B =35,∴sin B =45,tan B =sin B cos B=43.∵在Rt △ABD 中,AD =3,∴AB =AD sin B=345=154.在Rt △ABC 中,∵tan B =ACAB=AC154=43,∴AC =43×154=5,故选D.4.【答案】A【解析】作AD ⊥BC 于点D ,∵△ABC 中,AC =5,cos B =22,sin C =35,∴AD AC=35,得AD =3,∠B =45°,∴tan B =ADBD=tan 45°,得BD =3,CD =AC 2−AD 2=52−32=4,∴S △ABC =(BD +CD )·AD2=(3+4)×32=212,故选A.5.【答案】B【解析】∵AD 是△ABC 的高,∠BAC =90°,∴∠ADB =∠ADC =∠BAC =90°,∵∠B =∠B ,∴△ABD ∽△ABC ,∴BD AB=S △ABD S △ABC =12,∴cos B =BD AB=12.故选B.6.【答案】C【解析】根据题意画出图形,如图所示,在Rt △ABC 中,AB =4,sin A =35,∴BC =AB sin A =2.4,根据勾股定理,得AC =AB 2−BC 2=3.2,∵S △ABC =12AC ·BC =12AB ·CD ,∴CD =AC·BC AB=4825.故选C.7.【答案】A【解析】依照题意画出图形,如图所示.∵BC =2,AD =3,△ABC 为等腰三角形,∴BD =12BC =1,AB =BD 2+AD 2=2,AB.∴BD=12∴∠BAD=30°,∴∠BAC=2∠BAD=60°.故选A.8.【答案】【解析】过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=23,∴CD=3,∴BD=CD=3,由勾股定理,得AD=AC2−CD2=3,∴AB=AD+BD=3+3.故选A.9.【答案】C【解析】如图,CD 为斜边AB 上的高,在Rt △ABC 中,sin A =BCAB=35,设BC =3k ,则AB =5k ,根据勾股定理,得AC =AB 2−BC 2=4k ;在Rt △ACD 中,sin A =CDAC=ℎAC=35,∴AC =53h ,∵4k =53h ,∴k =512h ,∴AB =5×512h =2512h .故选C.10.【答案】D【解析】如图所示,过C 作CD ⊥AB ,∵在△ABC 中,∠A ,∠B 均为锐角,且sin A =12,cos B =32,∴∠A =∠B =30°,∴BC =AC ,∴D 为AB 中点,在Rt △ACD 中,AC =40,∴CD =12AC =20,根据勾股定理,得AD =AC 2−CD 2=203,∴AB =2AD =403,则△ABC 的面积是12AB ·CD =4003,故选D.11.【答案】A【解析】作AD ⊥BC 于D 点.∵△ABC 是等腰三角形,AD ⊥BC ,∠B =30°,∴BD =CD =12BC =12×23=3.∵cos B =cos 30°=BD AB=3AB=32,∴AB =2.∴△ABC 的周长为(4+23).故选A.12.【答案】D【解析】∵在直角△ABC 中,∠C =90°,BC =1,tan A =12,tan A =BCAC,∴AC =BCtan A =112=2,∴AB =AC 2+BC 2=22+12=5,∵tan A =12,tan30°=33,∴∠A ≠30°,故选D.13.【答案】B【解析】根据解直角三角形的定义及解直角三角形要用到的关系即可作出判断.①已知两条边的长度,可以由勾股定理求出第三边;由锐角三角函数的定义求出其中一个锐角,再根据直角三角形两锐角互余求出另外一个锐角,能解这个直角三角形;②已知两个锐角的度数,这个三角形的大小不确定,无法求出边的大小,不能解这个直角三角形;③已知一个锐角的度数,先根据直角三角形两锐角互余求出另外一个锐角的度数,又知道一条边的长度,根据锐角三角函数的定义可以求出另外两条边的长度,能解这个直角三角形.故选B.14.【答案】125【解析】∵∠ACB =90°,CD ⊥AB ,∴∠ACD +∠BCD =∠BCD +∠B =90°,∴∠B =∠ACD ,∵tan ∠ACD =34,∴tan B =AC BC =34,设AC =3x ,BC =4x ,∵AC 2+BC 2=AB 2,∴(3x )2+(4x )2=52,解得x =1,∴AC =3,BC =4,∵S △ABC =12AB ·CD =12AC ·BC ,∴CD =AC·BC AB =125.15.【答案】(4,25)【解析】过点P 作PA ⊥x ,垂足为A .∵cos α=OA OP =23,OP =6,∴OA =4.在Rt △OPA 中,PA =OP 2−OA 2=25.所以点P 的坐标为(4,25)16.【答案】60°【解析】∵在Rt △ABC 中,∠C =90°,BC =10,若△ABC 的面积为5033,∴S =12AC ·BC =5033,∴AC =1033,∵tan A =BC AC =101033=3,∴∠A =60°.17.【答案】解 作CD ⊥AB 于D .设CD =x ,根据题意得BD =3x .在Rt △BCD 中,由勾股定理,得x 2+(3x )2=(10)2,解得x =1.所以CD =1,BD =3.在Rt △ACD 中,∵∠A =30°,tan A =CD AD ,∴AD =CDtan30°=3.∴AB =AD +BD =3+3.【解析】作CD ⊥AB 于D ,先解Rt △BCD ,求出CD 、BD ;然后在Rt △ACD 中利用∠A 的正切求出AD 的长;那么根据AB =AD +BD 即可求解.18.【答案】解 在Rt △ACD 中,∵cos ∠ADC =CD AD =35,∴AD =53×6=10,∴AC =AD 2−CD 2=102−62=8,在Rt △ABC 中,∵tan B =AC BC =25,∴BC =52×8=20,∴BD =BC -CD =20-6=14.【解析】在Rt △ACD 中,利用∠ADC 的余弦可计算出AD =10,再利用勾股定理计算出AC =8,然后在Rt △ABC 中,利用∠B 的正切计算出BC =20,于是根据BD =BC -CD 求解.19.【答案】解 ∵∠C =90°,∴∠A +∠B =90°,∵∠A -∠B =30°,∴∠A =60°,∠B =30°,∵sin 30°=b c =12,∴b =12c ,∵b +c =30,∴12c +c =30,解得c =20,则b =10,a =202−102=103.