异面直线所成角定义
异面直线所成角的判定方法

异面直线所成角的判定方法异面直线是三维空间中的两条直线,它们不在同一个平面内。
在数学中,我们经常需要判断两条异面直线之间的角度,下面将详细介绍异面直线所成角的判定方法。
我们需要了解两条异面直线的基本概念。
两条异面直线可以用它们的方向向量来表示。
在三维空间中,一条直线可以由一点和一个方向向量确定。
因此,如果我们知道了两条异面直线上的任意一点和它们的方向向量,就可以完全确定这两条直线。
接下来,我们来研究两条异面直线之间的角度。
首先,我们需要找到这两条直线的公垂线。
公垂线是垂直于两条直线的线段,它们的交点就是两条直线的最短距离。
我们可以通过向量积来求出两条直线的公垂线。
具体地,我们可以先求出两条直线的方向向量的向量积,然后再将得到的向量与其中一条直线的方向向量再次求向量积,即可得到公垂线的方向向量。
接下来,我们可以通过余弦定理来求出两条异面直线之间的夹角。
具体地,我们可以用两条直线的方向向量和公垂线的方向向量来求出两条直线之间的夹角的余弦值,然后再通过反余弦函数求出夹角的大小。
需要注意的是,由于反余弦函数的定义域是[0,π],因此我们需要判断两条异面直线之间的夹角是否大于π/2,如果大于π/2,则需要用π减去这个夹角来得到最终的夹角大小。
除了上述方法外,我们还可以通过向量投影来求解两条异面直线之间的夹角。
向量投影是指将一个向量投影到另一个向量上得到的一个标量值。
具体地,我们可以求出两条直线的方向向量在对方上的投影,然后通过余弦定理求出它们之间的夹角。
需要注意的是,这种方法只适用于两条直线的方向向量都是单位向量的情况。
除了以上两种方法外,我们还可以通过点和直线之间的距离公式来求解两条异面直线之间的夹角。
具体地,我们可以先求出两条直线上的任意两个点,然后通过点和直线之间的距离公式求出它们到另一条直线的距离,最后通过余弦定理求出它们之间的夹角。
需要注意的是,这种方法的计算量较大,不太实用。
我们可以通过向量积、余弦定理、向量投影以及点和直线之间的距离公式来判断两条异面直线之间的夹角。
空间三大角(定义法)

三大角一、异面直线(1)定义:把不同在任何一个平面内的两条直线叫做异面直线.(2)异面直线所成的角已知两条异面直线a,b,过空间任一点O分别作直线a′∥a,b′∥b,我们把直线a′与b′所成的角称为异面直线a与b所成的角(或夹角).若两条异面直线a,b所成的角是直角,则称这两条异面直线互相垂直,记作a⊥b.空间两条直线所成角α的取值范围是0°≤α≤90°.探究一求异面直线所成的角[知能解读]对异面直线所成的角的认识理解的注意点(1)任意性与无关性:在定义中,空间一点O是任取的,根据等角定理,可以断定异面直线所成的角与a′,b′所成的锐角(或直角)相等,而与点O的位置无关.(2)转化求角:异面直线所成的角是刻画两条异面直线相对位置的一个重要的量,通过转化为相交直线所成的角,将空间角转化为平面角来计算.(3)两条直线垂直是指相交垂直或异面垂直.若∠AOB=120°,直线a∥OA,a与OB为异面直线,则a和OB所成的角的大小为60°.在空间四边形ABCD中,AB=CD,且AB与CD所成的角为30°,E,F分别为BC,AD的中点,求EF与AB所成角的大小.[方法总结]求异面直线所成的角的一般步骤(1)找出(或作出)适合题设的角——用平移法.当题设中有中点时,常考虑中位线;当异面直线依附于某几何体,且平移异面直线有困难时,可利用该几何体的特殊点,使异面直线转化为相交直线.(2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.(3)结论——设由(2)所求得的角的大小为θ.若0°<θ≤90°,则θ即为所求;若90°<θ<180°,则180°-θ即为所求.[训练1]如图,在正方体ABCD-A′B′C′D′中,E,F分别为平面A′B′C′D′与AA′D′D的中心,则EF与CD所成的角的度数是________.[训练2] 已知正方体ABCD-EFGH,则AH与FG所成的角是________.[训练3] (教材P147例1改编)如图,在正方体ABCD-A1B1C1D1中,(1)AC和DD1所成的角是________;(2)AC和D1C1所成的角是________;(3)AC和B1D1所成的角是________.