概率论第一章复习题
概率论与数理统计练习题(含答案)

第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。
(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。
(B )(3)事件的对立与互不相容是等价的。
(B ) (4)若()0,P A = 则A =∅。
(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。
(B )(8)若P(A)P(B)≤,则⊂A B 。
(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
概率论第一章习题

Hi)
1 7 3 30
8 30
5 30
2 9
q
P( A1
A2 )
P( A1A2 ) P( A2 )
2 9
61 90
20 61
补充练习题
1. 假设事件A和B满足P(B|A)=1,则( )
(A) 事件A是必然事件 (B)P(A/B)=0
(C) A B
(D)B A
答案:D
解析:由于P(A|B)=P(AB)/P(A)=1,可知P(AB)=P(A).从而 有A B.
此箱玻璃杯中,确实没有次品的概率.
解:设 A={顾客买下所查看的一箱},
Bi={箱中恰好有 i 件次品}, i=0, 1, 2.
由题设可知:P(B0)=0.8, P(B1)=0.1, P(B2)=0.1,
P(A|B0)=1
P(A|B1)=
C149|B2)=
C148
C
4 20
12 19
m n1
n m
n
C
2 n
C2 m n1
m2 mn2
4. 设玻璃杯整箱出售, 每箱20个, 各箱含0, 1, 2个次品的概率
分别为 0.8, 0.1, 0.1,某顾客欲购买一箱玻璃杯, 由售货员任取
一箱, 经顾客开箱随机查看 4个. 若无次品, 则买一箱玻璃杯,
否则不买. 求: (1)顾客买此箱玻璃杯的概率;(2)在顾客买的
2. 设 P(A)=0.3, P(B)=0.4,P(A|B)=0.5, 求 P(B|A), P(B| A∪B), P( A∪B | A∪B).
[答案] 0.2, 0.8, 0.6
3. 一袋中装有m(m3)个白球和 n个黑球,今丢失一 球,不知其色. 先随机从袋中摸取两球,结果都是白 球,球丢失的是白球的概率.
概率论第一章单元测试题

概率论第一章单元测试题一、判断题(每题1分,共5分)1.事件“A,B至少发生一个”与事件“A,B至多发生一个”是对立事件.()2.设A与B为任意两个互不相容事件,则P(AB)=P(A)P(B).()3.设A与B为任意两事件,则A-B不等于B A.()4.设A与B互为对立事件,且P(A)>0,P(B)>0,则()0P B A=.()5.已知P(A)>0,P(B) >0,若A与B互不相容,则A,B一定不独立.()二、选择题(每题1分,共15分)1.设A,B,C是3个事件,则A发生且B与C都不发生可表示为().A.BCA B.CB A C.)S-A D.BC(CB2.设A,B为两个事件,且A≠φ,B≠φ,则)+A+(表示AB)(BA.必然事件B.不可能事件C.A与B不能同时发生 D.A与B恰有一个发生3.对于事件A,B,下列命题正确的是().A.若A,B,互不相容,则BA,也互不相容B.若A,B,相容,则BA,也相容C.若A,B,互不相容,且概率都大于零,则BA,也相互独立D.若A,B,相互独立,则BA,也相互独立4.设随机事件A与B相互独立且P(B)=0.5,P(A-B)=0.3,则P(B-A)=().A .0.1B .0.2 C.0.3D.0.42”的概率是().5.在区间(0,1)中随机的取两个数,则事件“两数之和大于3A .31B .97C .32D . 92 6. 设A 与B 为任意两个互不相容,且P (A )P (B )>0,则必有( ).A .)(1)(B P A P -= B .)()()(B P A P AB P =C .1)(=B A PD .1)(=AB P7. 设A 与B 为任意两个事件,则使P (A -C )=P (A )-P (C )成立的C 为( ).A .A C =B .B AC = C .))((B A B A C -=D .)()(A B B A C --=8. 将两封信随机地投入四个邮筒中,则未向前两个邮筒中投信的概率( ).A .2242B .2412C C C .24A 2!D .4!2! 9. 设A ,B 为随机事件,P (B )>0,()1P A B =,则必有( ).A .)()(A PB A P = B .B A ⊂C .)()(B P A P =D .)()(A P AB P =10. 设随机事件A 与B 互不相容,P (A )=0.4,P (B )=0.2,则()P A B = ( ).A .0.2B .0.4C .0D .0.511. 设P (A )>0,P (B )>0,则由A 与B 相互独立不能推出( ).A .)