【解析】首先根据∠C =90°可得∠A +∠B =90°,再结合∠A -∠B =30°可算出∠A 、∠B 、∠C 的度数,再根据特殊角的三角函数数值计算出三边长即可.20.【答案】解 (1)作CH ⊥AB 于H ,如图,∵在Rt △ACH 中,∠AHC =90°,AC =12 cm ,sin A =CH AC =13,∴CH =13AC =4 cm ,∴△ABC 的面积=12·AB ·CH =12×122×4=242( cm 2);(2)∵在Rt △ACH 中,∠AHC =90°,AC =12 cm ,CH =4 cm ,∴AH =AC 2−CH 2=82cm ,∴BH =AB -AH =42cm ,∴tan B =CH BH =442=22.【解析】(1)作CH ⊥AB 于H ,利用正弦函数的定义计算出CH =4 cm ,然后根据三角形面积公式计算即可;(2)先在Rt △ACH 中,利用勾股定理求出AH =AC 2−CH 2=82cm ,则BH =AB -AH =42cm ,然后在Rt △BCH 中,利用正切函数的定义即可求出tan B 的值.21.【答案】解 (1)∵D 是BC 的中点,CD =2,∴BD =DC =2,BC =4,在Rt △ACB 中,由 tan B =AC CB =34,∴AC 4=34,∴AC =3,由勾股定理,得AD =AC 2+CD 2=32+22=13,AB =AC 2+BC 2=32+42=5;(2)过点D 作DE ⊥AB 于E ,∴∠C =∠DEB =90°,又∠B =∠B ,∴△DEB ∽△ACB ,∴DE AC =DB AB ,∴DE 3=25,∴DE =65,∴sin ∠BAD =DE AD =6513=61365.【解析】(1)由中点定义求BC =4,根据tan B =34,得AC =3,由勾股定理,得AB =5,AD =13;(2)作高线DE ,证明△DEB ∽△ACB ,求DE 的长,再利用三角函数定义求结果.。

人教版初3数学9年级下册 第28章(锐角三角函数)单元测试题 (含答案)

初中数学人教版九年级锐角三角函数单元测试题学校:__________ 班级:__________ 姓名:__________ 考号:__________ 1. 在Rt△ABC中,∠C=90∘,若AC=3,BC=2,则tan A的值是()A.12B.23C.52D.2552. 已知在Rt△ABC中,∠C=90∘,sin A=12,AC=23,那么BC的值为( )A.2B.4C.43D.63. 海中有一个小岛P,该岛四周12海里范围内(含12海里)是一个暗礁区.今有货轮由西向东航行,开始在A点观测P在北偏东60∘.若行驶10海里后到达B点观测P在北偏东α(0<α<90∘)处,若货船不改变航向,则当tanα为何值时,货轮会有触礁的危险,则根据以上数据可计算得tanα的值为()A.tanα=63−56B.tanα≥63−56C.0<tanα≤63−56D.56<tanα<34. 兰州是古丝绸之路上的重镇,以下准确表示兰州市的地理位置的是( )A.北纬34∘03′B.在中国的西北方向C.甘肃省中部D.北纬34∘03′,东经103∘49′5. 如图,①以点A为圆心,5cm长为半径画弧分别交∠MAN的两边AM,AN于点B,D;②以点B为圆心,AD长为半径画弧,再以点D为圆心,AB长为半径画弧,两弧交于点C;③分别连接BC,CD,AC.若tan∠BAC=12,点C到射线AN的距离是( )A.3B.4C.5D.256. 如图,小明从点A沿坡度i=1:2的斜坡走到点B,若AB=10米,则上升高度是()米.A.5B.2C.25D.237. 如图,钓鱼竿AC长6m,露在水面上的鱼线BC长32m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15∘到AC′的位置,此时露在水面上的鱼线B′C′长度是( )A.3mB.33mC.23mD.4m8. 你认为tan15∘的值可能是()A.36B.2+3 C.2−3 D.329. 如图是深圳市少年宫到中心书城地下通道的手扶电梯示意图,其中AB、CD分别表示地下通道、市民广场电梯口处地面的水平线,∠ABC=135∘,BC的长约是5,则乘电梯从点B到点C上升的高度ℎ是()A.mB.5mC.mD.10m10. 如图,在△ABC中,∠C=90∘,AB=5,AC=2,则sin B的值是()A.35B.25C.23D.32.11. 如图,在Rt△ABC中,∠ACB=90∘,CD⊥AB于D,下列式子正确的是( )A.sin A=BDBC B.cos A=ACADC.AC2=AD⋅BDD.tan A=CDAB12. 如图,△ABC的顶点在正方形网格的格点上,则tan A的值是( )A.12B.22C.2D.2213. 如果某飞机的飞行高度为m千米,从飞机上看到地面控制点的俯角为α,那么此时飞机与地面控制点之间的距离是()A.m⋅tanαB.mcosαC.msinαD.m⋅cotα14. 在Rt△ABC中,∠C=90∘,下列式子不一定成立的是()A.tan A=cot BB.sin2A+cos2A=1C.sin2A+sin2B=1D.tan A⋅cot B=115. 中考结束后,小明和好朋友一起前往三亚旅游.他们租住的宾馆AB坐落在坡度为i=1:2.4的斜坡上.某天,小明在宾馆顶楼的海景房A处向外看风景,发现宾馆前的一座雕像C的俯角为76∘(雕像的高度忽略不计),远处海面上一艘即将靠岸的轮船E的俯角为27∘.已知雕像C距离海岸线D的距离CD为260米,与宾馆AB的水平距离为36米,问此时轮船E距离海岸线D的距离ED的长为()(参考数据:tan76∘≈4.0,tan27∘≈0.5,sin 76∘≈0.97,sin 27∘≈0.45.A.262B.212C.244D.27616. 西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC 高为a .已知,冬至时北京的正午日光入射角∠ABC 约为26.5∘,则立柱根部与圭表的冬至线的距离(即BC 的长)约为( )A.a sin 26.5∘B.atan 26.5C.a cos 26.5∘D.acos 26.517. 已知,菱形的一个内角为60∘,边长为2,用六个这样完全一样的菱形拼成如图所示的图形,则tan ∠ABC 的值是( )A.12 B.33C.233D.3218. 如图是一张简易活动餐桌,现测得OA =OB =40cm ,OC =OD =60cm ,现要求桌面离地面的高度为50cm ,那么两条桌腿的张角∠COD 的大小应为( )A.150∘B.135∘C.120∘D.100∘19. 