基于小波变换的图像处理方法研究

基于小波变换的图像处理方法研究
基于小波变换的图像处理方法研究

图像增强是图像处理的一个重要分支,它对提高图像的质量起着重要的作用。它通过有选择地强调图像中某些信息而抑制另一些信息,以改善图像的视觉效果,将图像转换成一种更适合于人眼观察和计算机进行分析处理的形式。传统的方法在增强图像对比度的同时也会增强图像噪声,而小波变换是多尺度多分辨率的分解方式,可以将噪声和信号在不同尺度上分开,根据噪声分布的规律就可以达到图像增强的目的。

本文首先对传统图像增强理论进行概述,并给出直方图均衡化与灰度变换算法,通过matlab来观察其处理效果的特点,然后提出四种基于小波变换的图像增强方法,并分析它们与传统图像增强方法相比的优缺点,最后基于传统小波变换只能增强图像边缘部分而无法增强细节部分的缺点,引出了基于分数阶微分和小波分解的图像增强方法,并通过matlab观察了这种算法的处理效果。

关键词:图像增强;直方图均衡化;小波变换;分数阶微分

Image enhancement is an important branch in image processing.It plays an important role in improving the quality of the images.It will improve the image visual effect through emphasizing the image information and inhibitting some other information selectively.It will converse images into a form more suitable for the human eye observation and computer analysis processing.The traditional method of image enhancement will enhance image contrast,image noise as well,while wavelet transform is a decompositon method of multi-scale and multi-resolution,it can separet noise from signal in different scale so that it can arrive the purpose of image enhancement according to the distribution of the noise.

In the paper,firstly, I will summarize the image enhancement theory and give the Histogram equalization algorithm,at the same time,I will analyze the disadvantages of the treatment effect through the Matlab.Then,I will give an image enhancement method based on the wavelet transform and analyze its advantages and disadvantages compared with traditional methods.Finally,because traditional wavelet transformation can only strengthen the edge of images instead of the details,we will introduce the image enhancement based on wavelet decomposition and fractional differentials.At the same time,we will observe the treatment effect of this algorithm by the matlab..

Keywords: Image enhancement; Histogram equalization; Wavelet transform; Fractional differenti

目录

第一章绪论 (1)

1.1 论文研究的背景和意义 (1)

1.2 国内的研究状况 (1)

1.3 论文的主要内容 (2)

第二章图像增强的传统方法 (3)

2.1 灰度变换法 (3)

2.1.1 图像反转 (3)

2.1.2 对数变换 (3)

2.1.3 分段线性变换 (4)

2.2 直方图调整法 (5)

第三章小波变换的理论基础 (8)

3.1 小波变换与傅里叶变换 (8)

3.1.1 小波变换的理论基础 (8)

3.1.2 小波变换和傅里叶变换的比较 (8)

3.2 小波变换基本理论 (9)

3.2.1 一维连续小波变换(CWT) (9)

3.2.2 一维离散小波变换(DWT) (10)

3.2.4 二维离散小波变换 (11)

3.3 小波变换的多尺度分析 (11)

第四章基于小波变换的图像增强 (13)

4.1 小波变换图像增强原理 (13)

4.2 小波变换图像增强算法 (14)

4.2.1 非线性增强 (14)

4.2.2 图像钝化 (14)

4.2.3图像锐化 (15)

4.2.4 基于小波变换的图像阈值去噪 (16)

4.3 改进的基于小波变换的图像增强算法 (17)

4.3.1 分数阶微分用于图像增强理论 (17)

4.2.2 分数阶微分滤波器的构造 (19)

4.2.3 基于分数阶微分和小波分解的图像增强 (20)

4.2.4 小波分解层次与分数阶微分阶次对图像处理结果的影响 (23)

第五章结论 (26)

致谢 (27)

参考文献 (28)

第一章绪论

1.1 论文研究的背景和意义

在我们所处的信息社会,人们对于信息获取和交流的要求越来越高,从而促进了信息处理和应用技术的飞速发展。图像,作为直观的信息表达和反映形式,越来越广泛地被应用于社会生活的各个方面。而图像处理技术,也随着人们要求的不断提高,应用领域的不断扩大而快速发展更新。

人们要求高质量的图像,不仅仅是为了满足视觉需要,更因为在信号分析、通信技术和计算机科学的各个方面,都需要对各种图像进行分析处理从而得出结论和相关数据。但事实上,由于客观环境和条件的限制,图像往往会受到各种噪声的污染,给后期的识别和利用造成困难,所以图像的增强和降噪,很自然就成为了现代图像处理技术中的重要组成部分。

