离散数学试题及答案

合集下载

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 在集合论中,下列哪个选项表示两个集合A和B的并集?A. A ∩ BB. A ∪ BC. A - BD. A × B答案:B2. 命题逻辑中,下列哪个符号表示逻辑非?A. ∧B. ∨C. ¬D. →答案:C3. 在有向图中,如果存在一条从顶点u到顶点v的路径,那么称顶点v为顶点u的:A. 祖先B. 后代C. 邻居D. 连接点答案:B二、填空题1. 一个命题函数P(x)表示为“x是偶数”,那么其否定形式为________。

答案:x是奇数2. 在关系R上,如果对于所有的a和b,如果(a, b)∈R且(b, a)∈R,则称R为________。

答案:自反的三、简答题1. 简述什么是等价关系,并给出其三个基本性质。

答案:等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。

自反性指每个元素都与自身相关;对称性指如果a与b相关,则b也与a相关;传递性指如果a与b相关,b与c相关,则a与c也相关。

2. 解释什么是图的连通分量,并给出如何判断一个图是否是连通图。

答案:连通分量是指图中最大的连通子图,即图中任意两个顶点之间都存在路径。

判断一个图是否是连通图,可以通过深度优先搜索或广度优先搜索算法遍历整个图,如果所有顶点都被访问,则图是连通的。

四、计算题1. 给定命题公式P:((p → q) ∧ (r → ¬p)) → (q ∨ ¬r),证明P是一个重言式。

答案:通过使用命题逻辑的等价规则和真值表,可以证明P在所有可能的p, q, r的真值组合下都为真,因此P是一个重言式。

2. 给定一个有向图G,顶点集合V(G)={1, 2, 3, 4},边集合E(G)={(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}。

找出所有强连通分量。

答案:通过Kosaraju算法或Tarjan算法,可以找到图G的强连通分量,结果为{1, 4}和{2, 3}。

《离散数学》试题及答案

《离散数学》试题及答案

《离散数学》试题及答案一、选择题(每题5分,共25分)1. 设集合A={1,2,3,4,5},B={2,4,6,8,10},则A∩B的结果是()A. {1,2,3,4,5}B. {2,4}C. {1,3,5}D. {1,2,3,4,5,6,8,10}答案:B2. 下列关系中,哪个是等价关系?()A. ≤B. ≠C. |D. ≠答案:A3. 设图G有5个顶点,每两个顶点之间都有一条边相连,则图G的边数是()A. 5B. 10C. 15D. 20答案:C4. 下列哪一个图是欧拉图?()A. 无向图B. 有向图C. 树D. 环答案:D5. 下列哪一个命题是正确的?()A. 若p→q为真,则p为真B. 若p∧q为假,则p为假C. 若p∨q为真,则q为真D. 若p→q为假,则p为假答案:B二、填空题(每题5分,共25分)1. 设集合A={a,b,c,d},B={c,d,e},则A-B=________。