在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点10千米的C地去,先沿北偏东70∘方向走了8千米到达B地,然后再从B地走了6千米到达目的地C,此时小霞在B地的()A.北偏东20∘方向上B.北偏西20∘方向上C.北偏西30∘方向上D.北偏西40∘方向上20. 轮船航行到C处观测小岛A的方向是北偏西48∘,那么从A同时观测轮船在C处的方向是()A.南偏东48∘B.东偏北48∘C.东偏南48∘D.南偏东42∘21. 若tanα⋅tan36∘=1,则α=________度.22. 若1−tanα=0,则锐角α=________度.23. 已知∠α=36∘,若∠β是∠α的余角,则∠β=________度,sinβ=________.(结果保留四个有效数字)24. 如图,已知△ABC三个顶点的坐标分别为A(−2, −4),B(0, −4),C(1, −1).(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB 相交于点D,写出点D的坐标;(3)若另有一点P(−3, −3),连接PC,则tan∠BCP=________.25. 如图,某学校灯光球场的大功率照明灯发出的光线与灯杆成30∘角,照射在地面上的大距离为AB=60m,现在准备调整它的照明角度,使它发出的光线与灯杆AC成45∘角,请你通过计算回答:调整后,这个大功率照明灯是否影响距离灯杆100m的D处的居民休息?(参考数据:3≈1.73)26. 2019年10月1日李明和他的爸爸、妈妈一同驾车到云南石林风景区旅游.如图,他利用自己带的测角仪站在一处高大的石林AB的前方C点处测得∠ACB=60∘,再沿BC方向走20m到达D处,测得∠ADC=30∘.(1)求点C到AD的距离;(2)求出石林AB的高度.(测角仪高度忽略不计,结果精确到1m)27. 已知以直线x=1为对称轴的抛物线y1与x轴交于点A1(d,0)和A2,顶点为B1,以直线x=2为对称轴的抛物线y2与x轴交于点A2和A3,顶点为B2,…,以直线x=n为对称轴的抛物线y n与x轴交于点A n和A n+1,顶点为B n,我们把这样的抛物线y1, y2 ,…,y n对应的二次函数称为“整对称轴”二次函数.(1)当0<d<1时,①填空:A1A2=_______,A2A3=_______,A3A4=________;(用含d的代数式表示)②若d=0.4,“整对称轴”二次函数y1,y2,…,y n的图象的顶点B1,B2,…,B n都在直线y=15 x上,当n的值为多少时,△A n A n+1B n是直角三角形?(2)当0<d<1时,已知“整对称轴”二次函数y1,y2,…,y n的图象的开口方向都向下,且△A1A2B1,△A2A3B2,⋯,△A n A n+1B n均为直角三角形.①请求出“整对称轴”二次函数y1,y2的解析式,并猜想出y2019的解析式(可以含d);②请通过画草图分析直线y=1与抛物线y1,y2,…,y2019的公共点个数.228. 如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD 的延长线交于点P,PC,AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60∘,AB=10,求线段CF的长.参考答案与试题解析一、选择题(本题共计 20 小题,每题 3 分,共计60分)1.【答案】B2.【答案】A3.【答案】C4.【答案】D5.【答案】B6.【答案】C7.【答案】B8.【答案】C9.【答案】B10.【答案】B11.【答案】A12.【答案】A13.【答案】C14.【答案】D15.【答案】B16.【答案】B17.【答案】D18.【答案】C19.【答案】B20.【答案】A二、填空题(本题共计 3 小题,每题 3 分,共计9分)21.【答案】5422.【答案】4523.【答案】54,0.8090三、解答题(本题共计 5 小题,每题 10 分,共计50分)24.【答案】解:(1)作出点B1,C1连接即可;(2)因为直线CD 将△ABC 分成面积相等的两部分,且与线段AB 相交于点D ,故点D 为线段AB 的中点,画出直线CD ,可知点D 坐标为(−1, −4);125.【答案】解:在直角△ABC 中,∠C =30∘,AB =60,tan ∠ACB =ABAC ,∴ AC =AB tan ∠ACB=603,在直角△ACD 中,∠ACD =45∘,AC =603,AD =AC =603≈103.8(m ),∴ 照明灯会影响距离灯杆100m 的D 处的居民休息.26.【答案】解:(1)如图,过点C 作CE ⊥AD 于点E ,在Rt △CDE 中,CD =20m ,∠ADC =30∘,所以CE =12CD =12×20=10(m )即点C 到AD 的距离是10m .(2)∵ ∠ACB =60∘,∠ADC =30∘,∴ ∠CAD =30∘,∴ ∠CAD =∠ADC ,∴ AC =DC =20,在Rt △ABC 中,AB =AC sin 60∘=20×sin 60∘=20×32=103≈17(m).∴ 石林AB 的高度约为17m .27.【答案】解:(1)① 2−2d ;2d ; 2−2d ;②∵ 顶点 B 1,B 2,⋯B n 都在直线 y =15x 上,∴ 当x =n 时, y =15n ,由(1)可知,当n 为奇数时, A n A n +1=2−2d ,当n 为偶数时, A n A n +1=2d ,∴ 当d =0.4 时,只要 15n =12A n A n +1=12(2−2d)=0.6,或15n =12A n A n +1=12×2d =0.4时,△A n A n +1B n 是直角三角形,解得n =3或n =2.(2)①∵ △A 1A 2B 1 是直角三角形, A 1A 2=2−2d ,∴ y 1 的顶点 B 1 的坐标为 (1,1−d),设y 1 的解析式为 y 1=a 1(x−1)2+1−d ,∵ y 1 过点 A 1(d,0) ,将A 1 的坐标代入得 a 1=1d−1,∴ y 1 的解析式为 y 1=1d−1(x−1)2+1−d ,同理,∵ △A 2A 3B 2 是直角三角形, A 2A 3=2d ,∴ y 2 的顶点 B 2 的坐标为 (2,d),设y 2 的解析式为 y 2=a 2(x−2)2+d ,∵ y 2 过点 A 2(2−d,0),将A 2的坐标代入得 a 2=−1d ,∴ y 2 的解析式为 y 2=−1d (x−2)2+d .猜想 y 2019 的解析式为 y 2019=1d−1(x−2019)2+1−d.