[训练4]如图,正方体ABCD-A1B1C1D1中,AC与BC1所成的角为()A.120°B.90°C.60° D.30°[训练5]如图,在三棱锥D-ABC中,AC=BD,且AC⊥BD,E,F分别是棱DC,AB的中点,则EF和AC所成的角等于()A.30°B.45°C.60°D.90°[训练6] 如图,在四棱锥P-ABCD中,P A⊥平面ABCD,四边形ABCD为正方形,P A=AB,E为AP的中点,则异面直线PC与DE所成的角的正弦值为()A.25B.55C.155D.105[训练7](多空题)如图,若正四棱柱ABCD-A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AA1所成角的正弦值为________,异面直线BD1与AD所成角的正弦值是________.二、直线与平面所成的角1.定义:一条直线l与一个平面α相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A叫做斜足.过斜线上斜足以外的一点P向平面α引垂线PO,过垂足O和斜足A 的直线AO叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的角,叫做这条直线和这个平面所成的角.如图,∠P AO就是斜线AP与平面α所成的角.2.当一条直线与平面垂直时,它们所成的角是90°.3.当一条直线与平面平行或在平面内时,它们所成的角是0°.4.直线与平面所成的角θ的范围:0°≤θ≤90°.(教材P152例4改编)在正方体ABCD-A1B1C1D1中,直线AB1与平面ABCD所成的角等于45°.探究三直线与平面所成的角[知能解读]直线与平面所成的角的理解和判断(1)斜线和平面所成的角定义表明斜线和平面所成的角是通过斜线在平面内的射影而转化为两条相交直线所成的角.(2)判断方法:若直线在平面内或与平面平行,此时直线与平面所成的角为0°的角;若直线与平面垂直,此时直线与平面所成的角为90°;若直线与平面斜交,可在斜线上任取一点作平面的垂线(实际操作过程中,这一点的选取要有利于求角),找出直线在平面内的射影,从而确定直线和平面所成的角,然后将这个角转化到直角三角形、等边三角形中求解.三棱锥S-ABC的所有棱长都相等且为a,求SA与底面ABC所成角的余弦值.解题流程:第一步,泛读题目明待求结论:求SA与底面ABC所成角的余弦值.第二步,精读题目挖已知条件:三棱锥S-ABC的所有棱长都相等且为a.第三步,建立联系寻解题思路:设O为△ABC的中心,证∠SAO即为SA与平面ABC所成的角.第四步,书写过程养规范习惯.[方法总结]求直线与平面所成角的一般步骤(1)寻找过斜线上一点与平面垂直的直线.(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角即为所求的角.(3)把该角归结在某个三角形中,通过解三角形,求出该角.[训练8]如图所示,Rt△BMC中,斜边BM=5,它在平面ABC上的射影AB长为4,∠MBC=60°,求MC与平面ABC所成角的正弦值.[训练9]如图所示,若斜线段AB的长是它在平面α上的射影BO长的2倍,则斜线AB与平面α所成的角是()A.60°B.45°C.30°D.120°[训练10]在正方体ABCD-A1B1C1D1中,(1)直线A1B与平面ABCD所成的角的大小为_______;(2)直线A1B与平面ABC1D1所成的角的大小为________;(3)直线A1B与平面AB1C1D所成的角的大小为________.[训练11](多空题)如图,在正方体ABCD-A1B1C1D1中,直线AB1与平面ABCD所成的角等于________;AB1与平面ADD1A1所成的角等于________;AB1与平面DCC1D1所成的角等于________.三、二面角的平面角如右图,若满足下列条件:(1)O∈l,(2)OA⊂α,OB⊂β,(3)OA⊥l,OB⊥l,则二面角α-l-β的平面角是∠AOB.6.二面角的平面角α的取值范围:0°≤α≤180°.平面角是直角的二面角叫做直二面角.探究二求二面角的大小如图,四边形ABCD是正方形,P A⊥平面ABCD,且P A=AB.(1)求二面角A-PD-C的大小;(2)求二面角B-P A-C的大小.[方法总结]解决二面角问题的策略(1)清楚二面角的平面角的大小与顶点在棱上的位置无关,通常可根据需要选择特殊点作平面角的顶点.(2)求二面角的大小的方法:一作,即作出二面角的平面角;二证,即说明所作角是二面角的平面角;三求,即利用二面角的平面角所在的三角形求出平面角的三角函数值.其中关键是“作”.[训练12]如图,AB是⊙O的直径,P A垂直于⊙O所在的平面,C是圆周上的一点,且P A=AC.求二面角P-BC-A 的大小.