答案:{a,b}2. 设p是命题“今天是晴天”,q是命题“我去公园玩”,则命题“如果今天不是晴天,那么我不去公园玩”可以表示为________。

答案:¬p→¬q3. 设图G有n个顶点,e条边,则图G的度数之和为________。

答案:2e4. 一个连通图至少有________个顶点。

答案:25. 设图G的邻接矩阵为A,则A的转置矩阵表示________。

答案:图G的转置图三、判断题(每题5分,共25分)1. 离散数学是研究离散结构的数学分支。

()答案:正确2. 两个集合的笛卡尔积是这两个集合的直积。

()答案:正确3. 有向图中,顶点u和顶点v之间的长度为2的路径是指路径上有3条边。

()答案:错误4. 树是一种无向图。

()答案:正确5. 哈夫曼编码是一种贪心算法。

()答案:正确四、应用题(每题25分,共50分)1. 设集合A={1,2,3,4,5},B={2,4,6,8,10},C={3,6,9,12,15},求A∪(B∩C)。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题3分,共30分)1. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A∩B是()A. {1, 2, 3, 4, 5}B. {2, 4}C. {1, 3, 5}D. {2, 4, 6, 8}2. 下列关系中,哪个是等价关系?()A. 小于关系B. 大于等于关系C. 模2同余关系D. 整除关系3. 设P(x)是谓词逻辑公式,下列哪个命题与∀xP(x)等价?()A. ∃x¬P(x)B. ¬∀xP(x)C. ¬∃xP(x)D. ∃x¬P(x)4. 一个图的欧拉回路是指()A. 经过每一条边的路径B. 经过每一个顶点的路径C. 经过每一条边的环D. 经过每一个顶点的环5. 设G是一个无向图,下列哪个说法是正确的?()A. G的每个顶点的度数都相等B. G的每个顶点的度数都不相等C. G的任意两个顶点之间都有一条边D. G的任意两个顶点之间都不一定有边6. 下列哪个图是哈密顿图?()A. K3,3B. K5C. K4,4D. K67. 设G是一个具有n个顶点的连通图,则G的最小生成树至少包含()A. n个顶点B. n-1条边C. n+1条边D. 2n条边8. 下列哪个算法可以用来求解最短路径问题?()A. Dijkstra算法B. Kruskal算法C. Prim算法D. Floyd算法9. 设P和Q是两个命题,下列哪个命题与(P→Q)∧(Q→P)等价?()A. P∧QB. P∨QC. P↔QD. ¬P∨¬Q10. 设A是一个有限集合,A的幂集是指()A. A的所有子集B. A的所有真子集C. A的所有非空子集D. A的所有非空真子集二、填空题(每题3分,共30分)11. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A-B=______。

12. 设P(x)是谓词逻辑公式,∃xP(x)表示“存在一个x使得P(x)成立”,那么∀x¬P(x)表示“______”。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。

答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。

答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。

答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。

答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。

解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。

反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。

由于R是自反的,所以(a, a) ∈ R,与假设矛盾。

因此,R一定是反自反的。

答案完整证明了该结论。

2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。

解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。

所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

(完整版)离散数学试题及答案,推荐文档

(完整版)离散数学试题及答案,推荐文档

11 设 A,B,R 是三个集合,其中 R 是实数集,A = {x | -1≤x≤1, xR}, B = {x | 0≤x < 2, xR},则
A-B = __________________________ , B-A = __________________________ ,
A∩B = __________________________ , . 13. 设集合 A={2, 3, 4, 5, 6},R 是 A 上的整除,则 R 以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式 G = xP(x)xQ(x),则 G 的前束范式是__________________________
二、选择题
1. C. 2. D. 3. B. 4. B.
5. D. 6. C. 7. C.
8. A. 9. D. 10. B. 11. B.
第 5 页 共 18 页
13. {(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}.
14. x(P(x)∨Q(x)). 15. 21.
16. (R(a)∧R(b))→(S(a)∨S(b)). 17. {(1, 3),(2, 2)}; {(1, 1),(1, 2),(1, 3)}.
8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
__________________________,_____________________________,
__________________________.

离散数学习题集(十五套) - 答案

离散数学习题集(十五套) - 答案

离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。

2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。

3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。

4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为。

6.设A={1,2,3,4},A 上关系图为则 R 2 = 。

7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。

8.图的补图为 。

9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c dA BCa b cda b c db c d ac d a bd a b c那么代数系统<A,*>的幺元是,有逆元的元素为,它们的逆元分别为。

10.下图所示的偏序集中,是格的为。

二、选择20% (每小题2分)1、下列是真命题的有()A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。

2、下列集合中相等的有()A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。

3、设A={1,2,3},则A上的二元关系有()个。

A.23 ;B.32 ;C.332⨯;D.223⨯。

4、设R,S是集合A上的关系,则下列说法正确的是()A.若R,S 是自反的,则SR 是自反的;B.若R,S 是反自反的,则SR 是反自反的;C.若R,S 是对称的,则SR 是对称的;D.若R,S 是传递的,则SR 是传递的。

5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下|}||(|)(,|,{tsApt st sR=∧∈><=则P(A)/ R=()A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。

离散考试试题及答案

离散考试试题及答案

离散考试试题及答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念不是布尔代数的基本运算?A. 与B. 或C. 非D. 模答案:D2. 集合论中,下列哪个符号表示“属于”关系?A. ∈B. ∉C. ⊆D. ⊂答案:A3. 命题逻辑中,下列哪个符号表示“蕴含”关系?A. ∧B. ∨C. →D. ↔答案:C4. 关系R在集合A上是自反的,意味着什么?A. 对于所有a∈A,(a, a)∈RB. 对于所有a∈A,(a, a)∉RC. 对于所有a∈A,(a, b)∈RD. 对于所有a∈A,(a, b)∉R答案:A二、填空题(每题5分,共20分)1. 一个集合的基数是集合中元素的________。