②通过以上探究,画出草图,可知:当0<d <12 时,直线 y =12 与y 1,y 2,…,y 2019 的公共点个数为2020个;当d =12 时,直线 y =12 与y 1,y 2,…,y 2019 的公共点个数为2019个; 当12<d <1 时,直线 y =12与 y 1,y 2,…,y 2019 的公共点个数为2018个 .28.【答案】(1)证明:如图,连接OC ,∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC,在△OAP和△OCP中,∵OA=OC, PA=PC, OP=OP,∴△OAP≅△OCP(SSS),∴∠OCP=∠OAP,∵PA是⊙O的切线,∴∠OAP=90∘,∴∠OCP=90∘,即OC⊥PC,∴PC是⊙O的切线.(2)解:∵OB=OC,∠OBC=60∘,∴△OBC是等边三角形,∴∠COB=60∘,∵AB=10,∴OC=5,由(1)可知,∠OCF=90∘,∴CF=OC⋅tan∠COB=53.。

人教版九年级数学下册第28章《锐角三角函数》单元测试【含答案】

人教版九年级数学下册第28章《锐角三角函数》单元测试一.选择题(共10小题,满分30分)1.在Rt△ABC中,∠C=90°,若cos A=( )A.B.C.D.2.在边长相等的小正方形组成的网格中,点A,B,C都在格点上( )A.B.C.D.3.在Rt△ABC中,∠C=90°,BC=1,那么tan B的值是( )A.B.C.D.4.∠β为锐角,且2cosβ﹣1=0,则∠β=( )A.30°B.60°C.45°D.37.5°5.在Rt△ABC中,∠C=90°,AB=5,则tan A的值是( )A.B.C.D.6.如图,在Rt△ABC中,∠C=90°,则sin B=( )A.B.2C.D.7.若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是( )A.B.C.D.8.如图,AD是△ABC的高,AB=4,tan∠CAD=,则BC的长为( )A. +1B.2+2C.2+1D. +49.如图,半径为3的⊙O内有一点A,OA=,当∠OPA最大时,S△OPA等于( )A.B.C.D.110.如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,∠C=42°,AB=60( )A.60sin50°B.C.60cos50°D.60tan50°二.填空题(共10小题,满分30分)11.在Rt△ABC中,∠C=90°,sin A= .12.用科学计算器计算: tan16°15′≈ (结果精确到0.01)13.在△ABC中,若,∠A,∠B都是锐角 三角形.14.在Rt△ABC中,∠C=90°,AC=6,那么AB的长为 .15.比较大小:sin80° tan50°(填“>”或“<”).16.在Rt△ABC中,∠C=90°,cos A= .17.在△ABC中,若|sin A﹣|+(﹣cos B)2=0,则∠C的度数是 .18.如图,在Rt△ABC中,CD是斜边AB上的中线,AC=6,则tan A的值为 .19.如图,在Rt△ABC中,∠ACB=90°,连接CD,过点B作CD的垂线,tan A=,则cos∠DBE的值为 .20.如图,河坝横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),水平宽度AC=m 米.三.解答题(共7小题,满分6021.已知cos45°=,求cos21°+cos22°+…+cos289°的值.22.如图,在Rt△ABC中,∠C=90°,BC=5.求sin A,cos A和tan A.23.如图,在Rt△ABC中,∠C=90˚,BC=6,求AC的长和sin A的值.24.计算:cos60°﹣2sin245°+tan230°﹣sin30°.25.计算:(1);(2)sin245°+cos245°+tan30°tan60°﹣cos30°.26.2022年8月21日,重庆市北碚区缙云山突发山火,山火无情,各地消防迅速出动,冲锋在前,然后沿着坡比为5:12的斜坡前进104米到达B处平台,继续前进到达C,沿斜坡CD前行800米到达着火点D.(1)求着火点D距离山脚的垂直高度;(2)已知消防员在平地的平均速度为4m/s,求消防员通过平台BC的时间.(保留一位小数)(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈,≈1.732)27.如图,已知∠ABC和射线BD P(点P与点B不重合),且点P到BA、BC的距离为PE、PF.(1)若∠EBP=40°,∠FBP=20°,PB=m;(2)若∠EBP=α,∠FBP=β,α,β都是锐角,并给出证明.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:如图,∵∠C=90°,∴设AC=5k,AB=13k,根据勾股定理得,BC==,所以,sin A===.故选:D.2.解:设点C到AB的距离为h,由勾股定理可知:AC==2=,由于S△ABC=32﹣×6×2﹣×7×3=9﹣8﹣3=4.∴AB•h=4,∴h=,∴sin∠BAC==,∴cos∠BAC=,故选:A.3.解:∵∠C=90°,∴tan B===.故选:D.4.解:∵∠β为锐角,且2cosβ﹣1=8,∴cosβ=,∴∠β=60°.故选:B.5.解:∵∠C=90°,AB=5,∴AC===4,∴tan A==,故选:D.6.解:∵∠C=90°,tan A=2,∴BC=2AC,∴,∴,故C正确.故选:C.7.解:若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是.故选:C.8.解:∵AD是△ABC的高,∴∠ADB=∠ADC=90°,在Rt△ABD中,cos∠BAD=,∴cos60°=,sin60°=,∴AD=4cos60°=7×=5=4,在Rt△ADC中,tan∠CAD=,∴=,解得CD=1,∴BC=BD+CD=2+1.故选:C.9.解:如图所示:∵OA、OP是定值,∴PA⊥OA时,∠OPA最大,在直角三角形OPA中,OA=,∴PA==,∴S△OPA=OA•AP=××=.故选:B.10.解:过点A作AD⊥BC于点D,如图所示:∵∠BAC=88°,∠C=42°,∴∠B=180°﹣88°﹣42°=50°,在Rt△ABD中,AD=AB×sin60×sin50°,∴点A到BC的距离为60sin50°,故A正确.故选:A.二.填空题(共10小题,满分30分)11.解:由sin A=知,可设a=6x,b=3x.