解析几何题型与方法(理科)(好,好)

合集下载

高考复习中解析几何题型分析及解法梳理

高考复习中解析几何题型分析及解法梳理

一、解析几何题型分析:
1. 直线问题:主要考察直线的性质及其特征,如平行、垂直、中心弦定理等。

2. 圆形问题:主要考察圆形的性质及其特征,如圆心角定理、外切内接定理等。

3. 正多面体问题:主要考察正多面体的性质及其特征,如三角形内心定理、四面体最大最小化原理等。

4. 三角形问题:主要考察三角形的性质及其特征,如勾股定理、海伦-泰勒斯定理等。

5. 几何评价法问题: 主要是透过几何图型来评价各部分之间的大小或者数量上的差异,例如由于不同图彩之间存在一些明显差异,所以能够根据这些差异来作出正确判断或者作出正确估测。

二、解法收拾:
1. 第一步应该是将所有信息数字化,即将所有信息由文字表述方式数字化;
2. 第二步应该是根据所数字化后的信息来选用适合的几何方法;
3. 第三步应该是根据前两部中所使用方法来进行相应的代数或者几何运算;
4. 最后一步应该是核对并汇总前三部中所得到的信息,然后作出最合适书写样子上呈上。

高考数学:解析几何常考题型及解题方法汇总(含详解),

高考数学:解析几何常考题型及解题方法汇总(含详解),

相信很多同学都知道,解析几何其实并不难,解题思路也相对简单,但是它却折磨着大多数的考生们!
为什么?因为它的计算量实在是太大了,想找个简单快捷的方法去做都是很不容易的一件事。

在高考数学中,解析几何属于必考题,而且其所占的分值和函数也相差不大,都是在3 0分左右,但是它并没有像函数压轴题一样,让人看了就想放弃。

但是只要找对方法,你会发现其实解析几何也没有想象中的那么折磨人,而且出乎意料的简单。

今天,学长就为同学们整理了高考数学中解析几何的热点常考题和解题方法的汇总,希望同学们好好把握,在高考中取得一个更好的成绩!
需要电子打印版的同学可以私信发送,解析几何,就可以打印出来了!用起来超方便!!!。

解析几何常规题型及解题的技巧方法

解析几何常规题型及解题的技巧方法

解析几何常规题型及解题的技巧方法(1)中点弦问题1.给定双曲线xy2221-=。

过A(2,1)的直线与双曲线交于两点P1及P2,求线段P1P2的中点P的轨迹方程。

(2)直线与圆锥曲线位置关系问题2.设椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,过原点O斜率为1的直线与椭圆C相交于M,N两点,椭圆右焦点F到直线l的距离为 2. (1)求椭圆C的方程;(2)设P是椭圆上异于M,N外的一点,当直线PM,PN的斜率存在且不为零时,记直线PM的斜率为k1,直线PN 的斜率为k2,试探究k1·k2是否为定值?若是,求出定值;若不是,说明理由.(3)圆锥曲线的有关最值(范围)问题3.设双曲线x 2-y 23=1的左右焦点分别为F 1、F 2,P 是直线x =4上的动点,若∠F 1PF 2=θ,则θ的最大值为________.4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点为F 1,F 2,椭圆上一点M ⎝ ⎛⎭⎪⎫263,33满足MF 1→·MF 2→=0. (1)求椭圆的方程; (2)若直线L :y =kx +2与椭圆恒有不同交点A 、B ,且OA →·OB →>1(O 为坐标原点),求k 的取值范围.5.直线m :y=kx+1和双曲线x 2-y 2=1的左支交于A 、B 两点,直线l 过点P (-2,0)和线段AB 的中点,则直线l 在y 轴上的截距b 的取值范围为(4)求曲线的方程问题6.已知双曲线的两个焦点为F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是( )7.设椭圆的中心是坐标原点,长轴x 在轴上,离心率23=e ,已知点)23,0(P 到这个椭圆上的最远距离是7,求这个椭圆的方程.8.已知两点M (-1,0),N (1,0)且点P 使NP NM PN PM MN MP ⋅⋅⋅,,成公差小于零的等差数列,(1)点P 的轨迹是什么曲线?(2)若点P 坐标为),(00y x ,θ为PN PM 与的夹角,求tan θ.(5) 存在两点关于直线对称问题在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。

