圆与方程教案8篇
圆的一般方程教案

圆的一般方程教案
一般方程(x-a)²+(y-b)²=r²表示圆的方程,其中(a,b)为圆心的坐标,r为半径。
以下是关于圆的一般方程的教案:
教学目标:
1. 了解圆的一般方程的含义和作用;
2. 掌握圆的一般方程的使用方法;
3. 能够根据已知条件写出圆的一般方程。
教学步骤:
1. 引入:通过观察多个圆的图形,引导学生思考如何表示圆的方程;
2. 解释一般方程的含义:解释方程中的各个部分的含义,比如(x-a)表示x坐标与圆心x坐标的差值,(y-b)表示y坐标与圆心y坐标的差值;
3. 讲解一般方程的形式:讲解一般方程的标准形式,即(x-
a)²+(y-b)²=r²;
4. 演示如何写出一般方程:通过给定圆心和半径的坐标,演示写出一般方程的步骤;
5. 练习一:给出圆心和半径的坐标,要求学生自行写出一般方程;
6. 解释一般方程的应用:解释一般方程的应用,比如通过一般方程可以求圆的周长和面积;
7. 练习二:给出圆的一般方程,要求学生求出圆的半径和圆心的坐标;
8. 总结和评价:帮助学生总结所学内容,并对学生进行评价。
教学资源:
1. 圆的图形;
2. 圆的一般方程的示意图;
3. 练习题。
教学评价:
1. 学生能否准确理解圆的一般方程的含义;
2. 学生能否熟练运用一般方程求解问题;
3. 学生对于一般方程的应用是否有深入理解。
数学教案(圆的一般方程)

教学简案【课 题】圆的一般方程【教学目标】1、知识目标:(1)在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心和半径,掌握方程022=++++F Ey Dx y x 表示圆的条件;(2)能通过配方等手段,把圆的一般方程化为圆的标准方程,能用待定系数法求圆的方程。
(3)利用圆的方程解决与圆有关的实际问题。
2、能力目标:通过对方程022=++++F Ey Dx y x 表示圆的条件的探索,培养学生探索、发现及分析解决问题的实际能力。
3、情感目标:渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
【教学重点】圆的一般方程的代数特征,一般方程与标准方程间互化,根据已知条件确定方程中的系数D 、E 、F 。
【教学难点】对圆的一般方程的认识、掌握和应用。
【教学方法】讲授法,分析法。
【教学用具】多媒体辅助教学【教学流程】一、情景创设问题1:在平面直角坐标系中,以),(b a C 为圆心,r 为半径的圆的方程是什么?问题2:将圆的标准方程展开整理后,能发现哪些特征?(寻找新知识的生长点) 结论:(多媒体显示)将222)()(r b y a x =-+- 展开得02222222=-++--+r b a by ax y x ,我们发现任何圆都能表示为一个具有以下特征的y x ,的二次方程:(1)2x 和2y 项的系数同为1;(2)不出现交叉乘积的二次项xy 。
问题3:064222=++-+y x y x 是圆的方程?若是,写出圆心坐标和半径;若不是,则说明理由二、探索研究二元二次方程022=++++F Ey Dx y x 表示圆的条件是什么?(创设一种鼓励的宽松的氛围,让学生充分发表自已的观点,教师适当引导。
)二元二次方程022=++++F Ey Dx y x ,通过配方后可以化为 44)2()2(2222F E D E y D x -+=+++ (1)当0422>-+F E D 时,方程表示以)2,2(E D --为圆心,F E D 42122-+为半径的圆; (2)当0422=-+F E D 时,方程表示一个点)2,2(E D --; (3)当0422<-+F E D 时,方程没有实数解,因而方程不表示任何图形。
圆的方程教案

圆的方程教案
教案名称: 圆的方程
一、教学目标:
- 认识圆的定义
- 掌握圆的标准方程及一般方程的推导与应用
- 能通过给定的条件确定圆的方程
二、教学内容:
1. 圆的定义
2. 圆的标准方程
3. 圆的一般方程
4. 圆的方程应用
三、教学过程:
A. 导入
1. 引导学生回顾点的坐标表示方法,并复习线段、直线的方程
2. 提问: 你们知道圆的定义吗?