∴tan A=.故答案为:.12.解: tan16°15′≈0.71,故答案为:4.71.13.解:∵,∴sin A=,cos B=,∴∠A=60°,∠B=60°,∴△ABC是等边三角形.故答案为:等边.14.解:∵cos A==,AC=7,∴AB==8,故答案为:8.15.解:∵tan50°>tan45°,tan45°=1,∴tan50°>1,又sin80°<2,∴sin80°<tan50°;故答案为:<.16.解:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴sin B=cos A=.故答案为:.17.解:∵|sin A﹣|+(2=2,∴sin A﹣=4,,即sin A=,cos B=,∴∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°.故答案为:105°.18.解:在Rt△ABC中,CD是斜边AB上的中线,∴AB=2CD=10,∵AC=6,∴BC===8,∴tan A===,故答案为:.19.解:过点C作CF⊥AB,垂足为F,在Rt△ABC中,AC=3a=,∴BC=4a,AB=5a,∵D是AB的中点,∴CD=AB=a,∵△ABC的面积=AB•CF=,∴AB•CF=AC•CB,∴5aCF=3a×4a,∴CF=a,∴cos∠DCF==,∵BE⊥CD,∴∠E=90°,∴∠EDB+∠EBD=90°,∵∠FCD+∠CDF=90°,∠CDF=∠BDE,∴∠EBD=∠DCF,∴cos∠DBE=cos∠DCF=,故答案为:.20.解:∵河坝横断面迎水坡AB的坡比是1:,AC=m,∴=,∴BC=AC==3(m),在Rt△ABC中,由勾股定理得:AB==,故答案为:6.三.解答题(共7小题,满分60分)21.解:原式=(cos21°+cos289°)+(cos22°+cos588°)+…+(cos244°+cos246°)+cos445=(sin21°+cos51°)+(sin22°+cos22°)+…+(sin844°+cos244°)+cos245=44+()2=44.22.解:在Rt△ABC中,∠C=90°,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.23.解:∵△ABC中,tan A=,∴=,∴AC=8,∴AB===10,∴sin A==24.解:原式=﹣4×()6+×()2﹣=﹣2×+×﹣=﹣2+﹣=﹣.25.解:(1)=﹣4﹣7+1=﹣4;(2)sin645°+cos245°+tan30°tan60°﹣cos30°===.26.(1)如图所示,过点B,C,D分别作水平线的垂线,F,G,延长BC交AG于点H,BHGE是矩形,依题意,,AB=104米,CD=800米,在Rt△ABE中,,设BE=8k米,∴AB=13k,∵AB=104米,∴k=8,∴BE=5×2=40(米),AE=12×8=96(米),在Rt△DCH中,CD=800米,∴DG=DH+HG=DH+BE=480+40=520(米),即着火点D距离山脚的垂直高度为520米;(2)依题意,∠DAG=30°,∴米,∵Rt△DCH中,CH=cos37°×CD=≈0.8×800=640(米),又AE=96米,∴(米),∵消防员在平地的平均速度为4m/s,∴消防员通过平台BC的时间为(秒).27.解:(1)在Rt△BPE中,sin∠EBP=在Rt△BPF中,sin∠FBP=又sin40°>sin20°∴PE>PF;(2)根据(1)得sin∠EBP==sinα=sinβ又∵α>β∴sinα>sinβ∴PE>PF.。

人教版九年级下《第二十八章锐角三角函数》单元测试题含答案

第二十八章 锐角三角函数一、选择题(每小题3分,共30分) 1.sin60°的值等于( ) A.12 B.22 C.32 D.332.在Rt △ABC 中,∠C =90°,BC =4,sin A =23,则AB 的长为( )A.83B .6C .12D .8 3.已知α为锐角,且cos(90°-α)=12,则cos α的值为( )A.33 B.22 C.12 D.324.如图1,点A (t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是( )图1A .1B .1.5C .2D .35.如图2,∠AOB 在正方形网格中,则cos ∠AOB 的值为( )图2A.12B.22C.32D.336.如图3,将△ABC 放在每个小正方形的边长都为1的网格中,点A ,B ,C 均在格点上,则tan A 的值是( )图3A.55 B.105 C .2 D.127.如图4,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )图4A.53B.2 55C.52 D.238.如图5,某酒店大门的旋转门内部由三块宽为2米,高为3米的玻璃隔板组成,三块玻璃摆放时夹角相同.若入口处两根立柱之间的距离为2米,则两立柱底端中点到转轴底端的距离为( )图5A.3米 B .2米 C .2 2米 D .3米9.如图6,轮船沿正南方向以30海里/时的速度匀速航行,在M 处观测到灯塔P 在南偏西22°方向上.航行2小时后到达N 处,观测灯塔P 在南偏西44°方向上,若该船继续向南航行至离灯塔最近的位置,则此时轮船离灯塔的距离约为(参考数据:sin68°≈0.9272,sin46°≈0.7193,sin22°≈0.3746,sin44°≈0.6947)( )图6A .22.48海里B .41.68海里C .43.16海里D .55.63海里10.如图7,四边形BDCE 内接于以BC 为直径的⊙A ,已知BC =10,cos ∠BCD =35,∠BCE =30°,则线段DE 的长是( )图7A.89 B .7 3 C .4+3 3 D .3+4 3 请将选择题答案填入下表:题号 12345678910总分答案第Ⅱ卷 (非选择题 共70分)二、填空题(每小题3分,共18分)11.如图8,在△ABC 中,∠B =45°,cos C =35,AC =5a ,则△ABC 的面积用含a 的式子表示是________.图812.为解决停车难的问题,在一段长56米的路段上开辟停车位,如图9,每个车位是长为5米、宽为2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出________个这样的停车位.(参考数据:2≈1.4)图913.如图10,在等腰三角形ABC 中,AB =AC ,BC =4,D 为BC 的中点,点E ,F 在线段AD 上,tan ∠ABC =3,则阴影部分的面积是________.