[训练13]如图,在正方体ABCD-A1B1C1D1中,二面角A-BC-A1的平面角等于________.[训练14]如图所示,在△ABC中,AD⊥BC,△ABD的面积是△ACD的面积的2倍,沿AD将△ABC翻折,使翻折后BC⊥平面ACD,此时二面角BADC的大小为()A.30°B.45°C.60°D.90°[训练15]如图,在长方体ABCD-A1B1C1D1中,AB=AD=2 3,CC1=2,则二面角C1BDC的大小为________.三大角答案解 如图所示,取AC 的中点G ,连接EG ,FG ,则EG ∥AB 且EG =12 AB , GF ∥CD 且GF =12CD . 从而可知∠GEF 为EF 与AB 所成的角,∠EGF 或其补角为AB 与CD 所成的角.∵AB 与CD 所成的角为30°,∴∠EGF =30°或150°.∵AB =CD ,∴EG =FG . ∴△EFG 为等腰三角形.当∠EGF =30°时,∠GEF =180°-30°2=75°; 当∠EGF =150°时,∠GEF =180°-150°2=15°. 综上所述,EF 与AB 所成角的大小为15°或75°.[训练1] 45° [如图,连接B ′D ′,则E 为B ′D ′的中点,连接AB ′,则EF ∥AB ′.又CD ∥AB ,所以∠B ′AB 为异面直线EF 与CD 所成的角.由正方体的性质知,∠B ′AB =45°.][训练2] 45° [如图,连接BG ,则BG ∥AH ,所以∠BGF 为异面直线AH 与FG 所成的角.因为四边形BCGF 为正方形,所以∠BGF =45°.][训练3](1)90° (2)45° (3)90° [(1)根据正方体的性质可得AC 和DD 1所成的角是90°.(2)∵D 1C 1∥DC ,∴∠ACD 即为AC 和D 1C 1所成的角.由正方体的性质得∠ACD =45°.(3)连接BD ,∵BD ∥B 1D 1,BD ⊥AC ,∴B 1D 1⊥AC ,即AC 和B 1D 1所成的角是90°.][训练4]C [如图,连接AD 1,则AD 1∥BC 1.∴∠CAD 1(或其补角)就是AC 与BC 1所成的角.连接CD 1,在正方体ABCD -A 1B 1C 1D 1中,AC =AD 1=CD 1,∴∠CAD 1=60°,即AC 与BC 1所成的角为60°.][训练5]B [如图所示,取BC 的中点G ,连接FG ,EG .∵E ,F ,G 分别是CD ,AB ,BC 的中点,∴FG ∥AC ,EG ∥BD ,且FG =12 AC ,EG =12BD . ∴∠EFG 为EF 与AC 所成的角(或其补角).又∵AC =BD ,∴FG =EG .又∵AC ⊥BD ,∴FG ⊥EG .∴∠FGE =90°.∴△EFG 为等腰直角三角形.∴∠EFG =45°,即EF 与AC 所成的角为45°.][训练6]D [如图,连接AC ,BD 相交于点O ,连接OE ,BE .因为E 为AP 的中点,O 为AC 的中点,所以PC ∥OE .所以∠OED 为异面直线PC 与DE所成的角.不妨设正方形ABCD 中,AB =2,则P A =2.由P A ⊥平面ABCD ,可得P A ⊥AB ,P A ⊥AD .所以BE =DE =12+22 =5 ,OD =12 BD =12 ×22 =2 . 因为BE =DE ,O 为BD 的中点,所以∠EOD =90°.故sin ∠OED =OD DE =25=105 .] [训练7]33 306[因为AA 1∥DD 1,所以∠DD 1B 即为异面直线BD 1与AA 1所成的角.如图,连接BD .在Rt △D 1DB 中,sin ∠DD 1B =DB BD 1 =2226 =33 ,故异面直线BD 1与AA 1所成角的正弦值是33. 因为AD ∥BC ,所以∠D 1BC 即为异面直线BD 1与AD 所成的角.如图,连接D 1C .因为正四棱柱ABCD -A 1B 1C 1D 1的底面边长为2,高为4,所以D 1B =26 ,BC =2,D 1C =25 .所以D 1B 2=BC 2+D 1C 2.所以∠D 1CB =90°.所以sin ∠D 1BC =D 1C D 1B =2526=306 . 故异面直线BD 1与AD 所成角的正弦值是306.]解 如图,过S 作SO ⊥平面ABC 于点O ,连接AO ,BO ,CO ,则SO ⊥AO ,SO ⊥BO ,SO ⊥CO .∵SA =SB =SC =a ,∴△SOA ≌△SOB ≌△SOC .∴AO =BO =CO .∴O 为△ABC 的外心.