3. 学生回答并教师给出正确答案:圆是平面上所有距离中心点相等的点的集合。
B. 学习
1. 学生自主阅读教材相关内容,了解圆的标准方程的推导过程。
2. 教师介绍圆的标准方程的推导过程,并解释每一步的意义。
3. 引导学生通过例题练习圆的标准方程的应用。
C. 实践
1. 学生独立完成或小组合作完成练习题,巩固圆的标准方程的应用。
2. 引导学生思考,如何通过给定的条件确定圆的方程。
D. 拓展
1. 引导学生讨论并推导圆的一般方程的表达形式。
2. 通过例题演示圆的一般方程的应用。
E. 综合
1. 学生进行圆的方程的综合练习。
2. 教师进行学生作业的批改和讲解。
四、教学评估:
1. 教师通过课堂练习、小组活动等方式进行实时评估。
2. 学生独立完成的作业可用于评估学生综合应用圆的方程的能力。
五、教学反思:
通过本节课的教学,学生对圆的方程的应用有了更深入的理解,并能通过给定的条件确定圆的方程。
教师在教学中可以通过引导学生举一反三的思维,培养学生的问题解决能力。
同时在评估过程中,教师应关注学生的理解能力和应用能力的培养。
高中数学教师资格面试《圆的一般方程》教案(5篇)

高中数学教师资格面试《圆的一般方程》教案(5篇)第一篇:高中数学教师资格面试《圆的一般方程》教案2015山西教师招聘考试高中数学教师资格面试《圆的一般方程》教案一、教学目标【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径.掌握方程x2+y2+Dx+Ey+F=0表示圆的条件。
【过程与方法】通过对方程x2+y2+Dx+Ey+F=0表示圆的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。
【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
二、教学重难点【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。
【难点】二元二次方程与圆的一般方程及标准圆方程的关系。
三、教学过程(一)复习旧知,引出课题1.复习圆的标准方程,圆心、半径。
2.提问1:已知圆心为(1,-2)、半径为2的圆的方程是什么?(二)交流讨论,探究新知1.提问2:方程x2 +y2-2x+4y+1=0是什么图形?方程x2 +y2-2x-4y+6=0表示什么图形?任何圆的方程都是这样的二元二次方程吗?(通过此例分析引导学生使用配方法)2.方程x2 +y2 +Dx+Ey+F=0什么条件下表示圆?(配方和展开由学生相互讨论交流完成,教师最后展示结果)将x2 +y2 +Dx+Ey+F=0配方得:山西教师资格面试考试山西特岗教师考试2015山西教师招聘考试3.学生在教师的引导下对方程分类讨论,最后师生共同总结出3种情况,即圆的一般方程表示圆的条件。
从而得出圆的一般方程是:x2 +y2 +Dx+Ey+F=0(D2+E2-4F>0)4.由学生归纳圆的一般方程的特点,师生共同总结。
(三)例题讲解,深化新知例1.判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径。
例2.求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标。
圆的方程的教案

圆的方程的教案引言:圆是我们日常生活中经常会遇到的几何形状之一。
掌握圆的概念及其方程对于理解物理、数学等学科都有着很大的帮助。
然而在教学实践中,如何让学生更深入地理解圆的方程,却是一个比较棘手的问题。
这里将介绍一份圆的方程的教案,希望能对广大教师提供些许借鉴和帮助。
一、教学目标1. 理解圆的基本概念,熟悉圆的相关术语及其性质。
2. 掌握圆的标准式和一般式,并能够灵活地在相关问题中应用。
3. 理解圆的参数方程和极坐标方程,并能够应用于实际题目中。
4. 通过圆的方程的练习,提高学生的抽象思维能力和解题能力,培养学生的数学兴趣。
二、教学内容1. 圆的基本概念和术语。
引导学生回忆圆的基本定义和相关术语,如圆心、半径、直径、弧、弦等。