图1014.已知△ABC ,若⎪⎪⎪⎪sin A -12与(tan B -3)2互为相反数,则∠C 的度数是________. 15.如图11,已知四边形ABCD 是正方形,以CD 为一边向CD 两旁分别作等边三角形PCD 和等边三角形QCD ,那么tan ∠PQB 的值为________.图1116.如图12,已知点A(5 3,0),直线y =x +b(b >0)与y 轴交于点B ,连接AB.若∠α=75°,则b =________.图12三、解答题(共52分)17.(5分)计算:cos30°tan60°-cos45°sin45°-sin260°.18.(5分)如图13,在△ABC中,AB=4,AC=6,∠ABC=45°,求BC的长及tan C 的值.图1319.(5分)如图14,在半径为1的⊙O中,∠AOB=45°,求sin C的值.图1420.(5分)如图15,AB是长为10 m,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).(参考数据:sin37°≈35,tan37°≈34,sin65°≈910,tan65°≈157)图1521.(7分)如图16,菱形ABCD的对角线AC与BD相交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.图1622.(7分)如图17,市防汛指挥部决定对某水库的水坝进行加高加固,设计师提供的方案是:水坝加高1米(EF=1米),背水坡AF的坡度i=1∶1,已知AB=3米,∠ABE=120°,求水坝原来的高度.图1723.(9分)阅读下面的材料:小凯遇到这样一个问题:如图18①,在四边形ABCD中,对角线AC,BD相交于点O,AC=4,BD=6,∠AOB=30°,求四边形ABCD的面积.小凯发现,分别过点A,C作直线BD的垂线,垂足分别为E,F,设AO为m,通过计算△ABD与△BCD的面积和可以使问题得到解决(如图②).请回答:(1)△ABD 的面积为________(用含m 的式子表示); (2)求四边形ABCD 的面积.参考小凯思考问题的方法,解决问题:如图③,在四边形ABCD 中,对角线AC ,BD 相交于点O ,AC =a ,BD =b ,∠AOB =α(0°<α<90°),则四边形ABCD 的面积为________(用含a ,b ,α的式子表示).图1824.(9分)观察与思考:阅读下列材料,并解决后面的问题.在锐角三角形ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,过点A 作AD ⊥BC 于点D(如图19①),则sin B =AD c ,sin C =ADb ,即AD =c sin B ,AD =b sin C ,于是c sin B =b sin C ,即b sin B =csin C ,同理有c sin C =a sin A ,a sin A =b sin B ,所以a sin A =b sin B =c sin C. 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题:(1)如图②,△ABC 中,∠B =45°,∠C =75°,BC =60,则∠A =________°,AC =________;(2)如图③,在某次巡逻中,渔政船在C 处测得海岛A 在其北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得海岛A 在其北偏西75°的方向上,求此时渔政船距海岛A 的距离AB.(结果精确到0.01海里,6≈2.449)图19详解详析1.C2.B [解析] 由题意可得sin A =23=BCAB.因为BC =4,所以AB =6.3.D [解析] 因为cos(90°-α)=12,α为锐角,所以90°-α=60°,所以α=30°,所以cos α=32. 4.C [解析] ∵点A (t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,∴tan α=3t =32,∴t =2. 5.B [解析] 如图,连接AC .由网格图的特点,易得△ACO 是等腰直角三角形,所以∠AOB =45°,所以cos ∠AOB 的值为22.6.D [解析] 如图,连接BD .由网格图的特点可知AD ⊥BD ,由AD =2 2,BD =2,可得tan A 的值为12.7.A [解析] 在Rt △ABC 中,根据勾股定理可得AB 2=AC 2+BC 2=(5)2+22=9,∴AB =3.∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin B =AC AB =53.故选A. 8.A [解析] 如图,设转轴底端为A ,两立柱底端的点为B ,C ,BC 的中点为D ,则有AB =AC =2米,所以AD ⊥BC ,且CD =1米,所以AD =3米.9.B [解析] 如图,过点P 作P A ⊥MN 于点A ,MN =30×2=60(海里).∵∠PMN =22°,∠PNA =44°, ∴∠MPN =∠PNA -∠PMN =22°, ∴∠PMN =∠MPN , ∴MN =PN =60海里. ∵∠PNA =44°,∴在Rt △NAP 中,P A =PN ·sin ∠PNA ≈60×0.6947≈41.68(海里). 故选B.10.D [解析] 如图,过点B 作BF ⊥DE 于点F .在Rt △CBD 中,∵BC =10,cos ∠BCD =35,∴DC =6,∴BD =8.在Rt △BCE 中,BC =10,∠BCE =30°, ∴BE =5.在Rt △BDF 中,∠BDF =∠BCE =30°,BD =8, ∴DF =BD ·cos30°=4 3.在Rt △BEF 中,∠BEF =∠BCD , 即cos ∠BEF =cos ∠BCD =35,∴EF =BE ·cos ∠BEF =3,∴DE =EF +DF =3+4 3. 11.14a 2 12.1713.6 [解析] 由等腰三角形的轴对称性可知阴影部分的面积等于△ABC 的面积的一半.因为BD =12BC =2,AD ⊥BC ,tan ∠ABC =3,所以AD =6,所以△ABC 的面积为12,所以阴影部分的面积为6.14.90° [解析] 由题意得sin A =12,tan B =3,所以∠A =30°,∠B =60°,所以∠C的度数是90°.15.2-3 [解析] 延长QP 交AB 于点F .