∵△ABC 为正三角形,∴O 为△ABC 的中心.∵SO ⊥平面ABC ,∴∠SAO 即为SA 与平面ABC 所成的角.在Rt △SAO 中,SA =a ,AO =23 ×32 a =33 a ,∴cos ∠SAO =AO SA =33. ∴SA 与底面ABC 所成角的余弦值为33 . [训练8]解 由题意知,AB 是MB 在平面ABC 内的射影,∴MA ⊥平面ABC .∴MC 在平面ABC 内的射影为AC . ∴∠MCA 即为直线MC 与平面ABC 所成的角.又∵在Rt △MBC 中,BM =5,∠MBC =60°,∴MC =BM ·sin ∠MBC =5×sin 60°=5×32 =532. 在Rt △MAB 中,MA =MB 2-AB 2 =52-42 =3.在Rt △MAC 中,sin ∠MCA =MA MC =3532=235. ∴MC 与平面ABC 所成角的正弦值为235. [训练9]A [∠ABO 即是斜线AB 与平面α所成的角,在Rt △AOB 中,AB =2BO ,所以cos ∠ABO =12,即∠ABO =60°.][训练10](1)45° (2)30° (3)90° [(1)由线面角定义知,∠A 1BA 为A 1B 与平面ABCD所成的角,∠A 1BA =45°.(2)如图,连接A 1D ,设A 1D ∩AD 1=O ,连接BO ,则易证A 1D ⊥平面ABC 1D 1,∴A 1B 在平面ABC 1D 1内的射影为OB .∴A 1B 与平面ABC 1D 1所成的角为∠A 1BO .∵A 1O =12 A 1B ,∴∠A 1BO =30°. (3)∵A 1B ⊥AB 1,A 1B ⊥B 1C 1,∴A 1B ⊥平面AB 1C 1D ,即A 1B 与平面AB 1C 1D 所成的角的大小为90°.][训练11] 45° 45° 0° [∠B 1AB 为AB 1与平面ABCD 所成的角,即45°;∠B 1AA 1为AB 1与平面ADD 1A 1所成的角,即45°;AB 1与平面DCC 1D 1平行,即所成的角为0°.]解 (1)∵P A ⊥平面ABCD ,CD ⊂平面ABCD ,∴P A ⊥CD .又四边形ABCD 为正方形,∴CD ⊥AD . 又P A ∩AD =A ,∴CD ⊥平面P AD .又CD ⊂平面PCD ,∴平面P AD ⊥平面PCD . ∴二面角A -PD -C 的大小为90°.(2)∵P A ⊥平面ABCD , AB ,AC ⊂平面ABCD ,∴AB ⊥P A ,AC ⊥P A .∴∠BAC 为二面角B -P A -C 的平面角.又四边形ABCD 为正方形,∴∠BAC =45°.即二面角B -P A -C 的大小为45°.[训练12]解 ∵P A ⊥平面ABC ,BC ⊂平面ABC ,∴P A ⊥BC .∵AB 是⊙O 的直径,且点C 在圆周上,∴AC ⊥BC .又∵P A ∩AC =A ,P A ,AC ⊂平面P AC ,∴BC ⊥平面P AC .又PC ⊂平面P AC ,∴PC ⊥BC .又∵BC 是二面角P -BC -A 的棱,∴∠PCA 是二面角P -BC -A 的平面角.由P A =AC 知,△P AC 是等腰直角三角形,∴∠PCA =45°,即二面角P -BC -A 的大小是45°.[训练13] 45° [根据正方体中的线面位置关系可知,AB ⊥BC ,A 1B ⊥BC ,根据二面角的平面角定义可知,∠ABA 1 即为二面角A -BC -A 1的平面角. 又AB =AA 1,且AB ⊥AA 1,∴∠ABA 1=45°.][训练14] C [由已知得BD =2CD .翻折后,在Rt △BCD 中,∠CBD =30°,则∠BDC =60°.而AD ⊥BD ,CD ⊥AD ,故∠BDC 是二面角B -AD -C 的平面角,其大小为60°.][训练15] 30° [如图,取BD 的中点O ,连接OC ,OC 1.∵AB =AD =2 3 ,∴四边形ABCD 是正方形,BD =26 .∴CO ⊥BD ,CO =6 .∵CD =BC ,∴C 1D =C 1B . ∴C 1O ⊥BD .∴∠C 1OC 为二面角C 1BD C 的平面角.∵tan ∠C 1OC =C 1C OC =26=33 , ∴∠C 1OC =30°,即二面角C 1BD C 的大小为30°.]。
人教A版高中数学必修2:异面直线所成的角

b
b′
α
a
O a′
(1)两异面直线所成的角 θ 的范围是多少? (0°, 90°]
(2)在定义中,空间一点 O 是任意取的. (3)在操作中,点 O 常取在两异面直线的一条上.