答案:数量2. 在有向图中,如果存在一条从顶点u到顶点v的路径,则称顶点v 是顶点u的________。

答案:可达的3. 一个图是连通的,当且仅当图中任意两个顶点都是________。

答案:连通的4. 在命题逻辑中,一个命题的否定是________。

答案:它的对立命题三、简答题(每题10分,共30分)1. 请解释什么是图的哈密顿回路。

答案:哈密顿回路是一个图中的闭合回路,它恰好访问图中的每个顶点一次。

2. 描述一下什么是二元关系,并给出一个例子。

答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。

例如,小于关系是数字集合上的一个二元关系。

3. 什么是图的生成树?答案:图的生成树是图的一个子图,它包含图中的所有顶点,并且是一棵树,即它是连通的且没有环。

四、计算题(每题15分,共30分)1. 给定一个集合A={1,2,3,4,5},计算它的幂集。

答案:幂集P(A)={∅, {1}, {2}, {3}, {4}, {5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5}, {4,5},{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}, {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}, {1,2,3,4,5}, A}。

最新离散数学试题及答案

最新离散数学试题及答案

最新离散数学试题及答案一、选择题(每题2分,共20分)1. 在离散数学中,以下哪个不是命题逻辑的基本联结词?A. 与(∧)B. 或(∨)C. 非(¬)D. 模(%)答案:D2. 以下哪个选项不是命题逻辑的真值表的正确形式?A. P | Q | P ∧ QB. P | Q | P ∨ QC. P | Q | P → QD. P | Q | P ↔ Q答案:B3. 集合A={1, 2, 3},集合B={2, 3, 4},求A∪B的结果。

A. {1, 2, 3}B. {2, 3}C. {1, 2, 3, 4}D. {4}答案:C4. 以下哪个是等价关系的属性?A. 自反性B. 对称性C. 传递性D. 所有选项都是答案:D5. 以下哪个是图论中的基本概念?A. 顶点B. 边C. 路径D. 所有选项都是答案:D6. 在有向图中,如果存在一条从顶点u到顶点v的有向路径,那么称v为u的后继。

以下哪个选项不是后继的定义?A. 存在一条从u到v的有向路径B. 存在一条从v到u的有向路径C. 存在一条从u到v的有向简单路径D. 存在一条从v到u的有向简单路径答案:B7. 以下哪个是二元关系R的自反性的定义?A. 对于所有a,(a, a) ∈ RB. 对于所有a,(a, a) ∉ RC. 对于所有a和b,如果(a, b) ∈ R,则(b, a) ∈ RD. 对于所有a和b,如果(a, b) ∈ R,则(a, a) ∈ R答案:A8. 在命题逻辑中,以下哪个是德摩根定律的表达式?A. ¬(P ∧ Q) ↔¬P ∨ ¬QB. ¬(P ∨ Q) ↔¬P ∧ ¬QC. P ∧ Q ↔¬P ∨ ¬QD. P ∨ Q ↔¬P ∧ ¬Q答案:B9. 以下哪个是集合的幂集?A. 包含集合本身的所有子集的集合B. 包含集合本身的所有超集的集合C. 包含集合本身的所有真子集的集合D. 包含集合本身的所有非空子集的集合答案:A10. 在图论中,以下哪个是强连通性的图?A. 任意两个顶点之间都存在有向路径B. 任意两个顶点之间都存在无向路径C. 任意两个顶点之间都存在有向简单路径D. 任意两个顶点之间都存在无向简单路径答案:C二、填空题(每空1分,共10分)11. 命题逻辑中的“与”操作可以用符号________表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学考试试题(A卷及答案)一、(10分)某项工作需要派A、B、C和D 4个人中的2个人去完成,按下面3个条件,有几种派法?如何派?(1)若A去,则C和D中要去1个人;(2)B和C不能都去;(3)若C去,则D留下。