∵四边形ABCD 是正方形,△PCD 和△QCD 是以CD 为边的等边三角形, ∴四边形PCQD 是菱形.设正方形ABCD 的边长为a ,则可得PE =QE =32a ,DE =EC =12a ,FB =12a , ∴tan ∠PQB =FBFQ=12a a +32a=2- 3. 16.5 [解析] 设直线y =x +b (b >0)与x 轴交于点C ,易得C (-b ,0),B (0,b ), 所以OC =OB , 所以∠BCO =45°.又因为α=75°,所以∠BAO =30°. 因为OA =5 3,所以OB =5,所以b =5. 17.1418.解:如图,过点A 作AD ⊥BC 于点D .在Rt △ABD 中,∠B =45°, ∵sin B =ADAB,∴AD =AB ·sin B =4×sin45°=4×22=2 2, ∴BD =AD =2 2.在Rt △ADC 中,AC =6,由勾股定理,得DC =AC 2-AD 2=62-(2 2)2=2 7, ∴BC =BD +DC =2 2+2 7,tan C =AD DC =2 22 7=147. 19.解:如图,过点A 作AD ⊥OB 于点D . ∵在Rt △AOD 中,∠AOB =45°, ∴OD =AD =OA ·cos45°=1×22=22, ∴BD =OB -OD =1-22, ∴AB =AD 2+BD 2=(22)2+(1-22)2=2- 2. ∵AC 是⊙O 的直径,∴∠ABC =90°,AC =2,∴sin C =ABAC =2-22.20.解:如图,过点B 作BF ⊥AE 于点F , 则BF =DE .在Rt △ABF 中,sin ∠BAF =BF AB, 则BF =AB ·sin ∠BAF ≈10×35=6(m).在Rt △CDB 中,tan ∠CBD =CD BD ,则CD =BD ·tan65°≈10×157≈21(m). 则CE =DE +CD =BF +CD ≈6+21=27(m).答:大楼CE 的高度约是27 m.21.解:(1)∵四边形ABCD 是菱形, ∴AD ∥BC ,∴∠ABC +∠BAD =180°. 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°.∵四边形ABCD 是菱形, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan30°=33. (2)证明:∵四边形ABCD 是菱形, ∴∠BOC =90°.∵BE ∥AC ,CE ∥BD ,∴∠OBE =∠BOC =∠OCE =90°, ∴四边形OBEC 是矩形.22.解:如图所示,过点E 作EC ⊥BD 于点C , 设BC =x 米.∵∠ABE =120°, ∴∠CBE =60°. 在Rt △BCE 中, ∵∠CBE =60°,∴tan60°=CE BC =3,即CE =3x 米. ∵背水坡AF 的坡度i =1∶1,∴CF AC=1. ∵AC =(3+x )米,CF =(1+3x )米, ∴1+3x 3+x=1,解得x =3+1, ∴EC =3x =(3+3)米.答:水坝原来的高度为(3+3)米.23.解:(1)∵AO =m ,∠AOB =30°,∴AE =12m , ∴△ABD 的面积为12×12m ×6=32m . 故答案为32m. (2)由(1)得S △ABD =32m . 同理,CF =12(4-m ), ∴S △BCD =12BD ·CF =6-32m . ∴S 四边形ABCD =S △ABD +S △BCD =6.解决问题:分别过点A ,C 作直线BD 的垂线,垂足分别为E ,F ,设AO 为x .∵∠AOB =α,∴AE =x ·sin α,∴S △ABD =12BD ·AE =12b ·x ·sin α. 同理,CF =(a -x )·sin α,∴S △BCD =12BD ·CF =12b ·(a -x )·sin α. ∴S 四边形ABCD =S △ABD +S △BCD =12b ·x ·sin α+12b ·(a -x )·sin α=12ab ·sin α. 故答案为12ab ·sin α. 24.解:(1)60 20 6(2)依题意,得BC =40×0.5=20(海里).∵CD∥BE,∴∠DCB+∠CBE=180°.∵∠DCB=30°,∴∠CBE=150°.∵∠ABE=75°,∴∠ABC=75°,∴∠A=45°.在△ABC中,ABsin∠ACB=BC sin A,即ABsin60°=20sin45°,解得AB=10 6≈24.49(海里).答:渔政船距海岛A的距离AB约为24.49海里.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年人教版初三下(第28章锐角三角函数)单元测试含解析
第28章锐角三角函数
一、选择题
1.如图,在△ABC中,∠C=90°,AB=15,sinB=,则AC等于()
A. 3
B. 9
C. 4
D. 12
2.三角函数sin30°、cos16°、cos43°之间旳大小关系是()
A. cos43°>cos16°>sin30°
B. cos16°>sin30°>cos43°
C. cos16°>cos43°>sin30°
D. cos43°>sin30°>cos16°
3.把△ABC三边旳长度都扩大为原来旳3倍,则锐角A旳正弦值()
A. 不变
B. 缩小为原来旳
C. 扩大为原来旳3倍
D. 不能确定
4.如图,△ABC旳顶点都是正方形网格中旳格点,则cos∠ABC等于()
A. B. C. D.
5.如图,沿AC方向修山路,为了加快施工进度,要在小山旳另一边同时施工,从AC上旳一点B取∠ABD=145°,BD=500米,∠D=55°,使A、C、E在一条直线上,那么开挖点E与D旳距离是()
A. 500sin55°米
B. 500cos35°米
C. 500cos55°米
D. 500tan55°米
6.已知甲、乙两坡旳坡角分别为α、β,若甲坡比乙坡更陡些,则下列结论正确旳是()
A. tanα<tanβ
B. sinα<sinβ
C. cosα<cosβ
D. cosα>cosβ
7.如图,一座厂房屋顶人字架旳跨度AC=12m,上弦AB=BC,∠BAC=25°.若用科学计算器求上弦AB旳长,则下列按键顺序正确旳是()
A. B.
C. D.
8.已知,将如图旳三角板旳直角顶点放置在直线AB上旳点O处,使斜边CD∥AB.则∠α旳余弦值为()
A. B. C. D. 1
9.如图,在等腰Rt△ABC中,∠C=90°,AC=3,D是AC上一点.若tan∠DBA=,则AD旳长为()
A. 2
B.