例题选讲
【例 1】在正方体 ABCD-A1B1C1D1 中,E、F 分别为 BB1、CC1 的中点,
D A
C1 B1
C B
小结:
1、求异面直线所成角的一般步骤: 一作二证三求角 2、作异面直线所成角常用方法: (1)平移法 (2)补形法
3、初步体验把空间问题转化为平面问题 的思想方法
A
E
D
F
B
G
C
例题选讲
【例4】已知正三棱柱ABC-A1B1C1,侧面均是正方形,各 棱长为a,求AC1与A1B所成的角的余弦。
C2
补
A2
B2
形
法
C1
A1
B1
C
A
B
练习3:
如图.长方体ABCD-A1B1C1D1中,AA1=c, AB=a, AD=b, 且a>b.求AC1与BD所成角的余弦值。
D1 A1
第一步作图:确定平移点,做出平行线,构建三角形; 第二步证明:证明作出的角即为异面直线所成角或其补角; 第三步计算:计算作出角的大小(求余弦),并判断角的大小.
作图
证明
计算
结论
例题选讲
【例 3】、如图所示,在空间四边形 ABCD 中,点 E、F 分别 是 BC、AD 上的中点,AB=4,CD=10,EF=6。求异面直 线 AB、CD 所成的角。
(1) 求直线 A1C 与直线 BD 所成的角;
(2) 求直线 A1E 与直线 BF 所成角的余弦值.
考点18 异面直线所成的角-庖丁解题2019学年高一数学人教版(必修2)(解析版)

原创精品资源学科网独家享有版权,侵权必究!
1
异面直线所成的角
1.定义:已知两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a ,b ′∥b ,我们把a ′与b ′所成的锐角或直角叫做异面直线a 与b 所成的角或夹角.
2.异面直线所成的角θ的取值范围:(090]︒︒,
3.当θ=o 90时,a 与b 互相垂直,记作a b ⊥.
【例】设P 是直线l 外一定点,过点P 且与l 成30°角的异面直线( )
A .有无数条
B .有两条
C .至多有两条
D .有一条
【答案】A
【规律总结】异面直线所成的角的大小与O 点的位置无关,即O 点位置不同时,这一角的大小是不会改变的.
1.如图所示,在长方体1111ABCD A B C D -中,AB 11BC CC ==,则异面直线11AC BB 与所成角的大。
异面直线所成角及线面平行

高频考点(14)异面直线所成角和线面及面面平行的证明知识点一.异面直线所成角的大小,是由空间任意一点分别引它们的平行线所成的锐角(或直角)来定义的,即异面直线所成的角θ的范围是0°<θ≤90°.准确选定角的顶点,平移直线构造三角形是解题的重要环节.常见方法如下:本节课用到的定理:1.余弦定理:在∆ABC中,有a=b+c-2bccosA,b=a+c-2accosB,222222c2=a2+b2-2abcosC.b2+c2-a2a2+c2-b2a2+b2-c22.余弦定理的推论:cosA=,cosB=,cosC=.2bc2ab2ac一、抓异面直线(或空间图形)上的已知点和特殊点过一条异面直线上的已知点,引另一条直线的平行线(或作一直线并证明与另一直线平行),往往可以作为构造异面直线所成角的试探目标;或抓住特殊点(特别是中点)构造异面直线所成角是一条有效的途径. 1.在正方体ABCD-A1B1C1D1中,E是AB的中点,(1)求BA1与CC1夹角的度数. (2)求BA1与CB1夹角的度数. (3)求A1E与CB1夹角的余弦值.AA1DD1(4)若E为C1D1的中点,则异面直线AE与BC所成角的余弦值为等于解:(1)由BB'//CC',可知∠B'BA'等于异面直线BA'与CC'的夹角,所以异面直线BA'与CC'的夹角为45(2)连结CD,BD,则BA'// CD,∠BCD等于异面直线BA'与CB的夹角,由∆CBD 为等边三角形,∠B/CD/=60O ,BA'与CB/的夹角为60O//////(3)连结AD,DE,则AD// CB,∠DAE等于异面直线AE与CB的夹角。
/////////A/D2+A/E2-DE2设AA=2,AE=1,AE=DE=,AD=22,在三角形DAE中,cos∠DAE==, //52AD.AE/////(4)取A1B1的中点F,∠AEF为所求角,设棱长为2,则AE=3,AF=EF=2,AE2+EF2-AF22cos∠AEF==.2AE⨯EF32.长方体ABCD-A1B1C1D1中,若AB=BC=3,AA1=4A1①求异面直线A1B和AD1所成角的余弦值.②求异面直线B1D与DD1A高频考点(14)异面直线所成角和线面及面面平行的证明BC1所成角的余弦值。
补充构造异面直线所成角的几种方法

补充构造异面直线所成角的几种方法一. 异面直线所成角的求法1、正确理解概念(1)在异面直线所成角的定义中,空间中的点O 是任意选取的,异面直线a 和b 所成角的大小,与点O 的位置无关。
(2)异面直线所成角的取值范围是(0°,]90︒ 2、熟练掌握求法(1)求异面直线所成角的思路是:通过平移把空间两异面直线转化为同一平面内的相交直线,进而利用平面几何知识求解,整个求解过程可概括为:一作二证三计算。
