排列组合公式(全)
高中数学排列组合公式大全_高中数学排列组合重点知识.doc

高中数学排列组合公式大全_高中数学排列组合重点知识高中数学排列组合公式大全_高中数学排列组合重点知识高中数学排列组合公式大全1.排列及计算公式从n个不同元素中,任取m(m n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n 个不同元素中取出m(m n)个元素的所有排列的个数,叫做从n 个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2) (n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n (n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m高中数学排列组合公式记忆口诀加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
组合数公式大全

组合数公式大全组合数公式是组合数学中重要的概念,它们在概率论、统计学、离散数学等领域都有广泛的应用。
组合数公式可以用来计算从n个不同元素中取出r个元素的组合数,它们的计算方法多种多样,其中包括排列组合公式、二项式定理、组合数的递推关系等。
接下来,我们将详细介绍组合数公式的各种计算方法,让我们一起来深入探讨。
一、排列组合公式排列组合公式是组合数学中最基本的概念之一,它用于计算从n个不同元素中取出r个元素的组合数。
排列组合公式的计算公式如下:C(n, r) = n! / (r! * (n-r)!)C(n, r)表示从n个不同元素中取出r个元素的组合数,n!代表n的阶乘,即n*(n-1)*(n-2)*...*1,r!代表r的阶乘,(n-r)!代表n-r的阶乘。
二、二项式定理二项式定理是组合数学中的一个重要定理,它用于计算二项式展开式中各项的系数。
二项式定理的公式如下:(a+b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + ... + C(n,r)*a^(n-r)*b^r + ... + C(n,n)*a^0*b^n(a+b)^n表示(a+b)的n次幂展开式,C(n,r)表示从n个不同元素中取出r个元素的组合数。
从上述公式可以看出,二项式定理可以用来计算二项式展开式中各项的系数,因此它在代数学和离散数学中有着广泛的应用。
三、组合数的递推关系组合数的递推关系是一种用来计算组合数的方法,它可以在一定程度上简化计算过程。
组合数的递推关系公式如下:C(n, r) = C(n-1, r-1) + C(n-1, r)C(n, r)表示从n个不同元素中取出r个元素的组合数,根据递推关系可以得到不同组合数之间的关系,从而简化计算过程。
以上介绍了排列组合公式、二项式定理和组合数的递推关系,它们是组合数学中常用的计算方法,对于理解和应用组合数具有重要的意义。
通过深入学习这些公式和定理,我们可以更好地理解组合数的概念,并且在实际问题中灵活运用。
排列组合的公式总结

排列组合的公式总结排列组合是数学中一个有趣但有时也让人头疼的部分。
在咱们从小学到高中的数学学习旅程中,它可是个重要的角色。
先来说说排列的公式。
排列呢,就是从 n 个不同元素中取出 m 个元素的排列数,记作 A(n,m) 。
它的公式是 A(n,m) = n! / (n - m)! 。
这里的“!”表示阶乘,比如说 5! = 5 × 4 × 3 × 2 × 1 。
给大家举个例子吧,咱们学校组织演讲比赛,从 10 个同学中选 3个同学先后上台演讲,那一共有多少种不同的安排顺序呢?这就是一个排列问题。
按照公式,A(10,3) = 10! / (10 - 3)! = 10 × 9 × 8 = 720 种。
也就是说,有 720 种不同的上台顺序。
再说说组合的公式。
组合是从 n 个不同元素中取出 m 个元素的组合数,记作 C(n,m) ,公式是 C(n,m) = n! / [m! × (n - m)!] 。
比如说,咱们班要选5 个人参加数学竞赛,不考虑他们的参赛顺序,那一共有多少种选法?这就是组合问题。
C(20,5) = 20! / [5! × (20 - 5)!] ,算出来就是 15504 种选法。
排列和组合的区别,简单来说,排列讲究顺序,组合不讲究顺序。
就像分糖果,给小明、小红、小刚分 3 颗不同的糖果,如果考虑谁先拿谁后拿,那就是排列;要是不考虑谁先谁后,只看最后谁拿到了哪颗糖,那就是组合。
在实际做题的时候,大家可得擦亮眼睛,分清楚到底是排列还是组合。
我记得有一次考试,有一道题是从 8 个不同的水果里选 3 个装在一个果篮里,很多同学没搞清楚这是组合问题,用了排列的公式,结果就做错啦。
还有啊,做排列组合的题,有时候要分类讨论,有时候要用间接法。
比如说,计算从 1 到 20 这 20 个自然数中,能被 2 或 3 整除的数的个数。
排列组合公式公式解释