小波分析是近些年来国际上掀起热潮的一个国际前沿领域,它在时(空)域和频域上同时具有的良好局部化性质以及多分辨率分析的特性,使之被广泛的应用于信号和图像处理中。由于噪声和边缘点在不同小波系数上所体现的不同特性,小波变换为我们希望兼顾增强图像特性和减小噪声放大提供了可能途径,所以,人们希望将这一数学工具运用于图像处理,取得比较好的图像增强和去噪效果。[1]

1.2 国内的研究状况

国内的图像增强技术的发展大致经历了初创期、发展期、普及期和应用期4个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。这一时期由于图像存储成本高,处理设备造价高,因而其应用面窄。20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式。20世纪80年代进入了普及期,此时的计算机已经能够承担起图形图像的处理任务。20世纪90年代进入应用期,人们运用图像增强技术处理和分析遥感图像,以有效地进行资源和矿藏的勘探、调查、农业和城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。图像增强是图像处理的重要组成部分,传统的图像增强对于改善

图像质量发挥了极其重要的作用。随着对图像技术研究的不断深入和发展,新的图像增强方法不断出现。其中基于小波变换的图像增强方法得到了广泛的应用,近年来,基于分数阶微分的图像增强在图像处理领域也拥有了广阔的应用前景。

1.3 论文的主要内容

本论文以小波分析理论为基础,主要研究了基于小波变换的图像增强和分数阶微分增强。论文主要通过分析传统图像增强(主要为直方图均衡化)的缺点来突出基于小波变换的图像增强的优点。同时给出各种增强方法的算法。

全文共分为五章,具体安排如下:

第一章绪论。介绍论文研究的背景意义、国内外的发展状况、研究的主要内容及结构安排。

第二章图像增强的传统方法。主要介绍了灰度变换和直方图均衡化的基本原理。

第三章小波变换的理论基础。

第四章基于小波变换的图像增强。主要研究了传统的小波变换图像增强和加入分数阶微分的小波变换图像增强,并对比分析了各种方法的优缺点。

第五章总结。总结本文的研究内容。

第二章 图像增强的传统方法

2.1 灰度变换法

灰度即使用黑色调表示物体。每个灰度对象都具有从0%(白色)到100%(黑色)的亮度值。灰度变换处理是图像增强处理技术中一种非常基础、直接的空间域图像处理方法,也是图像数字化和图像显示的一个重要组成部分。灰度变换主要是针对独立的像素点进行处理,通过改变原始图像数据所占有的灰度范围而使图像在视觉上得以改观。灰度变换图像反转、对数变换和分段线性变换等。

2.1.1 图像反转

图像反转简单来说就是使黑变白,使白变黑,将原始图像的灰度值进行反转,使输出图像的灰度随输入图像的增加而减少。假设对灰度级范围是()1,0-L 的图像求反,就是通过变换将()1,0-L 变换到()0,1-L ,变换公式为:t=L-1-s (2.1) 变换图像如图

2.1

原图

反转后的图像

(a)

(b) 图2.1 原始图像和经反转增强后的图像 由图2.1可以看到,反转后的图像有黑变白由白变黑了。

2.1.2 对数变换

对数变换的一般表达式为:

)1log(r c S += (2.2)

其中c 是一个常数,并假设0≥r ,此变换使一窄带低灰度输入图像值映射为一宽带输入值。可以利用这种变换来扩展被压缩的高值图像中的暗像素。相对

的是反对数变换的调整值。转换图如图2.2:

图经对数变换增强后的图像

(a)

(b)

图2.2 经对数变换增强后的图像 由图2.2可知,经对数变换后图像明显变亮了。

2.1.3 分段线性变换

分段线性变换函数是前两种灰度变换的补充,它的优势在于形式可任意合成。它的目的在于感兴趣区间增强,不感兴趣区间抑制,分段线性函数的主要缺点是需要更多的用户输入。其公式为[3]:

?????????+---+---=d b y x f b m d m c

a y x f a

b c d y x f a c y x g f g ]),([]),([),(),( f m y x f b b y x f a a y x f ≤≤≤≤≤≤),(),(),(0 (2.3)

f m 表示),(y x f 的最大值,(2.3)式表示原图像),(y x f 的灰度取值范围由[]b a ,扩展到了[]d c ,,其中实现了[]b a ,的行拉伸,对[]a ,0和[]f m b ,的抑制。通过对(2.3)式中不同参数的调整,改变线段的斜率,可以实现对任意灰度区间进行拉伸或抑制,从而凸显出图像中感兴趣的区域。其增强图(2.3)所示:

0100200

0100

200

(c)分段函数

(a)原

图(b)增强后的图像

图2.3 经分段线性变换增强后的图像

2.2 直方图调整法

直方图调整法最常用的是直方图均衡化。

直方图均衡是图像对比度增强中一种有效的算法,主要通过增加图像灰度值的动态范围增加对比度,以致图像具有较大的反差,大部分细节比较清晰。直方图均衡法建立在概率论的基础上,设图像的灰度级是一个连续的随机变量,将灰度级进行归一化,可以证明:当灰度级[])1,0(∈r r 的分布为均匀分布时,图像的信息熵最大。在数字图像中,灰度级是离散值,在进行直方图均衡处理时,往往是用灰度频数近似代替概率值,因此得到的结果只是一个近似均匀的直方图分布。

为了研究方便,往往先将直方图归一化,即将原图像灰度范围归一化到[]1,0之间,假设r 和s 分别代表原图和均衡化后图像的灰度级,做以下灰度级变换)(r T s =。

为使这种灰度变换具有实际意义,规定T 满足如下条件:

(1) 在10≤≤r 区间内,)(r T 为单调增加;

(2) 对10≤≤r ,对应有1)(0≤≤r T 。

条件(1)使变换后的灰度值保持从黑到白的次序,且保持若)(r T 已知则其逆变换)(1s T -存在;条件(2)保证变换后的像素灰度级仍在归一化的范围内。

通常把r 和s 分别看成两个随机变量,设)(r p r 和)(s p s 分别是r 和s 的概率密度函数。由概率论的基本理论可知:若)(r p r 和)(r T 的逆)(1s T -已知,则有:

ds

dr r p s p r s )()(= (2.4) 也就是说,均衡化(变换)后的图像s 的概率密度函数)(s p s 是由原图的概率密度函数)(r p r 和所选择的变换函数)(r T s =所决定的。换一句话说,直方图均衡图像增强技术的实质,就是选用合适的变换函数)(r T 来修正图像灰度级r 的概率密度函数)(r p r ,从而得到灰度级具有)(s p s 的新图像。

)(r T 往往根据需要来选择,为了能从图像中获得尽量多的信息量,常常要求)(r p r 为一常数,即所谓直方图均衡化。图像中所有灰度出现频率相等的图像,所包含的信息量最大。为此,选取

ωωd p r T s r

r )()(0?== (2.5) 即,选取变换函数为原图像概率密度函数的分布函数,则显然)(r T 满足条件

(1)和条件(2),又

)())(()(0

r p d p dr d dr r dT dr ds r r r ?===ωω (2.6) 所以, 1)

(1)()()(===r p r p ds dr r p s p r r r s (2.7) 故,这样选取的)(r T 满足均衡化要求,使得均衡化后的图像灰度级是均匀分布的。这意味着图像灰度的动态范围得到增强,从而提高了图像的对比度。

在实际应用中,往往处理的是离散化后的数字图像。设离散化后图像的灰度级为,,,,,1210-L r r r r 其中L 是最大灰度级。k r 的概率为

)1,,2,1,0()(-==L k n

n r p k k r (2.8) 其中,n 是数字图像的像素总数,k n 是灰度级为k r 的像素个数。离散化后的变换函数为: )()(0j k

j r k k r p r T s ∑=== 1,,2,1,0-=L k (2.9)

利用(2.9)式可以把灰度级为k r 的像素映射成相应的灰度级为k s 的像素,从而实现均衡化。在上式中,用灰度频数来近似代替概率值,因而得到的结果是一个近似均匀的直方图分布[4]

。图2.4是采用直方图方式进行增强的例子:

(a)原

图0100200

(c)原图的灰度直方图

(b)原图直方图均衡化0100200

0 (d)均衡后的灰度直方图

图2.4 直方图均衡化增强算法

由图2.4可知,原图的灰度范围大约是100到200之间,灰度范围比较狭窄,所以整体上看对比度比较差,而直方图均衡化后,灰度几乎是均匀的分布在0到255的范围内,图像明暗分明,对比度很大,图像比较清晰明亮,很好地改善了原始图像的视觉效果。这说明直方图均衡化能够使处理后图像的概率密度函数服从均匀分布,扩张了像素值的动态范围。但这种方法不能抑制噪声,增强了图像的同时也增强了噪声。