2. 圆的标准式和一般式。
介绍圆的标准式和一般式的概念,并结合具体例子讲解圆的方程如何转化为标准式或一般式。
要求学生能够通过给出的圆的方程求出其圆心和半径。
3. 圆的参数方程和极坐标方程。
引入圆的参数方程和极坐标方程的概念,结合具体例子说明其应用场景和转化方法。
要求学生能够通过所给的参数方程或极坐标方程画出相应的圆形。
4. 综合练习。
设计多种类型的圆的方程练习题,包括基本概念的运用、标准式和一般式的转化、参数方程和极坐标方程的求解等多个方面。
要求学生能够独立思考、发现问题,提高解决问题的能力。
三、教学方法1. 以实例为引导,抓住重点,引导学生深入理解圆的基本概念和性质。
2. 采用关联性教学,将圆的方程和其他学科相联系,如物理学中的匀速圆周运动等。
3. 采用问题导向法,引导学生在解决问题中发现问题,并进行讨论和探究。
4. 以小组合作为主要教学方式,鼓励学生分享思路和解题方法,并进行合作探究。
四、教学评估1. 课堂练习。
2. 个人作业。
3. 小组合作探究报告。
4. 期末考试。
五、教学注意事项1. 要尊重学生的思维习惯和学习方法,采用多元化的教学方法才能激发学生的学习兴趣。
2. 关注学生的反馈,及时调整教学内容和方式,确保教学效果。
高二数学教案 圆的方程9篇

高二数学教案圆的方程9篇圆的方程 1§7.6 圆的方程(第二课时)㈠课时目标1.掌握圆的一般式方程及其各系数的几何特征。
2.待定系数法之应用。
㈡问题导学问题1:写出圆心为(a,b),半径为r的圆的方程,并把圆方程改写成二元二次方程的形式。
-2ax-2by+ =0问题2:下列方程是否表示圆的方程,判断一个方程是否为圆的方程的标准是什么?①;② 1③ 0;④ -2x+4y+4=0⑤ -2x+4y+5=0; ⑥ -2x+4y+6=0㈢教学过程[情景设置]把圆的标准方程展开得 -2ax-2by+ =0可见,任何一个圆的方程都可以写成下面的形式:+Dx+Ey+F=0 ①提问:方程表示的曲线是不是圆?一个方程表示的曲线是否为圆有标准吗?[探索研究]将①配方得 : ( ) ②将方程②与圆的标准方程对照.⑴当>0时, 方程②表示圆心在 (- ),半径为的圆.⑵当 =0时,方程①只表示一个点(- ).⑶当<0时, 方程①无实数解,因此它不表示任何图形.结论: 当>0时, 方程①表示一个圆, 方程①叫做圆的一般方程.圆的标准方程的优点在于明确地指出了圆心和半径,而一般方程突出了形式上的特点:⑴和的系数相同,不等于0;⑵没有xy这样的二次项.以上两点是二元二次方程A +Bxy+C +Dx+Ey+F=0表示圆的必要条件,但不是充分条件[知识应用与解题研究][例1] 求下列各圆的半径和圆心坐标.⑴ -6x=0; ⑵ +2by=0(b≠0)[例2]求经过O(0,0),A(1,1),B(2,4)三点的圆的方程,并指出圆心和半径。
分析:用待定系数法设方程为 +Dx+Ey+F=0 ,求出D,E,F即可。
[例3]已知一曲线是与两个定点O(0,0)、A(3,0)距离的比为的点的轨迹,求此曲线的方程,并画出曲线。
分析:本题直接给出点,满足条件,可直接用坐标表示动点满足的条件得出方程。
反思研究:到O(0,0),A(1,1)的距离之比为定植k(k>0)的点的轨迹又如何?当k=1时为直线,k>0时且k≠1时为圆。
圆的标准方程教案

学生:(通过板书讲解),
圆的半径r=|AB|=
圆心B的坐标(3,2),根据圆的标准方程得所求圆的方程:
第四组问题:例2求以直线x-y+1=0和x+y-1=0的交点为圆心, 半径为的圆的方程.
学生:由方程组
解得:
即所求圆心坐标为(0,1),半径
r= 。
根据圆的标准方程得所求圆的
方程为:
x 2 + ( y - 1)2 = 3
教师:本组两
题主要是对
例题的巩固
和加强,在多
媒体上出示
答案:
1、(x
- 1)2 + ( y +
2)2 = 8
2、
(x- )2 +
( y-)2 =
八、板书设计
一课题和教学目标
二的标准方程推导
例1求过点A(6,0),且圆心B的坐标为(3,2)的圆的方程。
例2求以直线x-y+1=0和x+y-1=0的交点为圆心, 半径为的圆的方程.