排列组合是数学中的一个重要概念,用于计算不同元素的组合方式。
它在组合数学、概率论、统计学等领域中经常被应用。
本文将详细介绍排列组合的概念以及相关公式,并给出一些实际应用的例子。
1. 排列的概念及公式排列是指从n个元素中选取r个元素进行排序的方式。
这个过程中,每个元素只能使用一次,并且顺序不同即为不同的排列。
排列通常用P(n, r)表示,计算公式如下:P(n, r) = n! / (n-r)!其中,n!表示n的阶乘,即n! = n * (n-1) * … * 2 * 1。
n的阶乘表示从n个元素中选取所有元素进行排列的总数,而(n-r)!表示剩余元素的阶乘,即可以从n个元素中选取r个元素进行排列的总数。
排列的计算公式可以帮助我们高效地计算大量元素的排列情况。
例如,从10个数中选取3个数进行排列,即P(10, 3),可以通过计算10! / 7!得到结果。
2. 组合的概念及公式组合是指从n个元素中选取r个元素进行组合的方式。
与排列不同,组合不考虑选取元素的顺序,因此不同顺序的元素组合被视为同一种组合方式。
组合通常用C(n, r)表示,计算公式如下:C(n, r) = n! / (r! * (n-r)!)其中,n!仍表示n的阶乘,r!表示r的阶乘,(n-r)!表示剩余元素的阶乘。
组合的计算公式可以帮助我们统计不同元素组合的数量。
例如,从10个数中选取3个数进行组合,即C(10, 3),可以通过计算10! / (3! * 7!)得到结果。
3. 排列组合的应用排列组合在实际问题中有广泛的应用。
以下是一些例子:3.1. 抽奖问题假设有10个人参加抽奖,每个人的抽奖号码是从1到10之间的整数。
如果我们想要知道抽取出来的3个人的号码的所有可能情况,可以使用组合的方法计算。
结果为C(10, 3) = 120。
3.2. 选课问题假设有10门课程可以选择,每个人可以选择其中的5门进行学习。
如果我们关心的是不同学生选择不同课程的情况,可以使用排列的方法计算。
小学数学排列组合公式大全

小学数学排列组合公式大全小学是我们整个学业生涯的基础,所以小朋友们一定要培养良好的学习习惯,本店铺为同学们特别提供了数学排列组合公式大全,希望对大家的学习有所帮助!1.排列及计算公式从n个不同元素中,任取m(mn)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m 个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m。
排列组合问题公式

排列组合问题公式
排列组合问题公式主要包括排列数和组合数的计算公式。
1.排列数的计算公式:从n个中取m个排一下,有n(n-1)(n-2)……
(n-m+1)种,即n(n-1)(n-2)……(n-m+1)= n!/(n-m)!。
其中,n!表示n的阶乘,即n!= n (n-1)(n-2)* … * 2 * 1。
2.组合数的计算公式:从n个中取m个,相当于不排,就是n(n-1)(n-
2)……(n-m+1)/m!= n!/ [(n-m)! m!]。
此外,还有以下公式用于处理特定类型的排列组合问题:
1.从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-
m)!。
2.n个元素被分成k类,每类的个数分别是n1,n2,nk这n个元素的全排
列数为n!/(n1!× n2!× nk!)。
3.k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,
m)。
这些公式可以帮助解决各种排列组合问题。
需要注意的是,排列数和组合数公式的使用取决于具体的问题类型和要求。
在选择和使用公式时,应确保理解其含义和适用范围。
(word完整版)排列组合和排列组合计算公式.

排列组合公式/排列组合计算公式排列 P--—--—和顺序有关组合 C ——-—-—-不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法。
"排列”把5本书分给3个人,有几种分法 "组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示。
p(n,m)=n(n—1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。
用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n—m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,。
..nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!)。
k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m)。
排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)。
(n—m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008—07-08 13:30公式P是指排列,从N个元素取R个进行排列。
排列组合公式(全)