第三章 小波变换的理论基础

3.1 小波变换与傅里叶变换

3.1.1 小波变换的理论基础

小波变换是一种信号的时间-尺度分析方法,具有多分辨率分析的特点,而且在时间域和频率域都具有表征信号局部特征的能力,是一种时间窗和频率窗都可以改变的时频局部化分析方法。在低频部分具有较高的频率分辨率和较低的时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合探测正常信号中夹带的瞬态反常现象并展示其成分,正是这种特性使小波变换具有对信号的自适应性[5]

3.1.2 小波变换和傅里叶变换的比较

傅里叶变换广泛应用于信号处理,但它只能较好地应用于平稳信号,只能提供信号的全局信息,缺少信号的局部信息。Gabor 引入局部傅里叶变换,通过一个滑动窗,可以实现时频分析,这种方法具有局部化分析能力,但对于一个固定窗函数,它的分辨率也是固定的,只能应用于平稳信号的分析,对非平稳信号就无法分析。小波变换产生于传统傅里叶分析和短时傅里叶分析,能体现信号的局部信息,而且可以调整时间分辨率和频率分辨率的尺度,对非平稳信号的分析取得了较好的效果。

小波变换的理论基础来源于傅里叶分析,与傅里叶变换紧密联系在一起,傅里叶变换是小波基构造的主要理论依据,二者是相辅相成的,小波变换是对傅里叶变换的发展与提升。两者之间主要有如下差别:

(1) 傅里叶变换以}{t j e ω为正交基,然后把能量有限信号)(t f 分解到正交基对应的空间上去;小波变换以),,2,1(J j W j =-和j V -所构成的空间,再把能量有限信号)(t f 分解到),,2,1(J j W j =-和j V -构成的空间上。

(2) 傅里叶变换的公式是固定的;小波分析中的小波函数具有多样性,在实际应用中,用不同的小波函数处理同一问题时,其处理结果有时会大相径庭。因此怎么选择小波函数处理实际问题是小波变换在应用中的一个难题,现有的方法是通过反复实验,通过对实验结果的比较,选择效果好的小波函数。

(3) 傅里叶变换在频域中,尤其是作用到一些较平稳的信号,取得了较好局部化效果,傅里叶变换中的ωωd f )(^表示频率为ω的谐波分量的振幅,)(t f 的全局特性决定了ωωd f )(^。

(4) 小波分析中的尺度a 相当于傅里叶变换中的ω,a 值越大对应ω的值越小。

(5) STFT 的变换系数),(τωS 取决于区间[]δτδτ+-,的信号,δ是由函数)(t g 唯一确定,时间宽度固定为δ2。小波变换的变换系数),(b a W i 取决于区间[]ψψ?+?-a b a b ,的信号情况,其时间宽度为ψ?a 2,该时间宽度由尺度a 决定,随a 变化而变化的,因此小波变换和傅里叶变换相比更具灵活性。

3.2 小波变换基本理论

3.2.1 一维连续小波变换(CWT )

在Fourier 变换?∞

∞--=dx e t f F jx )()(ω中,用小波基函数)(x ψ做平移和伸缩变换,得到函数??? ??-a b x ψ,用??

? ??-a b x ψ代替傅里叶变换的基函数jx e 的伸缩函数x j e ω,得到的新变换就称为连续小波变换,具体定义如下:

函数)()(2R L x ∈ψ称为小波函数(又叫基本小波或母小波),如果满足准许条件:

∞<=?

∞+∞-ωωωψ?d C 2^)

( (3.1) 其中()ωψ^为()ωψ的Fourier 变换,则连续小波变换定义为: dx a

b x x f a b a f W )()(1

),)((*?+∞

∞--=ψ? (3.2) 式中:R b a ∈,且a a ,0≠为缩放因子(对应于频率信息);b 为平移参数(对应于时空信息);)(*x ψ表示)(x ψ的复共轭。准许条件在)()(2R L t f ∈下可以等价地表示为:

?+∞

∞-=0)(dt t ψ (3.3) 小波变换结果为各种小波系数,这些系数由尺度和位移函数组成。

3.2.2 一维离散小波变换(DWT ) dadb x b a f W a C x f b a R )(),)((1

)(,22

ψ????-= (3.4) 令11,b b a a ==,则

dt t t f b a f W b a R

)()(),)((11,11?-=ψ

? dt t dbda t b a f W a C b a b a R

)(])(),)((1[111,02-+∞+∞∞-???=ψψψψ dbda dt t t C b a f W a

b a R b a ])()(1)[,)((111,02-+∞+∞

∞-???=ψψψψ dbda b b a a K b a f W a ),,,(),)((11102ψψ??+∞+∞∞

-= (3.5) 式中,dt t t C b b a a K b a R

b a )()(1),,,(11,11-?=ψψψψ称之为再生核。显然,当)(,t b a ψ与()t b a 11,ψ正交时,0),,,(11=b b a a K ψ,即这时),)((b a f W ψ对),)((11b a f W ψ “没有贡献”。小波的尺度当0=j 时,取00b a b j =,下面小波函数可以实现离散化且不丢

失信息: ()

0020,)(kb t a a t j j

k j -=--ψω Z k j ∈, (3.6) 根据以上的讨论,离散小波变换的定义如下:

设()()0,02,>∈a R L t b a ψ是常数,()()

k t a a t j j

k j -=--020,ψψ ()Z k j ∈,.则称 dt t t f k j f W k

j R a )()(),)((,?-

(3.7) 为()t f 的离散小波变换。特别地,取20=a ,则称以离散小波函数

()()k t a a t j j

k j -=--02

0,ψ ()Z k j ∈,为函数的(3.7)式变换称为二进制小波变换。 3.2.3 二维连续小波变换

若信号函数()()()y x R L y x f ,,,2ψ∈为二维小波母函数,则其构造可由一维母

小波的张量积形成。

()??

? ??--=a c y a b x a y x c b a ,1,,,ψψR c b a ∈,,且0≠a (3.8) 因为图像信号是一种二维信号,所以将一维小波扩展为二维情况,便于后续的使用和分析。

()dxdy a c y a

b x y x f a

c b a f W ??? ??--=??,,1

),,)((ψψ (3.9) 3.2.4 二维离散小波变换

我们只要把参数c b a ,,离散化0000020010,,,,,c b a a c k c a b k b a a j j j ---===为常

数,Z k k j ∈21,,,则有离散参数变换:

()()

()dxdy c k y a b k x a y x f a k k j DPWT j j j 020010021,,,,--=??ψ (3.10) 将y x ,离散化,即得到离散空间小波变换:

),(),(),,(022001102102112

c k l a b k l a l l f a k k j DSWT j

j l l j --=∑∑ψZ l l ∈21, (3.11) 令1,2000===c b a ,即得到离散小波变换,表示为:

)2,2(),(2),,(2211212112

k l k l l l f k k j DW T j j i i j --=∑∑ψ Z l l ∈21, (3.12)

3.3 小波变换的多尺度分析

小波变换的多尺度分析(或多分辨率分析)是建立在函数空间概念上的理论,随着尺度由大到小变化,在每个尺度上可以由粗及细地观察图像的目标。大尺度

时,观察到的是图像的基本特征;在小尺度的空间里,则可以看到目标的细节。

把二维图像信号)(),(22R L y x f ∈所占据的总频带定义为),()2(0y x V 空间,用理想的低通滤波器0h 和高通滤波器1h 在行、列方向将它们分别分解成低频部分)()1(1x V 和高频部分,)1(1W 每一方向的两部分分别反映出该图像信号在剖分方向上的概貌和细节;对于)()()1(1)1(1y V x V ?经第二级()2=a 分解后又被剖分成低频)()()1(2)1(2y V x V ?、垂直方向的高频)()()1(2)1(2y W x V ?、以及对角线方向的高频)()()1(2)1(2y W x W ?,......,在这种空间剖分过程中,),)(()1(y x i i V j =反映的是图

像信号在空间),()2(1y x V j -中沿i 方向的低频子空间,),)(()1(y x i i W j =反映的是图像

信号在空间),()2(1y x W j -中沿i 方向细节的高频子空间。

从多分辨率分析可以看出,空间的每次剖分包含两部分:一部分是图像信号通过低通滤波后得到的低频概貌;另一部分是通过带通滤波(小波变换)得到的图像高频细节。对于低频概貌,重复以上过程,最终把图像信号分解成多个等级的高频细节与最后一次低通滤波后的低频概貌之和。

在剖分过程中,这些子空间具有以下特征:

(1) 单调性:1-?j j V V 对于任意Z j ∈;

(2) 逼近性:{});(,02R L V V j Z

j j Z j =?=∈∈?