(2)求异面直线所成角的步骤:①选择适当的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊点。
②求相交直线所成的角,通常是在相应的三角形中进行计算。
③因为异面直线所成的角θ的范围是0°<θ≤90°,所以在三角形中求的角为钝角时,应取它的补角作为异面直线所成的角。
3、“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。
例1如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线B 1E 与GF 所成角的余弦是 。
EF1A 1B 1C 1D BCDGEF1A 1B 1C 1D ABCDG例2已知S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC , 且∠ASB =∠BSC =∠CSA =2π,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值.例3长方体ABCD —A 1B 1C 1D 1中,若AB=BC=3,AA 1=4,求异面直线B 1D 与BC 1所成角的大小。
BM AN CS B M ANC SM ANCS例4如图,PA ⊥平面ABC ,90ACB∠=︒且PA AC BC a ===,则异面直线PB 与AC所成角的正切值等于_____.练习:1.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是()31032()()()()21055A B C D2.如图,A 1B 1C 1—ABC 是直三棱柱(三侧面为矩形),∠BCA=90°,点D 1、F 1 分别是A 1B 1、A 1C 1的中点若BC=CA=CC 1,则BD 1与AF 1所成角的余弦值是( ) 3013015()()()()1021510A B C D 3.正方体ABCD —A 1B 1C 1D 1中,直线BC 1与AC(A)相交且垂直 (B)相交但不垂直 (C)异面且垂直 (D)异面但不垂直 4.设a 、b 、c 是空间中的三条直线,下面给出四个命题: ①如果a ⊥b 、b ⊥c ,则a ∥c ;②如果a 和b 相交,b 和c 相交,则a 和c 也相交;③如果a 、b 是异面直线,c 、b 是异面直线,则a 、c 也是异面直线; ④如果a 和b 共面,b 和c 共面,则a 和c 也共面(第2F 1 ABCD 1 C 1A 1B 1B 1(第1题)A 1ABC 1D 1CD MNN MFEDCB A在上述四个命题中,真命题的个数是( )(A)4 (B)3 (C)2 (D)1 (E)0 5.如果直线l 和n 是异面直线,那么和直线l 、n 都垂直的直线 (A)不一定存在 (B)总共只有一条 (C)总共可能有一条,也可能有两条 (D)有无穷多条6.如图,四面体SABC 的各棱长都相等,如果E 、F 分别为SC 、AB 的中点,那么异面直线EF 与SA 所成的角等于(A)90° (B)60° (C)45° (D)30°7.右图是正方体的平面展开图,在这个正方体中, ① BM 与ED 平行; ②CN 与BE 是异面直线; ③CN 与BM 成60角;④DM 与BN 垂直.以上四个命题中,正确命题的序号是 ( )(A )① ② ③ (B )② ④ (C )③ ④ (D )② ③ ④8.如图,四面体ABCD 中,AC ⊥BD,且AC =4,BD =3,M 、N 分别是AB 、CD 的中点,则求MN 和BD 所成角的正切值为 。
平行直线与异面直线

空间的平行直线与异面直线(一)异面直线所成的角异面直线所成角的定义:过空间任意一点O ,与异面直线a 和b 分别平行的直线所成的锐角(或直角)叫做异面直线a 和b 所成的角.①两条异面直线所成角的大小,是由这两条异面直线的相互位置决定的,与点O 的位置选取无关;②两条异面直线所成的角θ∈(0,2]; ③因为点O 可以任意选取,这就给我们找出两条异面直线所成的角带来了方便,具体运用时,为了简便,我们可以把点O 选在两条异面直线的某一条上;④找两条异面直线所成的角,要作平行移动(作平行线),把两条异面直线所成的角转化为两条相交直线所成的角;(二)两直线互相垂直当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,异面直线a 和b 互相垂直,也记作a ⊥b ;【注】以后我们说两条直线互相垂直,这两条直线可能是相交的,也可能是不相交的,即有共面垂直,也有异面垂直这样两种情形。
一、 例题讲解【例1】 设图中正方体的棱长为a .(1)求直线BA ′和CC ′所成角的大小; (2)求直线BA ′和B ′D ′所成角的大小;【例2】 在空间四边形ABCD 中,E 、F 分别是AD 、BC 上的点,且12AE BF ED FC ==,AB=CD=3,,求AB 与的大小.【例3】 长方体ABCD —A 1B 1C 1D 1中,AB=BC=2a ,AA 1=a ,E 和F 分别是A 1B 1和BB 1的中点。