()()(B P A P B A P += B .()()P A B P A =C .()()P B A P B =D .)()()(B P A P B A P =12. A ,B 为任意两个事件,则下列叙述正确的是( ).A .)()()(B P A P AB P ≤ B .)()()(B P A P AB P ≥C .2)()()(B P A P AB P +≤D .2)()()(B P A P AB P +≥ 13. 事件A ,B 满足P (A )+P (B )>1,则A 与B 一定( ).A .不相互独立B .相互独立C .互不相容D .不互斥14. 设A ,B ,C 是3个随机事件,且A 与C 相互独立,B 与C 相互独立,则B A 与C相互独立的充要条件是( ).A .A 与B 相互独立 B .A 与B 互不相容C .AB 与C 相互独立D .AB 与C 互不相容15. 某人连续向一目标射击,每次命中目标的概率为43,他连续射击直到命中为止,则射击次数为3的概率是( ).A .343⎪⎭⎫ ⎝⎛B .41432⨯⎪⎭⎫ ⎝⎛C .43412⨯⎪⎭⎫ ⎝⎛D .4341223⨯⎪⎭⎫ ⎝⎛C 三、填空题(每题2分,共30分)1. 设Ω为随机试验的样本空间A ,为随机事件,且{}=05x x Ω≤≤,A={}12x x ≤≤,B={}02x x ≤≤,试求:=B A ,B -A= .2. 设两个相互独立的事件A 和B 都不发生的概率是91,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则P (A ) = .3. 若111(),(),()432P A P B A P A B ===,则()P A B = . 4. 若()0.4,()0.3,()0.5P A P B P A B ===,则()P A B -= .5. 从10个整数0,1,2,…,9中任取4个不同的数字,此4个数字组成4位偶数的概率 .此4个数字组成4位奇数的概率 .6. 将3只球随机地放入4个杯子中去,则杯子中球的最大个数为3的概率 .杯子中球的最大个数为2的概率 .7. 一批产品共100件,次品率为10%,每次从中任取一件,取后不放回且连续3次,则第三次才取到合格品的概率为 .8. 某一3口之家,患某种传染病的概率有以下规律:P{孩子得病}=0.6,P{母亲得病/孩子得病}=0.5,P{父亲得病/母亲及孩子得病}=0.4则母亲及孩子得病而父亲未得病的概率.9.在一次考试中某班学生数学和外语的及格率都是0.7,且这两门课是否及格相互独立,现从该班任选一名学生,该生数学及外语只有一门及格的概率.10.已知10把钥匙中有3把能打开门,现任取两把,则能打开门的概率为.11.掷两颗骰子,则点数之和为偶数或小于5的概率.12.甲盒装有5只红球,4只白球;乙盒装有4红球,5只白球;先从甲盒中任取两球放入乙盒,然后从乙盒任取一球,则取到白球的概率.13.某种商品的商标为“MAXAM”,其中有两个字母脱落,有人捡起随意放回,则放回后仍为“MAXAM”的概率.14.已知男子有5%是色盲患者,女子有0.25%是色盲患者.今从男女人数相等的人群中随机挑选一人,恰好是色盲患者,则此人是男性的概率.15.某宾馆大楼有4部电梯,通过调查,知道在某时刻T,各电梯正在运行的概率均为0.75,则在此时刻至少有1台电梯在运行的概率.在此时刻恰好有一半电梯在运行的概率.四、计算题(40分)1.(2分)将15名新生随机地平均分配到3个班级中去,这15名新生中有3名是优等生,求(1)每个班级各分配到一名优等生的概率(2)3名优等生分配在同一班级的概率2.(8分)一学生接连参加同一课程的两次考试.第一次及格的概率为p,若第一次及p.格则第二次及格的概率也为p;若第一次不及格则第二次及格的概率为2(1) 若至少有一次及格则他能取得某种资格,求他取得该资格的概率.(2) 若已知他第二次及格了,求他第第一次及格的概率.解:设A i=“第i次及格”,i=1,2.3.(5分)甲乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率是多少?4.(7分)雨伞掉了,落在图书馆中的概率为%.0;落50,这种情况下找回的概率为80在教室里的概率为%20,这种30,这种情况下找回的概率为60.0;落在商场的概率为%情况找回的概率为05.0,求:(1)找回雨伞的概率;(2)雨伞被找回,求它掉在图书馆的概率.5.(10分)每箱产品有10件,其中次品从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品为不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.求检验一箱产品能通过验收的概率.6.(5分)在100件产品有5件次品,从中连续取二件,每次取一件,取后不放回,试求:(1) 第一次取得次品后第二次取得正品的概率;(2) 第二次才取得正品的概率.7.(3分)已知电路如图所示,若A,B,C 损坏与否相互独立,且它们损坏的概率分布为0.3,0.2,0.1,求电路断电的概率五、证明题(10分)1. (5分)设A ,B 为两个随机事件,0()1P B <<,()()P A B P A B =,证明:A 与B 相互独立.2.(5分)设事件A ,B ,C 的概率都是21,且)()(C B A P ABC P =,证明:21)()()()(2-++=BC P AC P AB P ABC P .。