本节总结。
(1) 圆心为C(a,b),半径为r 的圆的标准方程为:
(x-a)2+(y-b)2=r2(圆心(a,b),半径r)。
圆心在原点时a=b=0,圆的标准方程为x2 + y2 = r2 。
九.教学反思。
(完整版)圆的一般方程教案(正式)

4.2.1圆的一般方程一、复习提问,引入课题问题:求过三点(0,0),(1.1),(4,2)的圆的方程?【师生互动】学生在教师指导下展开小组讨论,回顾旧知识,最后得出运用圆的知识很难解决问题。
因为圆的标准方程很麻烦,用直线的知识解决又有其简单的局限性。
于是老师提问,有没有其他的解决方法呢?带着这个问题我们共同研究圆的一般方程。
【辅助手段】:多媒体课件幻灯片展示问题。
二、探索研究,讲授新课 请同学们写出圆的标准方程:222()()x a y b r -+-=、圆心(a ,b)、半径r把圆的标准方程展开,并整理:22222220x y ax by a b r +--++-= 取D=-2a E=-2b F=222a b r +-220x y Dx Ey F ++++=这个方程就是圆的方程.反过来给出一个形如220x y Dx Ey F ++++=的方程,它表示的曲线一定是圆吗?把220x y Dx Ey F ++++=配方得: 222224()()224D E D E Fx y +-+++= 【师生互动】配方和展开由学生完成,教师最后展示结果。
问题:这个方程是不是表示圆?⑴当2224D E F +-﹥0时,方程表示以(-2D ,2E)为圆心,以22142D E F +-为半径的圆. ⑴以复习回顾的形式提出新难题,引出新课程,指出本节课的主要内容. ⑵质疑提问,小组讨论,提高了学生学习的兴趣.⑴学生动笔、思考,老师引导、启发,让学生学会独立分析问题,解决问题,初步体会数学的魅力.⑵引导学生自己探索寻找圆的一般方程在什么时候表示圆,形成分类讨论、等价转化等数学思想,培养学生思维的多样性、创造性,体验成功解决问题的喜悦.⑶通过对一个方程的讨论,得出圆的一般方程,并指出不是所有的方程都可以 表示圆。
使得学生的认识不断加深,同时一般方程则只需确定三个系数,而条件给出了三个坐标,不妨试着先写出圆的一般方程。
【教师讲解】设圆的方程为220x y Dx Ey F ++++=∵A(0,0),B(1,1),C(4,2)在圆上,所以它们的坐标是方程的解,代入方程得到:2042200F D E F D E F =⎧⎪+++=⎨⎪+++=⎩即D=-8 E=6 F=O∴所求的方程为22860x y x y +-+=222142r D E F =+-=5、2D -=4、2E-=-3∴圆心坐标为(4,-3)或将220x y Dx Ey F ++++=化为圆的标准方程: 22(4)(3)25x y -++=【归纳总结】应用待定系数法的一般步骤 ⑴根据条件,选择是标准方程还是一般方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆与方程教案8篇很多教育工作者为提高自己的教学质量,都会提前制定一份教案,教案在拟订的时候,大家需要强调与时俱进,下面是作者为您分享的圆与方程教案8篇,感谢您的参阅。
圆与方程教案篇1数学教案-用公式解一元二次方程用公式解一元二次方程(一)用公式解一元二次方程(一)一、素质教育目标(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.二、教学重点、难点1.教学重点:一元二次方程的意义及一般形式.2.教学难点:正确识别一般式中的“项”及“系数”.三、教学步骤(一)明确目标1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的.小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.(二)整体感知通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.(三)重点、难点的学习及目标完成过程1.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?“元”和“次”的含义?(3)什么叫做分式方程?问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫.2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.一元二次方程的概念是在整式方程的前提下定义的.一元二次方程中的“一元”指的是“只含有一个未知数”,“二次”指的是“未知数的最高次数是2”.“元”和“次”的概念搞清楚则给定义一元三次方程等打下基础.一元二次方程的定义是指方程进行合并同类项整理后而言的.这实际上是给出要判定方程是一元二次方程的步骤:首先要进行合并同类项整理,再按定义进行判断. 3.练习:指出下列方程,哪些是一元二次方程?(1)x(5x-2)=x(x+1)+4x2;(2)7x2+6=2x(3x+1);(3)圆与方程教案篇2一、设计理念:随着学生学习知识的迁移,让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,既巩固了小学基础知识,又为初中教学打下坚实的基础。
二、教学目标:知识与技能:让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,运用相关规律,熟练的进行解方程计算。
过程与方法:让学生通过体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。
情感态度与价值观:运用“勾漏”双向四步教学法,适当创设教学情境,激发学生的学习兴趣。