解设A:A去工作;B:B去工作;C:C去工作;D:D去工作。

则根据题意应有:A→C⊕D,⌝(B ∧C),C→⌝D必须同时成立。

因此(A→C⊕D)∧⌝(B∧C)∧(C→⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧(⌝B∨⌝C)∧(⌝C∨⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧((⌝B∧⌝C)∨(⌝B∧⌝D)∨⌝C∨(⌝C∧⌝D))⇔(⌝A∧⌝B∧⌝C)∨(⌝A∧⌝B∧⌝D)∨(⌝A∧⌝C)∨(⌝A∧⌝C∧⌝D)∨(C∧⌝ D∧⌝B∧⌝C)∨(C∧⌝ D∧⌝B∧⌝D)∨(C∧⌝ D∧⌝C)∨(C∧⌝ D∧⌝C∧⌝D)∨(⌝C∧D∧⌝B∧⌝C)∨(⌝C∧D∧⌝B∧⌝D)∨(⌝C∧D∧⌝C)∨(⌝C∧D∧⌝C∧⌝D)⇔F∨F∨(⌝A∧⌝C)∨F∨F∨(C∧⌝ D∧⌝B)∨F∨F∨(⌝C∧D∧⌝B)∨F∨(⌝C∧D)∨F⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D∧⌝B)∨(⌝C∧D)⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D)⇔T故有三种派法:B∧D,A∧C,A∧D。

二、(15分)在谓词逻辑中构造下面推理的证明:某学术会议的每个成员都是专家并且是工人,有些成员是青年人,所以,有些成员是青年专家。

解:论域:所有人的集合。

S(x):x是专家;W(x):x是工人;Y(x):x是青年人;则推理化形式为:∀x(S(x)∧W(x)),∃x Y(x)∃x(S(x)∧Y(x))下面给出证明:(1)∃x Y(x) P(2)Y(c) T(1),ES(3)∀x(S(x)∧W(x)) P(4)S( c)∧W( c) T(3),US(5)S( c) T(4),I(6)S( c)∧Y(c) T(2)(5),I(7)∃x S((x)∧Y(x)) T(6) ,EG三、(10分)设A、B和C是三个集合,则A⊂B⇒⌝(B⊂A)。

证明:A⊂B⇔∀x(x∈A→x∈B)∧∃x(x∈B∧x∉A)⇔∀x(x∉A∨x∈B)∧∃x(x∈B∧x∉A)⇔⌝∃x (x ∈A ∧x ∉B )∧⌝∀x (x ∉B ∨x ∈A )⇒⌝∃x (x ∈A ∧x ∉B )∨⌝∀x (x ∈A ∨x ∉B )⇔⌝(∃x (x ∈A ∧x ∉B )∧∀x (x ∈A ∨x ∉B ))⇔⌝(∃x (x ∈A ∧x ∉B )∧∀x (x ∈B →x ∈A ))⇔⌝(B ⊂A )。

四、(15分)设A ={1,2,3,4,5},R 是A 上的二元关系,且R ={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r (R )、s (R )和t (R )。

解 r (R )=R ∪I A ={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s (R )=R ∪R -1={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,<4,2>,<4,3>} R 2={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>}R 3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>}R 4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>}=R 2t (R )=∞=1i R i ={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,1>,<5,4>,<5,5>}。