概率论习题一

第一章(A)1、设A,B为两个事件,若A⊃B,则下列结论(C )恒成立A、AB互斥B、A 、B互斥C、A、B互斥D、A、B互斥2、以A表示事件“甲种产品畅销,乙种产品滞销”,则A表示(C )A、甲种产品滞销,乙种产品畅销B、甲乙两种产品均畅销C、甲产品滞销或乙产品畅销D、甲乙两种产品均滞销3、设A、B为两个事件,若A⊂B ,则一定有(B )/A、P(AB)=P(B)B、P(A B)=P(B)C、P(B│A)=P(B)D、P(A│B)=P(B)4、设AB为两个随机事件,则p(A B),P(AB),P(A)+P(B)由小到大的顺序是( A )A P(AB)≤p(A B)≤P(A)+P(B)B P(A)+P(B)≤P(AB)≤p(A B)C p(A B)≤P(AB)≤P(A)+P(B)D P(AB)≤P(A)+P(B)≤p(A B)5、设AB为两个事件,且0<P(A)<1,P(B)>0,P(B│A)=P(B│A),则必有( C )A、P(A│B)=P(A│B)B、P(A│B)≠P(A│B)C、P(A│B)=P(A)D、P(A│B)=P(B)6、—7、设A 、B 、C 为三个相互独立的随机事件,且有0<P(C)<1,则下列事件不相互独立的是( A )A AC 与CB AB 与C C B A 与CD B A -与C 7、在一次实验中,事件A 发生的概率为p(0<p<1),进行n 次独立重复试验,则事件A 之多发生一次的概率为( D ) A n p -1 B n p C ()N P --11 D ()()111--+-n np np p8、对飞机连续射击三次,每次发射一枚炮弹,事件i A (i=1,2,3)表示第i 次射击击中飞机,则“至少有一次击中飞机”可表示为321A A A ,“至多击中一次”表示为321321321321A A A A A A A A A A A A 9、设A 、B 为随机事件,则()()B A B A =B10、若事件A 、B 互不相容,则()B A P -=P(A),()A B P -=P(B),若事件A 、B 相互独立,则()B A P -=)()(B P A P ,()A B P -=)()(A P B P 11、已知P(A)=,P(B)=,P(B │A)=,则()B A P =,()=B A P . 12、已知P(A)=,P(B)=,若A 、B 相互独立,则()B A P =.13、根据调查所知,一个城镇居民三口之家每年至少用600元买粮食的概率是,至少用4000元买副食的概率是,至少用600元买粮食同时用4000元买副食的概率为,则一个三口之家至少用600元买粮食或至少用4000元买副食的概率为_____。
概率论与数理统计第一章测试题

第一章 随机事件和概率一、选择题1. 设A, B, C 为任意三个事件, 则与A 一定互不相容的事件为(A )C B A ⋃⋃ (B )C A B A ⋃ (C ) ABC (D ))(C B A ⋃2.对于任意二事件A 和B, 与 不等价的是(A )B A ⊂ (B )A ⊂B (C )φ=B A (D )φ=B A3. 设 、 是任意两个事件, , , 则下列不等式中成立的是( ).A ()()P A P A B < .B ()()P A P A B ≤.C ()()P A P A B > .D ()()P A P A B ≥4. 设 , , , 则( ).A 事件A 与B 互不相容 .B 事件A 与B 相互独立.C 事件A 与B 相互对立 .D 事件A 与B 互不独立5. 设随机事件 与 互不相容, 且 , 则 与 中恰有一个发生的概率等于( ).A p q + .B p q pq +-.C ()()11p q -- .D ()()11p q q p -+-6. 对于任意两事件 与 , ( ).A ()()P A P B - .B ()()()P A P B P AB -+.C ()()P A P AB - .D ()()()P A P A P AB +- 7. 若 、 互斥, 且 , 则下列式子成立的是( ).A ()()P A B P A = .B ()0P B A >.C ()()()P AB P A P B = .D ()0P B A =8. 设 , 则下列结论中正确的是( ).A 事件A 、B 互不相容 .B 事件A 、B 互逆.C 事件A 、B 相互独立 .D A B ⊃9. 