三、教学重、难点:教学重点:让学生在让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,掌握各类解方程的一些规律,运用相关规律,熟练的进行解方程计算。
教学难点:让学生体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。
四、教学方法:“勾漏”双向四步教学法;观察法、比较法、归纳法。
五、教学准备:教学课件六、教学过程:(一)、勾人入境:同学们,利用等式的性质我们学会了解方程,其实上,熟练后,我们可以不用写得那么麻烦,三言两语就可以轻松地解方程了啊!想学吗?(二)、漏知互学:先来看第一大块的加法方程186+x=200用等式的性质这样解:186+x=200解:x+186—186=200—186x=14熟练后可以这样解:186+x=200解:x=200—186x=14有什么规律呢?先看符号(+——符号相反)再看数字(数字顺序也相反),那合起来说就是:加法方程,数符相反。
有趣吗?现在我们再看第二大块的乘法方程36×x=108用等式的性质这样解:36×x=108解:x×36÷36=108÷36x=3熟练后可以这样解:36×x=108解:x=108÷36x=3师:他们又有什么规律呢?(课件展示)哦真聪明!乘法方程与加法方程的规律一样,数字顺序和运算符号都相反了,所以我们把乘法方程与加法方程合在一起称为:乘加方程,数符相反。
明白了吗?记住了吗?现在我们再来看第三大块,减法方程:x—36=12用等式的性质这样解:x—36=12解:x—36+36=12+36x=48熟练后可以这样解:x—36=12解:x=12+36x=48那么它们又有什么规律呢?先看未知数x都在减号前,接下来的运算符号都用加法,那么是不是所有的减法方程都是用加法呢?别急,请看:108—x=60用等式的性质可以这样解:108—x=60解:108—x+x=60+x108 =60+x60+x =108x+60-60 =108-60x=48熟练后可以这样解:108—x=60解:x=108—60x=48同学们,比较一下,这两题减法方程与上面两题有什么不同呢?对,未知数x都在减号后面,运算符号都是用减法,那么我们就可以把这两张种减法方程合并起来说:减法方程,前加后减。
未知数x在减号前用加法,未知数x在减号后,用减法。
接下来我们再来学习第四块,除法方程:x÷12=5用等式的性质可以这样解:x÷12=5解:x÷12×12=5×12x=60熟练后可以这样解:x÷12=5解:x=5×12x=60同学们,你发现了什么?对,眼睛真厉害!未知数x在除号前,解完这道题,谁发现,有没有似曾相识的感觉:与减法一样。
1、未知数x在除号前面。
2、都用乘法。
3、数字没有相反。
怎么办,对,先算完另外一种情况(x在除号后的)再说,那么请开始吧。
48÷x=3用等式的性质可以这样解:熟练后可以这样解:48÷x=3 48÷x=3解:48÷x×x=3×x解:x=48÷348=3×x x=163×x=48x=48÷3x=16仔细观察比较,你发现了什么?解除法方程的规律你找到了吗?1、未知数x在除号后面。
2、都用除法。
3、数字没有相反。
以上说明在除号前后的计算方法不一样,那么它的规律要根据x在除号前后来判断,x在除号前用乘法,x在除号后用除法,从而得出他的规律是除法方程,前乘后除,它和减法有类似感。
(三)、流程对测:小组内各出加减乘除的方程各一条,然后交换计算,看谁算得又快又准确。
小组开始探究,教师巡逻指导(四)、结课拓展:请同学们说说这节课你学到了什么?圆与方程教案篇3教材分析:解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。
在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。
这为过渡到本节的学习起着铺垫作用。
合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。
因而,解方程是初中数学中必须要掌握的重点内容。
设计思路:数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。
其基本程序设计为:复习回顾、设问题导入探索规律、形成解法例题讲解、熟练运算巩固练习、内化升华回顾反思、进行小结达标测试、反馈情况作业布置、反馈情况。
教学目标:1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。
2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。
3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。
教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。
教学难点:分析实际问题中的相等关系,列出方程。
教学方法:先学后教,当堂训练。
教学准备:多媒体课件等。
预习要求:要求学生自学教材第88——89页的课文内容。
然后根据自己的理解分析问题2及例2;并试着进行尝试练习。
找出自学中存在的问题,以便课堂学习中解决。
教学过程:一、准备阶段:1、知识回顾:(1)、用合并同类项的方法解一元一次方程的步骤是什么?(2)、解下列方程:① -3·-2·=10 ②2、创设问题情境,导入新课。
问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?如何解决这个问题呢?二、导学阶段:(一)、出示本节课的学习目标:1、通过分析实际问题中的数量关系,建立用方程解决问题的建模思想和方法;2、掌握移项方法,学会解“a·+b=c·+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。