五、(10分)R 是非空集合A 上的二元关系,若R 是对称的,则r (R )和t (R )是对称的。

证明 对任意的x 、y ∈A ,若xr (R )y ,则由r (R )=R ∪I A 得,xRy 或xI A y 。

因R 与I A 对称,所以有yRx 或yI A x ,于是yr (R )x 。

所以r (R )是对称的。

下证对任意正整数n ,R n对称。

因R 对称,则有xR 2y ⇔∃z (xRz ∧zRy )⇔∃z (zRx ∧yRz )⇔yR 2x ,所以R 2对称。

若n R 对称,则x 1+n R y ⇔∃z (x n R z ∧zRy )⇔∃z (z n R x ∧yRz )⇔y 1+n R x ,所以1+n R 对称。

因此,对任意正整数n ,n R 对称。

对任意的x 、y ∈A ,若xt (R )y ,则存在m 使得xR m y ,于是有yR m x ,即有yt (R )x 。

因此,t (R )是对称的。

六、(10分)若f :A →B 是双射,则f -1:B →A 是双射。

证明 因为f :A →B 是双射,则f -1是B 到A 的函数。

下证f -1是双射。

对任意x ∈A ,必存在y ∈B 使f (x)=y ,从而f -1(y )=x ,所以f -1是满射。

对任意的y 1、y 2∈B ,若f -1(y 1)=f -1(y 2)=x ,则f (x)=y 1,f (x)=y 2。

因为f :A→B 是函数,则y 1=y 2。

所以f -1是单射。

综上可得,f -1:B →A 是双射。

七、(10分)设<S ,*>是一个半群,如果S 是有限集,则必存在a ∈S ,使得a *a =a 。

证明 因为<S ,*>是一个半群,对任意的b ∈S ,由*的封闭性可知,b 2=b *b ∈S ,b 3=b 2*b ∈S ,…,b n ∈S ,…。

因为S 是有限集,所以必存在j >i ,使得i b =j b 。

令p =j -i ,则j b =p b *j b 。

所以对q ≥i ,有q b =p b *q b 。

因为p ≥1,所以总可找到k ≥1,使得kp ≥i 。

对于kp b ∈S ,有kp b =p b *kp b =p b *(p b *kp b )=…=kp b *kp b 。

令a =kp b ,则a ∈S 且a *a =a 。

八、(20分)(1)若G 是连通的平面图,且G 的每个面的次数至少为l (l ≥3),则G 的边数m 与结点数n 有如下关系:m ≤2-l l (n -2)。

证明 设G 有r 个面,则2m =∑=r i i f d 1)(≥lr 。

由欧拉公式得,n -m +r =2。

于是, m ≤2-l l (n -2)。

(2)设平面图G =<V ,E ,F >是自对偶图,则| E |=2(|V |-1)。

证明 设G *=<V *,E *>是连通平面图G =<V ,E ,F >的对偶图,则G *≅ G ,于是|F |=|V *|=|V |,将其代入欧拉公式|V |-|E |+|F |=2得,|E |=2(|V |-1)。

离散数学考试试题(B卷及答案)一、(10分)证明(P∨Q)∧(P→R)∧(Q→S)S∨R证明因为S∨R⇔⌝R→S,所以,即要证(P∨Q)∧(P→R)∧(Q→S)⌝R→S。

(1)⌝R附加前提(2)P→R P(3)⌝P T(1)(2),I(4)P∨Q P(5)Q T(3)(4),I(6)Q→S P(7)S T(5)(6),I(8)⌝R→S CP(9)S∨R T(8),E二、(15分)根据推理理论证明:每个考生或者勤奋或者聪明,所有勤奋的人都将有所作为,但并非所有考生都将有所作为,所以,一定有些考生是聪明的。

设P(e):e是考生,Q(e):e将有所作为,A(e):e是勤奋的,B(e):e是聪明的,个体域:人的集合,则命题可符号化为:∀x(P(x)→(A(x)∨B(x))),∀x(A(x)→Q(x)),⌝∀x(P(x)→Q(x))∃x(P(x)∧B(x))。

(1)⌝∀x(P(x)→Q(x)) P(2)⌝∀x(⌝P(x)∨Q(x)) T(1),E(3)∃x(P(x)∧⌝Q(x)) T(2),E(4)P(a)∧⌝Q(a) T(3),ES(5)P(a) T(4),I(6)⌝Q(a) T(4),I(7)∀x(P(x)→(A(x)∨B(x)) P(8)P(a)→(A(a)∨B(a)) T(7),US(9)A(a)∨B(a) T(8)(5),I(10)∀x(A(x)→Q(x)) P(11)A(a)→Q(a) T(10),US(12)⌝A(a) T(11)(6),I(13)B(a) T(12)(9),I(14)P(a)∧B(a) T(5)(13),I(15)∃x(P(x)∧B(x)) T(14),EG三、(10分)某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。

而6个会打网球的人都会打另外一种球,求不会打这三种球的人数。

解 设A 、B 、C 分别表示会打排球、网球和篮球的学生集合。

则:|A |=12,|B |=6,|C |=14,|A ∩C |=6,|B ∩C |=5,|A ∩B ∩C |=2,|(A ∪C )∩B |=6。

因为|(A ∪C )∩B |=(A ∩B )∪(B ∩C )|=|(A ∩B )|+|(B ∩C )|-|A ∩B ∩C |=|(A ∩B )|+5-2=6,所以|(A ∩B )|=3。

于是|A ∪B ∪C |=12+6+14-6-5-3+2=20,||C B A =25-20=5。

故,不会打这三种球的共5人。

四、(10分)设A 1、A 2和A 3是全集U 的子集,则形如31=i A i '(A i '为A i 或i A )的集合称为由A 1、A 2和A 3产生的小项。

试证由A 1、A 2和A 3所产生的所有非空小项的集合构成全集U 的一个划分。

相关文档
最新文档