求:(1)EF 和AD 1所成的角的正弦值;(2)AC 1和B 1C 所成角的余弦值.(图1) (图2)(2)延长D 1A 1到F 使A 1F=D 1A 1,则AF ∥DA 1∥CB 1.所求角为AF 与AC 1的夹角.二、 课堂练习一、选择题1、 下列命题中,正确的是( ) A.垂直于同一条直线的两条直线平行B.有三个角是直角的四边形是矩形C.两平行线中,有一条垂直于第三条直线,则另一条也垂直于第三条直线D.与两异面直线都垂直的直线是它们的公垂线答案:C2、已知异面直线a与b所成的角为50°,P为空间一定点,则过点P且与a、b所成的角都是30°的直线有且仅有()A.1条B.2条C.3条D.4条答案:B3、直线a、b相交于点O,且a、b成60°角,过点O与a、b都成60°角的直线有()A.1条B.2条C.3条D.4条答案:C4、异面直线a、b所成的角为80°,P是空间一定点,则过点P且与a、b所成的角都是60°的直线有()A.1条B.2条C.3条D.4条答案:D5、若a、b是异面直线,c是a、b的公垂线,d∥c,则d和a、b的公共点的个数是()A.1B.最多为1C.2D.1或2答案:B6、已知直线a与b、b与c都是异面直线,且a与b的公垂线同时也是b与c的公垂线,那么a与c的位置关系是()A.平行或相交B.异面C.平行或相交或异面D.相交或异面答案:C7、在棱长为a的正方体ABCD—A1B1C1D1中,下列说法正确的是()A.A1B与D1C是距离为a的异面直线B.异面直线AA1与BC的公垂线是A1B1C.异面直线AA1与BC的公垂线是aD.异面直线AA 1与BC 的公垂线段的长是a 答案:D 二、填空题8、 在正方体ABCD —A 1B 1C 1D 1中,与BD 1成异面直线的有_______条. 答案:69、 在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,M 、N 、P 、Q 是相应棱的中点,则(1)MN 与PQ 的位置关系是_______,它们所成的角是_______. (2)MN 与B 1D 的位置关系是_______,它们所成的角是_______. 答案:(1)相交 60° (2)异面 90° 10、在空间四边形ABC D 中,对角线AC =BD =2a ,M 、N 分别是边AB 、CD 的中点,若MN =2a ,则AC 和BD 所成的角为_______,MN 和AC 所成的角为_______. 答案: 90° 45°11、在长方体ABCD —A 1B 1C 1D 1中,M 是DC 的中点,AD =AA 1AB =2,那么(1)AA 1与BC 1所成角的度数是_______; (2)DA 1与BC 1所成角的度数是_______; (3)BC 1与D 1M 所成角的余弦是_______.答案:(1)45° (2)90° (312、在空间四边形ABCD 中,对角线AC ⊥BD ,若AC =6,BD =4,M 、N 分别是AB 、CD 的中点,则MN =_______,MN 与BD 所成角的正切值为_______. 答案:23 13 13、空间四边形ABCD 的各边与两条对角线的长都为1,点P 在边AB 上移动,点Q 在边CD 上移动,则点P 和点Q 的最短距离为_______.14、如图,空间四边形ABCD 中,E 、H 分别是AB 、AD 的中点,F 、G 分别是CB 、CD 上的点.且32==CD CG CB CF ,若BD =6 cm ,梯形EFGH 的面积为28 cm 2,则平行线EH 与FG 间的距离为_______.答案: 8 cm。
异面直线所成角的定义

异面直线所成角的定义
异面直线是指不在同一平面内的两条直线,它们的交点是一个点,这个点不在它们所在的平面内。
而异面直线所成角则是指这两条异面直线之间的夹角。
在三维空间中,我们可以通过向量的概念来理解异面直线所成角。
两条异面直线可以看作是两个不同的向量,它们的夹角就是这两个向量之间的夹角。
这个夹角可以通过向量的点积来计算,公式为:cosθ = (a·b) / (|a|·|b|)
其中,a和b分别是两个向量,|a|和|b|分别是它们的模长,θ是它们之间的夹角。
需要注意的是,由于异面直线不在同一平面内,因此它们之间的夹角是没有方向的。
也就是说,无论我们从哪个方向来看这两条直线,它们之间的夹角都是相同的。
异面直线所成角在几何学中有着广泛的应用。
例如,在计算两个物体之间的夹角时,我们可以将它们的边界看作是由异面直线组成的,然后计算它们之间的夹角。
这个夹角可以帮助我们判断两个物体之间的相对位置,从而更好地进行设计和制造。
在计算空间中的角度时,异面直线所成角也是一个重要的概念。
例
如,在计算两个平面之间的夹角时,我们可以将它们的法向量看作是两条异面直线,然后计算它们之间的夹角。
这个夹角可以帮助我们判断两个平面之间的相对位置,从而更好地进行建模和渲染。
异面直线所成角是一个重要的几何概念,它在三维空间中有着广泛的应用。
通过理解和掌握这个概念,我们可以更好地理解和应用空间几何学的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
异面直线所成角定义
1. 什么是异面直线?