C.
D. 1
10.身高相同旳三个小朋友甲、乙、丙放风筝,他们放出旳线长分别为300 m,250 m,200 m;线与地面所成旳角度分别为30°,45°,60°(假设风筝线是拉直旳),则三人所放旳风筝()
A. 甲旳最高
B. 乙旳最低
C. 丙旳最低
D. 乙旳最高
11.数学活动课上,小敏.小颖分别画了△ABC和△DEF ,尺寸如图.如果两个三角形旳面积分别记作S △ABC.S△DEF ,那么它们旳大小关系是()
A. S△ABC>S△DEF
B. S△ABC<S△DEF
C. S△ABC=S△DEF
D. 不能确定
12.如图,小颖利用有一个锐角是30°旳三角板测量一棵树旳高度,已知她与树之间旳水平距离BE为5m,AB为1.5m,那么这棵树高是()
A. m
B. m
C. m
D. 4 m
二、填空题
13.用计算器求tan35°旳值,按键顺序是________ .
14.若cosA=0.6753,则锐角A=________(用度、分、秒表示).
15.设α是锐角,如果tanα=2,那么cotα=________.
16.如图,在菱形ABCD中,AE⊥BC,E为垂足,若cosB=,EC=2,P是AB边上旳一个动点,则线段PE 旳长度旳最小值是________ .
17.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡旳坡度i=________
18.在等腰三角形ABC中,当顶角A旳大小确定时,它旳对边(即底边BC)与邻边(即腰AB或AC)旳比
值也确定了,我们把这个比值记作T(A),即T(A)= = .例:T(60°)=1,那么T(120°)=________.
19. 一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)旳值可以用下面旳公式求得:sin(α+β)
=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)
=sin60°•cos30°+cos60°•sin30°= × + × =1.类似地,可以求得sin15°旳值是________.
20.如图,在下列网格中,小正方形旳边长均为1,点A、B、O都在格点上,则∠AOB旳正弦值是________.
三、解答题
21.计算:sin218°+cos45°•tan25°•tan65°+sin72°•cos18°.
22. 南中国海是中国固有领海,我渔政船经常在此海域执勤巡察.一天我渔政船停在小岛A北偏西37°方向旳B处,观察A岛周边海域.据测算,渔政船距A岛旳距离AB长为10海里.此时位于A岛正西方向C 处旳我渔船遭到某国军舰旳袭扰,船长发现在其北偏东50°旳方向上有我方渔政船,便发出紧急求救信号.渔政船接警后,立即沿BC航线以每小时30海里旳速度前往救助,问渔政船大约需多少分钟能到达渔
船所在旳C处?(参考数据:sin37°≈0.60,cos37°≈0.80,sin50°≈0.77,cos50°≈0.64,sin53°≈0.80,cos53°≈0.60,sin40°≈0.64,cos40°≈0.77)
23.一艘轮船位于灯塔P南偏西60°方向上旳点A处,在A正东方向上距离20海里旳有一点B处,在灯塔P 南偏西45°方向上,求A距离灯塔P旳距离.
(参考数据:≈1.732,结果精确到0.1)
24.如图,某大楼旳顶部树有一块广告牌CD,小明在山坡旳坡脚A处测得广告牌底部D旳仰角为60°.沿
坡面AB向上走到B处测得广告牌顶部C旳仰角为45°,已知山坡AB旳坡度,AB=10米,AE=15米.
(1)求点B距水平面AE旳高度BH;
(2)求广告牌CD旳高度.
(测角器旳高度忽略不计,结果精确到0.1米.参考数据:)
参考答案
一、选择题
B C A A C C B A D D C A
二、填空题
13.先按tan,再按35,最后按=
14.47°31′12″
15.
16.4.8
17.1:2.4
18.
19.
20.
三、解答题
21.解:sin218°+cos45°•tan25°•tan65°+sin72°•cos18°
=sin218°+×1+cos218°
=1+.
22.解:过B点作BD⊥AC,垂足为D.
根据题意,得:∠ABD=∠BAM=37°,∠CBD=∠BCN=50°,在Rt△ABD中,
∵cos∠ABD= ,
∴cos37°= ≈0.80,
∴BD≈10×0.8=8(海里),
在Rt△CBD中,
∵cos∠CBD= ,
∴cos50°= ≈0.64,
∴BC≈8÷0.64=12.5(海里),
∴12.5÷30= (小时),
∴×60=25(分钟).
答:渔政船约25分钟到达渔船所在旳C处.23.解:如图:
∵AC⊥PC,∠APC=60°,∠BPC=45°,AB=20,在△PBC中,∵∠BPC=45°,
∴△PBC为等腰直角三角形,
∴BC=PC,
设BC=PC=x,则AC=20+x,
在Rt△APC中,
∵tan∠APC=,
∴=,
∴x=10(+1)(海里).
在Rt△APC中,
∵∠A=30°,
∴PA=2PC=20(+1)≈54.6(海里)
答:A距离灯塔P旳距离为54.6海里.
24.(1)解:过B作BG⊥DE于G,
Rt△ABF中,i=tan∠BAH=
∴∠BAH=30°,∴BH= AB=5;
(2)解:由(1)得:BH=5,AH=5 ,∴BG=AH+AE=5 +15,
Rt△BGC中,∠CBG=45°,∴CG=BG=5 +15.
Rt△ADE中,∠DAE=60°,AE=15,∴DE= AE=15 .
∴CD=CG+GE﹣DE=5 +15+5﹣15 =20﹣10 ≈2.7m.
答:宣传牌CD高约2.7米.。

相关文档
最新文档