设 、 互不相容, , 则下列结论肯定正确的是( ).A A 与B 互不相容 .B ()0P B A >.C ()()()P AB P A P B = .D ()()P A B P A -=10. 设 、 、 为三个事件, 已知 , 则 ( ).A 0.3 .B 0.24 .C 0.5 .D 0.2111. 设A, B 是两个随机事件, 且0<P(A)<1, P(B)>0, , 则必有(A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠(C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠12. 随机事件A, B, 满足 和 , 则有(A )Ω=⋃B A (B )φ=AB (C ) 1)(=⋃B A P (D )0)(=-B A P13. 设随机事件A 与B 互不相容, , , 则下面结论一定成立的是(A )A, B 为对立事件 (B ) , 互不相容 (C ) A, B 不独立 (D )A, B 独立14.对于事件A 和B, 设 , P(B)>0, 则下列各式正确的是(A ))()|(B P A B P = (B ))()|(A P B A P = (C ) )()(B P B A P =+ (D ))()(A P B A P =+15. 设事件A 与B 同时发生时, 事件C 必发生, 则(A )1)()()(-+≤B P A P C P (B )1)()()(-+≥B P A P C P(C ) )()(AB P C P = (D ))()(B A P C P ⋃=16. 设A,B,C 是三个相互独立的随机事件, 且0<P(C)<1。
大学 概率复习题

第一章 概率论的基本概念 1. 若事件B A ,满足21)|(,31)|(,41)(===B A P A B P A P ,则)(B A P = .2. 若事件B A ,满足7.0)(,4.0)(==B A P A P ,且5.0)|(=B A P ,则)|(A B P = .3. 设有两个相互独立事件A 与B 发生的概率分别为1p 和2p ,则两个事件恰好有一个发生的概率为4.()0.3P A =,()0.5P B =,若A 与B 相互独立,则()P AB = _.5.设B A ,为两个互不相容的事件,且()()0,0>>B P A P ,则 正确. A . ()1=AB P ; B . ()0=B A P ; C . B A =; D . Φ=-B A .6. 设有10件产品,其中有3件次品,从中任取3件,则3件中有次品的概率为( ) A.1201 B.247 C.2417 D.40217、盒中放有红、白两种球各若干个,从中任取3个球,设事件A=“3个中至少有1个白球”,事件B=“3个中恰好有一个白球”,则事件B -A =A .“至少2个白球”B .“恰好2个白球”C .“至少3个白球”D .“无白球”8. A ,B 为两个事件,若B A ⊂,则下列关系式正确的是 . A . )()(B P A P >; B . ()()P A P B ≤; C . 1)()(=+B P A P ; D . ()()P B P A >.9. 设甲袋中装有n只白球,m只红球,乙袋中装有N只白球,M只红球,今从甲袋中任取一个球放入乙袋中,再从乙袋中任意取出一只球.求:(1)从乙袋中取到白球的概率是多少?(2)若从乙袋中取到的是白球,则先前从甲袋中取到白球的概率是多少?10. 发报台分别以概率0.6和0.4发出信号“0”和“1”.由于通讯系统受到干扰,当发出信号“0”时,收报台未必收到信号“0”,而是以概率0.8和0.2收到信号“0”和“1”;同样,当发出信号“1”时,收报台分别以概率0.9和0.1收到信号“1”和“0”.求:(1)收报台收到“0”的概率;(2)当收报台收到信号“0”的时候,发报台确是发出信号“0”的概率.11. 某射击小组有20名射手,其中一级射手4人,二级射手8人,三级射手7人,四级射手1人。
《概率论与数理统计》复习题

《概率论与数理统计》复习题第一章:随机事件及其概率1.某射手向一目标射击两次,Ai表示事件“第i次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=()A.A1AB.A1A2C.A1A2D.A1A22.设A,B为两个互不相容事件,则下列各式错误的是()..A.P(AB)=0C.P(AB)=P(A)P(B)B.P(A∪B)=P(A)+P(B)D.P(B-A)=P(B)13.设事件A,B相互独立,且P(A)=,P(B)>0,则P(A|B)=()3A.1141B.C.D.1551534.已知P(A)=0.4,P(B)=0.5,且AB,则P(A|B)=()A.0B.0.4C.0.8D.15.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为()A.0.20B.0.30C.0.38D.0.573126.