(3) 伸缩性:()()12-∈?∈j j V t f V t f ;

(4) 平移不变性: ()()

j j j V k t f V t f ∈-?∈2;

满足的上述性质称为多尺度分析,即任意函数),(),()2(0y x V y x f ∈,应用多尺度分析将其分解为细节部分或是某一方向上的细节部分和()y x f ,的基本特征部分)()()1()1(y V x V i i ?,然后将)()()1()1(y V x V i i ?进一步分解,可得到任意尺度下

()y x f ,基本特征部分以及细节部分之和【1】。

第四章基于小波变换的图像增强

4.1 小波变换图像增强原理

图像增强技术中的一个难点,就是在去除噪声的同时,会造成图像细节信息的损失,从而给后续的处理以及分析工作带来困难。因此如何将同在高频区域的噪声和图像细节信息准确地分离开,就成为解决问题的关键。【6】

由于小波变换的多分辨率分析,能够有效地抑制噪声,增强图像感兴趣部分,因而小波变换图像增强得到了广泛的应用。小波变换把图像在各个尺度上分为低频分量和水平高频,垂直高频,对角高频四个不同的分量,变换后,根据图像需要增强处理的需要,对不同位置不同方向上的某些分量改变其小波系数的大小,从而使得某些感兴趣的分量被放大而使得某些不需要的分量减小,实际应用中,通过对高频部分分量进行变换,经过处理就能达到增强图像的目的。图4.1是经两尺度小波变换分解后图像的各个层次分量,其中LL是低频部分,它代表图像的主要内容信息,集中了图像的绝大部分能量,而HL,LH和HH是高频部分,分别代表图像水平方向、垂直方向和对角线方向的细节。如果对图像的低频部分继续进一步做小波分解,就可以得到多个尺度的图像时频信息。

图4.1 两尺度小波分解图

由图4.1可知,数字图像的小波分解实质上就是把图像信号分解成不同频带范围内的图像分量。每一层小波分解都将待分解图像分解成4个子带,很好地分离出表示图像内容的低频信息。因此,小波变换能在不同的尺度上,采用不同的方法来增强不同频率范围内图像的细节分量,再把处理后的系数进行小波重建,这样就能够在突出图像细节特征的同时,有效抑制图像噪声的影响,使图像轮廓

更加突出。[4]

4.2 小波变换图像增强算法

4.2.1 非线性增强

具体实现步骤如下[5]

(1) 读入原图像。

(2) 对原始图像进行小波分解,得到低频子带LL 和三个高频子带LH 、HL 、HH (细节部分);

(3) 对高频系数进行非线性增强,这样达到去噪并增强的目的,其函数满足:

?????---+=***)1(),(),()1(),(),(11T G j i W j i W G T G j i W j i W in in in out 111),(),(),(T j i W T j i W T j i W in in in -<≤> (4.1)

其中G 是小波系数增强倍数,1T 是小波系数阈值,),(j i W in 是图像分解后的小波系数,),(j i W out 是图像增强后小波系数。

(4) 将处理后的两种小波系数进行小波逆变换,从而得出增强后的图像(输出图像)

具体实例如图4.2:

(a)原图5010015020025050

100

150

200

250

(b)2层小波增强图像

5010015020025050100150200

250

图4.2 非线性小波增强

由图4.2观察可知,经非线性小波增强后,图像的对比度明显增强,噪声得到了有效抑制,但丢失了某些细节信息。

4.2.2 图像钝化

钝化操作主要是提取图像中的低频成分,抑制尖锐的快速变化的成分,在图像时域中的处理时,只需要把图像作用于一个平滑滤波器,使得图像中的每个点与其相邻点做平滑即可[1]。

图4.3以一个多面体为例,分析传统的离散傅里叶变换(DCT )对图像钝化与小波变换对图像钝化的优缺点:

原图

5010015020025050

100

150

200

250

传统DCT 钝化5010015020025050100150200

250小波变换钝化5010015020025050100150200

250

图4.3 基于DCT 与小波变换的图像钝化

由图4.3可知,采用DCT 在频域滤波的方法得到的钝化结果更为平滑,这是因为其分辨率高,而小波方法得到的结果在很多地方有不连续的现象,因为对系数做放大或抑制在阈值两侧有间断,而且分解层数很低,没有完全分离出频域的信息。而且我们在做系数放大或抑制的时候,采用的标准根据系数绝对值的大小,没有完全体现出其位置信息,但是在小波系数中,我们很容易在处理系数的过程中加入位置信息。