异面直线是在三维空间中的直线,它们既不共面也不互相平行。
2. 异面直线的性质
异面直线上的任意两条线段,它们之间的夹角都是锐角、直角或钝角。
我们可以利用向量和点的坐标进行计算,来确定异面直线所成的角的类型。
2.1 向量判断异面直线
设两条直线的参数方程分别为:
L1: x = x1 + a1t, y = y1 + b1t, z = z1 + c1t
L2: x = x2 + a2s, y = y2 + b2s, z = z2 + c2s
其中(a1, b1, c1)和(a2, b2, c2)为两条直线的方向向量。
两条异面直线不共面,即方向向量(a1, b1, c1)和(a2, b2, c2)不互相平行。
2.2 利用点坐标判断异面直线
设两条直线的参数方程分别为:
L1: x = x1 + a1t, y = y1 + b1t, z = z1 + c1t
L2: x = x2 + a2s, y = y2 + b2s, z = z2 + c2s
设点P1(x1, y1, z1)为直线L1上的一点,点P2(x2, y2, z2)为直线L2上的一点。
若点P1和点P2不在一条直线上,则直线L1和直线L2异面。
3. 异面直线所成的角的定义
异面直线L1和L2上的点A和B,它们与两条直线的交点分别为C和D,连接线段AD和BC。
定义:异面直线L1和L2所成的角是线段AD和BC之间的夹角。
4. 异面直线所成角的计算方法
异面直线L1和L2所成的角,可以通过两条直线的方向向量来计算。
设L1的方向向量为(a1, b1, c1),L2的方向向量为(a2, b2, c2)。
计算方式:cosθ = |a1a2 + b1b2 + c1c2| / √(a1^2 + b1^2 + c1^2) *
√(a2^2 + b2^2 + c2^2)
其中,|a1a2 + b1b2 + c1c2|表示两个向量的点积的绝对值。
通过求解得到的角的余弦值,我们可以判断异面直线所成的角是锐角、直角还是钝角。
5. 异面直线所成角的类型与实际应用
异面直线所成角的类型有三种:锐角、直角和钝角。
不同类型的角在实际中有不同的应用。
5.1 锐角
锐角是指角度小于90度的角。
在几何学中,锐角常常用来描述两条直线的交叉情况,例如两条直线是否相交以及相交的角度大小。
在计算机图形学中,锐角可以用来实现图像的旋转、变形等效果。
5.2 直角
直角是指角度等于90度的角。
在几何学中,直角是一个重要的概念,直角可以用来判断两条直线是否垂直。
在建筑学中,直角被广泛应用于建筑设计和测量,保证建筑物的稳定和平衡。
5.3 钝角
钝角是指角度大于90度但小于180度的角。
在几何学中,钝角常常用来描述两个直线的开口或夹角。
在物体检测和计算几何学中,钝角被用来判断两个物体之间的夹角,或者物体是否相交。
结论
通过以上对异面直线所成角的定义和计算方法的讨论,我们可以清楚地了解什么是异面直线所成角以及如何计算异面直线所成角。
异面直线所成角的类型有锐角、直角和钝角,它们在不同的领域都有重要的应用,包括几何学、计算机图形学、建筑学和物体检测等。
对于研究及应用异面直线的相关问题具有重要的理论和实际意义。
参考文献
[1] 《高等数学》, 北京市:高等教育出版社, 2020.
[2] 《线性代数》, 北京市:高等教育出版社, 2019.
[3] 《计算几何学》, 北京市:高等教育出版社, 2018.。