设A,B为两事件,已知P(A)=,P(A|B)=,P(B|A),则P (B)=()335A.1234B.C.D.55557.设随机事件A与B互不相容,且P(A)=0.2,P(A∪B)=0.6,则P(B)=________.8.设A,B为两个随机事件,且A与B相互独立,P(A)=0.3,P(B)=0.4,则P(AB)=__________.9.10件同类产品中有1件次品,现从中不放回地接连取2件产品,则在第一次取得正品的条件下,第二次取得次品的概率是________.10.某工厂一班组共有男工6人、女工4人,从中任选2名代表,则其中恰有1名女工的概率为________11.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为_________.12.一医生对某种疾病能正确确诊的概率为0.3,当诊断正确时,他能治愈的概率为0.8。
若未被确诊,病人能自然痊愈的概率为0.1。
①求病人能够痊愈的概率;②若某病人已经痊愈,问他是被医生确诊的概率是多少?第二章:随机变量及其分布1.下列函数中可作为某随机变量的概率密度的是()100,某100,A.某2某1000,10,某0,B.某0,某0131,某,D.222其他0,1,0某2,C.0,其他2.设随机变量某在[-1,2]上服从均匀分布,则随机变量某的概率密度f(某)为()1,1某2;A.f(某)30,其他.1,1某2;C.f(某)0,其他.3,1某2;B.f(某)0,其他.1,1某2;D.f(某)30,其他.13.设随机变量某~B3,,则P{某1}=()3A.181926B.C.D.272727274.设随机变量某在区间[2,4]上服从均匀分布,则P{2C.P{2.55.设离散型随机变量某的分布律如右,B.P{1.5某-101则常数C=_________.P2C0.4CA某2,0某1;6.设随机变量某的概率密度f(某)则常数A=_________.其他,0,某1;0,0.2,1某0;7.设离散型随机变量某的分布函数为F(某)=0.3,0某1;0.6,1某2;某2,1,8.设连续型随机变量某的分布函数为则P{某>1}=_________.0,某0,ππF(某)in某,0某,其概率密度为f(某),则f()=________.62π1,某,29.设随机变量某~N(2,22),则P{某≤0}=___________。
《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计
第一章 复习题
一、填空题
1.设()0.4,()0.5P A P B ==,当随机事件B A , 互不相容时,()_______P A B =;当随机事件B A , 相互独立时,()_______P A B =
2. 设B A ,是两个相互独立的事件,已知 ()0.2,()0.6P A P A B ==,则 =)(B P
3.已知3.0)(,7.0)(=-=B A P A P ,则 =)(AB P
4.据天气预报,某地第一天下雨的概率为0.6,第二天下雨的概率为0.3,两天都下雨的概率为0.1,则两天都不下雨的概率为
5. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081
,则该射手的命中率为______________
6. 某种动物由出生算起,活20岁以上的概率为0.8,活25岁以上的概率为0.4,如果现在有一个20岁的这种动物,问不能活到25岁以上的概率为______________
7.若12件产品中有3件次品,从中随机抽取3次,每次抽1件,作放回抽样, 则至少抽到1件次品的概率是 二、选择题
1.设B A ,是两个独立随机事件,若0)(=AB P ,则( )
(A) A 和B 互不相容 (B ) 0)(=B P
(C )0)(=A P 或 0)(=B P (D) 0)(=A P
2. 10件产品中有3件次品,从中随机抽出2件,至少抽到1件次品的概率 是( )
(A ) 31 (B ) 52 (C )157 (D) 15
8 3. 设A ,B 为随机事件,则()P A B -=( )
(A ))()(B P A P - (B )()()P A P AB -
(C )()()()P A P B P AB +- (D )()()()P A P B P AB -+
三、计算题
1. 已知一批产品的合格率为95%. 检查产品的质量时,一个合格品被误判为次品的概率为2%;一个次品被误判为合格品的概率为3%. 求
(1) 任意检查一个产品,它被判为合格品的概率;
(2) 一个经检查被判为合格品的产品确实是合格品的概率.
2.某地区电压呈三种状态,即高压状态,正常状态与低压状态,据以往的数据表明,这三种状态发生的概率分别为5﹪,85%与10﹪.某种家用电器在这三种状态
损坏的的概率依次为0.4,0.1和0.2.
(1)求该家用电器损坏的的概率;
(2)若该家用电器已损坏,求它是在高压状态下损坏的概率.。