4.2.3 图像锐化

图像锐化就是把图像中尖锐的部分尽可能地提取出来,用于检测和识别等领域。它的任务是突出高频信息,抑制低频信息,从快速变化的成分中分离出标识系统特性或区分子系统边界的成分,以便进一步的识别、分割等操作。锐化的方法是作用掩膜或做差分,二者均很难识别点之间的关联信息[1]。

(a) 原图

5010015020025050

100

150

200

250

(b) 传统DCT 锐化50100150200250

50100150200250(c) 小波变换锐化50100150200250

50100150200250

图4.4 基于DCT 与小波变换的图像锐化

图4.4是采用DCT 与小波变换锐化的实例。

由图4.4可知:

(1) 使用DCT 方法进行高通滤波得到的高频结果比较纯粹,完全是原图像上的边缘信息,而使用小波方法,不仅只有高频成分,还有变换非常缓慢的低频成分,这是因为二者同样在小波系数上体现为绝对值较低的部分。

(2) 时间复杂度:DCT 需做两次DCT 变换,每次复杂度为○()log n n ,还有一次中间系数处理,复杂度为○)(n ,总共复杂度为2○()log n n +○)(n ;小波变换分解,重构与系数处理的复杂度均为○)(n ,共为3○)(n ,时间复杂度明显少于DCT.

4.2.4 基于小波变换的图像阈值去噪

(1) 思想:由于图像和噪声经小波变换后有不同的统计特性,图像本身的能量对应着幅值较大的小波系数,主要集中在高频;噪声能量则对应着幅值较小的小波系数,并分散在小波变换后的所有系数中。根据这一特性,设置一个阈值门限,认为大于该阈值的小波系数的主要成分为有用信号,给与收缩后保留;小于该阈值的小波系数,主要成分为噪声,予以剔除,一次达到去噪目的。

(2) 步骤:

① 图像信号的小波分解:选择一个小波和小波分解层次N ,然后计算信号S 到第N 层的分解。

② 对高频系数进行阈值量化:对于从1到N 的每一层,选择一个阈值,并对这一层的高频系数进行阈值量化处理。

③ 二维小波的重构:根据小波分解的第N 层的低频系数和经过修改的从第一层到第N 层的各层高频系数计算二维信号的小波重构。具体实例如图4.5:

原始图像

50100150200250

50100150

200

250

含噪声图像50100150200250

50100150200250第一次去噪图像50100150200250

50100150200250第二次去噪图像50100150200250

50100150200250

图4.5 基于小波变换的阈值图像降噪

由图4.5可知,第一次去噪已经滤去了大部分的高频噪声,但与原图相比,

仍含有不少的高频噪声;第二次去噪是在第一次去噪的基础上,再次滤除高频噪声,具有较好的效果。

4.3 改进的基于小波变换的图像增强算法

图像增强就是锐化高频部分的同时平滑图像的低频成分。近年来,采用分数阶微分理论进行图像处理是一个新的热点。[7]

接下来将讨论基于小波分解与分数阶微分的图像增强算法。

4.3.1 分数阶微分用于图像增强理论

分数阶微分是由整数阶微分推衍而来,它包括了通常的整数阶微分运算,但又是整数阶微分运算的扩展,一般将微分阶次为非整数的微分称为分数阶微分。对于10<

则()t f 的v 阶导数定义为 )()1()1()1(1lim 0

0mh t f m v v h D h a t m m v h v t G -+-Γ+Γ-=∑-=→α (4.1)其中Gamma 函数: ()()!101?∞

---==Γn dt t e n n t (4.2)

若一元信号()t f 的持续时间为[]t a t ,∈,将信号持续时间[]t a ,按单位1=h 等

分,得到??a t h a t n h -=??