解析几何题型及解题方法总结

解析几何题型及解题方法总结

解析几何题型及解题方法总结
题型:1、求曲线方程(类型确定、类型未定);2、直线与圆锥曲线的
交点题目(含切线题目);3、与曲线有关的最(极)值题目;4、与曲线有关
的几何证实(对称性或求对称曲线、平行、垂直);5、探求曲线方程中几
何量及参数间的数目特征。

解题方法:
1、紧密结合代数知识解题:“求到两定点的距离之比等于常数的点
的轨迹”问题的求解过程中,取平面直角坐标系,使两定点的连线为x轴,且连线段的中点为原点,并设两定点的距离为2b,则两定点分别为M(b,0)N(-b,0),N(x,y)是轨迹上任意一点,常数为n,最终得到轨迹
方程(n2-1)(x2+y2)+2b(n2+1))x+b2(n2-1)=0。

2、充分利用几何图形性质简化解题过程:在对曲线轨迹方程求解的
过程中,通过几何条件,可以对轨迹的曲线类型进行判断,然后通过待定
系数法来求解。

3、用函数(变量)的观点来解决问题:对于解析几何问题而言,由
于线或点发生改变,从而导致图形中其他量的改变,这样类型的题目,往
往可以使用函数的观点来求解。

例如,在次全国高中数学竞赛题中,已知
抛物线y2=6x上的2个动点A(x1,y1)和B(x2,y2),其中x1≠x2且
1+2=4。

线段AB的垂直平分线与x轴交于点C,求AABC面积的最大值。

高考解析几何的题型及思路

高考解析几何的题型及思路

高考解析几何的题型及思路解析几何是必考的,常作为压轴题,特点是计算量大。

不过解几题其实很有规律性,解题思路并不难掌握,就是要用代数方法(方程、函数、不等式的思想和方法)研究几何问题,而数形结合思想(主要是利用定义或平面几何知识分析问题)是减少解几综合题计算量的主要手段。

常见的类型题有:(1)、求曲线(动点)的方程:若曲线类型已知,用待定系数法列方程组求解即可。

若给出了单个动点满足的条件,可先判断其是否符合某种曲线的定义,符合即可用待定系数求解,否则用直接法求解。

若条件有两个动点,一般用代入法求解;若条件有三个以上的动点,一般用参数法求解。

(2)求参数或曲线的特征量(如a、b、c、p、离心率、斜率、倾角、面积等)的值。

这类题要用到方程思想求解,即想办法把题目的条件(等量关系)转化为所求变量的方程(组)解之。

(3)求参数或几何量(如角、面积、斜率)的取值范围的问题。

主要是利不等式法或函数法求解。

其中判别式是列不等式的一个重要途径。

通常用韦达定理或题目给出的其它条件来列出变量间的等量关系,再把等量关系代入判别式消元化简解出相关参数的范围。

或利用韦达定理或其它等量关系建立变量间的关系式,把所求变量表示为其它变量的函数,利用求函数值域的方法确定变量的取值范围。

这个函数的定义域通常由判别式或其它条件确定。

(4)直(曲)线过定点问题:关键是求出直(曲)线的方程,当然这个方程必定含有一个参数。

求出方程后观察什么定点的坐标满足。

若观察不出,只要令参数取两个特殊值,然后把得到的两条具体的直(曲)线求交点即得所求定点。

(5)证明定值:证某个式子为定值,即是要求出这个式子的值是什么。

把条件转化为相关的方程(组),消去其中的参数即得。

(6)探索性(存在性)问题:通常转化为对方程根的存在性的讨论。

▲注意向量与解析几何的密切联系.由于向量具有几何形式和代数形式的“双重身份”,使向量与解析几何之间有着密切联系,大量的解析几何问题都是以向量作为背景编拟的;▲判别式和韦达定理是解决以直线和圆锥曲线的位置关系为背景的综合问题的必用工具。

高考数学复习解析几何的题型及方法

高考数学复习解析几何的题型及方法

2019高考数学复习解析几何的题型及方法作者:佚名知识整合高考中解析几何试题一般共有4题(2个选择题,1个填空题,1个解答题),共计30分左右,考查的知识点约为20个左右。