排列组合公式排列定义从n个分歧的元素中,取r个不重复的元素,顺次序排列,称为从n个中取r个的无重排列。
排列的全体组成的集合用 P(n,r)暗示。
排列的个数用P(n,r)暗示。
当r=n时称为全排列。
一般不说可重即无重。
可重排列的相应记号为 P(n,r),P(n,r)。
组合定义从n个分歧元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。
组合的全体组成的集合用C(n,r)暗示,组合的个数用C(n,r)暗示,对应于可重组合有记号C(n,r),C(n,r)。
一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万此外实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不成用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类分歧法子中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不克不及完成此任务,必须且只须连续完成这n步才干完成此任务;各步计数相互独立;只要有一步中所采纳的方法分歧,则对应的完成此事的方法也分歧例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数集合A为数字不重复的九位数的集合,S(A)=9!集合B为数字不重复的六位数的集合。
把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。
显然各子集没有共同元素。
每个子集元素的个数,等于剩余的3个数的全排列,即3!这时集合B的元素与A的子集存在一一对应关系,则S(A)=S(B)*3!S(B)=9!/3!这就是我们用以前的方法求出的P(9,6)例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法?设分歧选法构成的集合为C,集合B为数字不重复的六位数的集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合公式(一)
排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。
排列的全体组成的集合用 P(n,r)表示。
排列的个数用P(n,r)表示。
当r=n时称为全排列。
一般不说可重即无重。
可重排列的相应记号为 P(n,r),P(n,r)。
组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。
组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合
有记号C(n,r),C(n,r)。
一、排列组合部分是中学数学中的难点之一,原因在于
(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;
(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;
(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;
(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
二、两个基本计数原理及应用
(1)加法原理和分类计数法
1.加法原理
2.加法原理的集合形式
3.分类的要求
每一类中的每一种方法都可以地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)
(2)乘法原理和分步计数法
1.乘法原理
2.合理分步的要求
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同
例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数
集合A为数字不重复的九位数的集合,S(A)=9!
集合B为数字不重复的六位数的集合。
把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。
显然各子集没有共同元素。
每个子集元素的个数,等于剩余的3个数的全排列,即3!
这时集合B的元素与A的子集存在一一对应关系,则
S(A)=S(B)*3!
S(B)=9!/3!
这就是我们用以前的方法求出的P(9,6)
例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法?
设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。
把集合B分为子集的集合,规则为全部由相同数字组成的数组成一个子集,则每个子集都是某6个数的全排列,即每个子集有6!个元素。
这时集合C的元素与B的子集存在一一对应关系,则
S(B)=S(C)*6!
S(C)=9!/3!/6!
这就是我们用以前的方法求出的C(9,6)
以上都是简单的例子,似乎不用弄得这么复杂。
但是集合的观念才是排列组合公式的来源,也是对公式更深刻的认识。
大家可能没有意识到,在我们平时数物品的数量时,说1,2,3,4,5,一共有5个,这时我们就是在把物品的集合与集合(1,2,3,4,5)建立一一对应的关系,正是因为物品数量与集合(1, 2,3,4,5)的元素个数相等,所以我们才说物品共有5个。
我写这篇文章的目的是把这些潜在的思路变得清晰,从而能用它解决更复杂的问题。
例3:9个人坐成一圈,问不同坐法有多少种?
9个人排成一排,不同排法有9!种,对应集合为前面的集合A
9个人坐成一圈的不同之处在于,没有起点和终点之分。
设集合D为坐成一圈的坐法的集合。
以任何人为起点,把圈展开成直线,在集合A中都对应不同元素,但在集合D中相当于同一种坐法,所以集合D中每个元素对应集合A中9个元素,所以S(D)=9!/9
我在另一篇帖子中说的方法是先固定一个人,再排其他人,结果为8!。
这个方法实际上是找到了一种集合A与集合D之间的对应关系。
用集合的思路解决问题的关键就是寻找集合之间的对应关系,使一个集合的子集与另一个集合的元素形成一一对应的关系。
例4:用1、2、3、4、5、6、7、8、9组成数字不重复的九位数,但要求1排在2前面,求符合要求的九位数的个数。
集合A为9个数的全排列,把集合A分为两个集合B、C,集合B中1排在2前面,集合C中1排在2后面。
则S(B)+S(C)=S(A)
在集合B、C之间建立以下对应关系:集合B中任一元素1和2位置对调形成的数字,对应集合C中相同数字。
则这个对应关系为一一对应。
因此S(B)=S(C)=9!/2
以同样的思路可解出下题:
从1、2、3…,9这九个数中选出3个不同的数作为函数y=ax*x+bx+c的系数,且要求
a>b>c,问这样的函数共有多少个?
例5:M个球装入N个盒子的不同装法,盒子按顺序排列。
这题我们已经讨论过了,我再用更形象的方法说说。
假设我们把M个球用细线连成一排,再用N-1把刀去砍断细线,就可以把M个球按顺序分为N组。
则M个球装入N个盒子的每一种装法都对应一种砍线的方法。
而砍线的方法等于M个球与N-1把刀的排列方式(如两把刀排在一起,就表示相应的盒子里球数为0)。
所以方法总数为C(M+N-1,N-1)
例6:7人坐成一排照像, 其中甲、乙、丙三人的顺序不能改变且不相邻, 则共有________排法.
解:甲、乙、丙三人把其他四人分为四部分,设四部分人数分别为X1,X2,X3,X4,其中X1,X4》=0,X2,X3》0
先把其余4人看作一样,则不同排法为方程
X1+X2+X3+X4=4的解的个数,令X2=Y2+1,X3=Y3+1
化为求X1+Y2+Y3+X4=2的非负整数解的个数,这与把2个球装入4个盒子的方法一一对应,个数为C(5,3)=10
由于其余四人是不同的人,所以以上每种排法都对应4个人的全排列4!,所以不同排法共有C(5,3)*4!=240种。