其命题一般紧扣课本,突出重点,全面考查。

选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。

解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法,这一点值得强化。

1。

能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了。

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。

我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。

看得清才能说得正确。

在观察过程中指导。

我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。

有的孩子说“乌云跑得飞快。

”我加以肯定说“这是乌云滚滚。

”当幼儿看到闪电时,我告诉他“这叫电光闪闪。

”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。

”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。

雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。

高考理科数学解析几何题型与方法

高考理科数学解析几何题型与方法

F1(- c , 0), F2(c , 0)
F1(0 ,- c) , F2(0 , c)
|F1F2|= 2c(c > 0), c2 = a2 + b2
c
e= (e>1)
a
2
2
a
a
l 1:x=- ; l 2:x=
c
c
2
2
a
a
l1: y=- ;l2 : y=
c
c
y=±
b x( 或 a
x2 a2

y2 b2
4. 直线与圆锥曲线的位置关系:(在这里我们把圆包括进来)
(1). 首先会判断直线与圆锥曲线是相交、相切、还是相离的
a. 直线与圆:一般用点到直线的距离跟圆的半径相比
b. 直线与椭圆、双曲线、抛物线一般联立方程,判断相交、相切、相离
c. 直线与双曲线、抛物线有自己的特殊性
(2).a. 求弦所在的直线方程
2
y b2
1 的两焦点分别为
F1 ,F 2, P 为椭圆任意一点 ,当∠ F 1PF 2 最大时 ,
P 为短轴端点 ;
③椭圆上的点到焦点的最短距离为 a-c; 椭圆上的点到焦点的最长距离为 a+c
(2) 双曲线
a. 定义 定义 1:平面内与两个定点 F 1、F2 的距离的差的绝对值等于常数 (小于 |F 1F 2|)的点的
a2
a2
切线方程
(k 为切线斜率 )
b
b
k > 或 k<-
x0x
a -
y0y
a =1
a2
b2
(k 为切线斜率 )
a
a
k> 或k <-
y0 y
b -
x 0x

高考专题:解析几何常规题型及方法

高考专题:解析几何常规题型及方法

高考专题:解析几何常规题型及方法一、高考风向分析:高考解析几何试题一般共有3--4题(1--2个选择题, 0--1个填空题, 1个解答题), 共计20多分, 考查的知识点约为20个左右,其命题一般紧扣课本, 突出重点, 全面考查。

选择题和填空题考查直线, 圆, 圆锥曲线中的基础知识,大多概念性较强,小巧灵活,思维多于计算;而解答题重点考查圆锥曲线中的重要知识点及其综合运用,重在考察直线与圆锥曲线的位置关系、轨迹方程,以向量为载体,立意新颖,要求学生综合运用所学代数、三角、几何的知识分析问题,解决问题。

二、本章节处理方法建议:纵观历年全国各省市文、理高考试卷,普遍有一个规律:占解几分值接近一半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一半偏上的解答题得分很不理想,其原因主要体现在以下几个方面:(1)解析几何是代数与几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向量等知识,形成了轨迹、最值、对称、范围、参系数等多种问题,因而成为高中数学综合能力要求最高的内容之一(2)解析几何的计算量相对偏大(3)在大家的“拿可拿之分”的理念下,大题的前三道成了兵家必争之地,而排放位置比较尴尬的第21题或22题(有时20题)就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比较普遍。

鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几内容弹性很大。

有容易题,有中难题。

因此在复习中基调为狠抓基础。

不能因为高考中的解几解答题较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻下,将时间用在巩固基础、对付“跳一跳便可够得到”的常规题上,这样复习,高考时就能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几分算几分。

三、高考核心考点1、准确理解基本概念(如直线的倾斜角、斜率、距离、截距等)2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等)3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等)4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性规划的意义及简单应用6、熟悉圆锥曲线中基本量的计算7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等)8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题四、常规题型及解题的技巧方法A:常规题型方面(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008届二轮专题复习:解析几何题型与方法(理科)一、考点回顾 1.直线(1).直线的倾斜角和斜率直线的斜率是一个非常重要的概念,斜率k 反映了直线相对于x 轴的倾斜程度.当斜率k 存在时,直线方程通常用点斜式或斜截式表示,当斜率不存在时,直线方程为x=a (a ∈R ).因此,利用直线的点斜式或斜截式方程解题时,斜率k 存在与否,要分别考虑. (2) .直线的方程a.点斜式:)(11x x k y y -=-;b.截距式:b kx y +=;c.两点式:121121x x x x y y y y --=--; d.截距式:1=+b ya x ; e.一般式:0=++C By Ax ,其中A 、B 不同时为0. (3).两直线的位置关系两条直线1l ,2l 有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交. 设直线1l :y =1k x +1b ,直线2l :y =2k x +2b ,则1l ∥2l 的充要条件是1k =2k ,且1b ≠2b ;1l ⊥2l 的充要条件是1k 2k =-1.(4).简单的线性规划.a.线性规划问题涉及如下概念:①存在一定的限制条件,这些约束条件如果由x 、y 的一次不等式(或方程)组成的不等式组来表示,称为线性约束条件.②都有一个目标要求,就是要求依赖于x 、y 的某个函数(称为目标函数)达到最大值或最小值.特殊地,若此函数是x 、y 的一次解析式,就称为线性目标函数.③求线性目标函数在线性约束条件下的最大值或最小值问题,统称为线性规划问题. ④满足线性约束条件的解(x ,y )叫做可行解. ⑤所有可行解组成的集合,叫做可行域.⑥使目标函数取得最大值或最小值的可行解,叫做这个问题的最优解. b.线性规划问题有以下基本定理:①一个线性规划问题,若有可行解,则可行域一定是一个凸多边形. ② 凸多边形的顶点个数是有限的.③ 对于不是求最优整数解的线性规划问题,最优解一定在凸多边形的顶点中找到. C.线性规划问题一般用图解法. 2. 圆(1).圆的定义:平面内到定点等于定长的点的集合(或轨迹)。

(2).圆的方程 a.圆的标准方程222)()(r b y a x =-+-(r >0),称为圆的标准方程,其圆心坐标为(a ,b ),半径为r.特别地,当圆心在原点(0,0),半径为r 时,圆的方程为222r y x =+. b.圆的一般方程022=++++F Ey Dx y x (F E D 422-+>0)称为圆的一般方程,其圆心坐标为(2D -,2E -),半径为F E D r 42122-+=. 当F E D 422-+=0时,方程表示一个点(2D -,2E -);当F E D 422-+<0时,方程不表示任何图形. c.圆的参数方程圆的普通方程与参数方程之间有如下关系: 222r y x =+ ⇔ cos sin x r y r θθ=⎧⎨=⎩ (θ为参数)222)()(r b y a x =-+- ⇔ c o s s i n x a ry b r θθ=+⎧⎨=+⎩(θ为参数)(3).直线与圆3.圆锥曲线 (1).椭圆 a.定义定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点).定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常数=<<时,这个点的轨迹是椭圆.e (0e 1)cab.图形和标准方程图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0)821(a b 0)x a y b x b y a 22222222c.几何性质d.常用结论①过椭圆22221x ya b+=的焦点的弦AB长的最大值为2a, (长轴);最小值为22ba(过焦点垂直长轴的弦)②设椭圆22221x ya b+=的两焦点分别为F1,F2, P为椭圆任意一点,当∠F1PF2最大时,P为短轴端点;③椭圆上的点到焦点的最短距离为a-c;椭圆上的点到焦点的最长距离为a+c(2)双曲线a.定义定义1:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点).b.图形和标准方程图8-3的标准方程为:x ayb2222-=>,>1(a0b0)图8-4的标准方程为:y axb2222-=>,>1(a0b0)c.几何性质d.常用结论①过双曲线22221x ya b-=的焦点的弦AB长的最小值为2a (A,B分别在两支上) ,最小值为22b a(A,B 在同一支上且过焦点垂直实轴的弦) ②双曲线的2222(0)x y a b λλ-=≠的渐近线方程为22220x y a b-=③双曲线上的点到焦点的最短距离为c-a(3).抛物线 a.定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.b.抛物线的标准方程,类型及几何性质,见下表:①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离. ②p 的几何意义:焦点F 到准线l 的距离.③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k|x x ||y y |2121-=-112+k焦点弦长公式:|AB|=p +x 1+x 2c.常用结论①过抛物线y 2=2px 的焦点F 的弦AB 长的最小值为2p②设A(x 1,y), 1B(x 2,y 2)是抛物线y 2=2px 上的两点, 则AB 过F 的充要条件是y 1y 2=-p 2 ③设A, B 是抛物线y 2=2px 上的两点,O 为原点, 则OA ⊥OB 的充要条件是直线AB 恒过定点(2p,0)(4).圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线.4. 直线与圆锥曲线的位置关系:(在这里我们把圆包括进来) (1).首先会判断直线与圆锥曲线是相交、相切、还是相离的 a.直线与圆:一般用点到直线的距离跟圆的半径相比b.直线与椭圆、双曲线、抛物线一般联立方程,判断相交、相切、相离c.直线与双曲线、抛物线有自己的特殊性 (2).a.求弦所在的直线方程b.根据其它条件求圆锥曲线方程(3).已知一点A 坐标,一直线与圆锥曲线交于两点P 、Q ,且中点为A ,求P 、Q 所在的直线方程(4).已知一直线方程,某圆锥曲线上存在两点关于直线对称,求某个值的取值范围(或者是圆锥曲线上否存在两点关于直线对称)5.二次曲线在高考中的应用二次曲线在高考数学中占有十分重要的地位,是高考的重点、热点和难点。

通过以二次曲线为载体,与平面向量、导数、数列、不等式、平面几何等知识进行综合,结合数学思想方法,并与高等数学基础知识融为一体,考查学生的数学思维能力及创新能力,其设问形式新颖、有趣、综合性很强。

本文关注近年部分省的高考二次曲线问题,给予较深入的剖析,这对形成高三复习的新的教学理念将有着积极的促进作用。

(1).重视二次曲线的标准方程和几何性质与平面向量的巧妙结合。

(2).重视二次曲线的标准方程和几何性质与导数的有机联系。

(3).重视二次曲线性质与数列的有机结合。

(4).重视解析几何与立体几何的有机结合。

6.知识网络二、经典例题剖析(根据近几年高考命题知识点及热点做相应的试题剖析,要求例题不得少于8个) 考点一 曲线(轨迹)方程的求法 常见的求轨迹方程的方法:(1)单动点的轨迹问题——直接法(五步曲)+ 待定系数法(定义法); (2)双动点的轨迹问题——代入法;(3)多动点的轨迹问题——参数法 + 交轨法。

曲线与方程直线 直线的倾斜角和斜率 点斜式 两点式一般式 直线方程的基本形式 在线外——点到直线的距离在线上 点和直线的位置关系相交两条直线的位置关系 平行 重合交点 夹角 简单的线性规划二元一次不等式表示平面区域 线性规划 线性规划的实际应用垂直 圆 圆的定义 圆的方程 标准式 一般式 参数式 点与圆的位置关系位置关系 判定方法:点到圆心的距离与半径R 的比较圆内圆外 圆上 圆与圆的位置关系 外切、相交、内切、内含 应用两立方程的解式圆心点与两半径和(差)比较 位置关系 判定方法:圆心距离与两半径和(差)的比较直线与圆的位置关系相交 相切——圆的切线相等 交点 位置关系判定方法:圆心到直线的距离d 与半径R 的比较 圆锥曲线——椭圆、曲线、直线—定义—标准方程 性质:对称性、焦点、顶点、 离率、准线、焦半径等 直线与圆锥曲线的位置关系1. (哈九中) 设)0(1),(),,(22222211>>=+b a bx x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅a y b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点. (1)求椭圆的方程;(2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值; (3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 解析:本例(1)通过e =22b =,及,,a b c 之间的关系可得椭圆的方程;(2)从方程入手,通过直线方程与椭圆方程组成方程组并结合韦达定理;(3)要注意特殊与一般的关系,分直线的斜率存在与不存在讨论。

答案:(1)2 2.1, 2.c b b e a e a =====⇒==椭圆的方程为1422=+x y (2)设AB 的方程为3+=kx y由41,4320132)4(1432212212222+-=+-=+=-++⇒⎪⎩⎪⎨⎧=++=k x x k k x x kx x k x y kx y 由已知43)(43)41()3)(3(410212122121221221++++=+++=+=x x k x x k kx kx x x a y y b x x±=++-⋅++-+=k k k k k k 解得,4343243)41(44222 2(3)当A 为顶点时,B 必为顶点.S △AOB =1 当A ,B 不为顶点时,设AB 的方程为y=kx+b42042)4(1422122222+-=+=-+++⇒⎪⎩⎪⎨⎧=++=k kb x x b kbx x k x y bkx y 得到 442221+-=k b x x:04))((0421212121代入整理得=+++⇔==b kx b kx x x y y x x4222=+k b 41644|||4)(||21||||212222122121++-=-+=--=k b k b x x x x b x x b S 1||242==b k 所以三角形的面积为定值.点评:本题考查了直线与椭圆的基本概念和性质,二次方程的根与系数的关系、解析几何的基本思想方法以及运用综合知识解决问题的能力。

相关文档
最新文档