????-==1,可以推导出一元信号分数阶微分的差分近似表达式()()()()()()()()() +-++-Γ+-Γ++-+--+--+≈n t f n v n v t f v v t f v t f dt t f d v

v 1!12211)( (4.3)

基于小波变换的图像融合

基于小波变换的图像融合 摘要:图像融合是通过某种算法,将两幅或多幅不同的图像进行合并以形成一一幅新的图像的过程,其的主要目的是通过对多幅图像间的冗余数据的处理来提高图像的可靠性,通过对多幅图像间的互补信息的处理来提高图像的清晰度。本文的研究重点是基于小波变换实现图像的初步融合,完成将两幅不同的图像进行合并以形成一幅新的图像。关键词:图像融合,小波变换,融合算法,图像信息 Abstract The image fusi on is a procedure that comb ine more tha n two images in order to get a new image, and it ' s main purpose of image fusi on of multiple images is enhance the reliability of image through deal with the ultra data of the in itial image, and improve the defi niti on of the image through deal with the compleme ntary in formatio n of the images. The key point of this article is realized the image fusi on based on the wavelet tran sform and comb ines two images to get a new image. Key Words : image fusion, wavelet transform, fusion algorithm, image in formatio n 一、引言 图像融合是通过某种算法,将两幅或多幅不同的图像进行合并以形成一幅新的图像的过程。在众多的图像融合技术,基于小波变换的图像融合方法已成为现今的个热点,图像融合技术是数据融合技术的一种特定情形,它是以图像的形式来表达具 体的信息,它对人的视觉产生作用。图像融合具体来说是根据某一算法,将所获得的针对同一目标场景的多幅配准后的图像进行综合处理,从而得到一幅新的、满足某种条件的、对目标或场景的描述更为准确、更为全面、更为可靠的图像。融合后的图像应该比原始图像更加清晰可靠和易于分辨。图像融合充分利用了多个原始图像所包含的冗余信息和互补信息,能够起到扩大传感范围、提高系统可靠性和图像信息利用率的作用。 二、小波变换图像融合 传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性。在实际应用中人们开始对Fourier变换进行各种 改进,小波分析由此产生了。小波分析是一种新兴的数学分支,它是泛函数、Fourier 分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier分析之后的又 一有效的时频分析方法。小波变换与Fourier变换相比,是一个时间和频域的局域 变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis ),解决了Fourier变换不能解决的许多困难问题。 近些年来,小波变换倍受科技界的重视,它不仅在数学上已形成了一个新的分支,

数字图像处理课程设计-小波变换

摘要 小波变换的理论是近年来兴起的新的数学分支,素有“数学显微镜”的美称。它是继1822年傅立叶提出傅立叶变换之后又一里程碑式的领域,解决了很多傅立叶变换不能解决的困难问题。小波变换可以使得信号的低频长时特性和高频短时特性同时得到处理,具有良好的局部化性质,能有效地克服傅氏变换在处理非平稳复杂信号时存在的局限性,具有极强的自适应性,因此在图像处理中具有极好应用价值。本设计主要分析了基于小波变换的图像分解和图像压缩技术,并运用Matlab软件对图像进行分解,然后提取其中与原图像近似的低频信息,达到对图像进行压缩的目的。分别作第一层分解和第二层分解,并比较图像压缩的效果。 关键词:小波变换;Matlab;图像分解;图像压缩

目录 摘要 ..................................................................................................... I 第1章绪论 (1) 1.1设计背景 (1) 1.2设计要求 (1) 1.3设计思路简介 (1) 第2章小波变换处理图像设计过程 (2) 2.1小波变换的分解和重构算法 (2) 2.2小波变换在图像压缩中的应用 (4) 第3章软件设计与仿真 (6) 3.1MATLAB程序 (6) 3.2结果及分析 (7) 第4章总结与展望 (9) 参考文献 (10)

第1章绪论 1.1设计背景 小波分析是当前应用数学和工程学科中一个迅速发展的新领域,经过近10年的探索研究,重要的数学形式化体系已经建立,理论基础更加扎实。与Fourier变换相比,小波变换是空间(时间)和频率的局部变换,因而能有效地从信号中提取信息。通过伸缩和平移等运算功能可对函数或信号进行多尺度的细化分析,解决了Fourier变换不能解决的许多困难问题。小波变换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘探等多个学科。小波分析是一个新的数学分支,它是泛函分析、Fourier分析、样调分析、数值分析的完美结晶;小波分析是时间—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、计算机视觉、数据压缩、地震勘探、大气与海洋波分析等方面的研究都取得了有科学意义和应用价值的成果。 1.2设计要求 利用小波变换的基本原理在MATLAB环境下编写程序对静态图像进行分解并压缩,并观察分析其处理效果。 1.3设计思路简介 一个图像作小波分解后,可得到一系列不同分辨率的子图像,不同分辨率的子图像对应的频率是不相同的。高分辨率(即高频)子图像上大部分点都接近于0,越是高频这种现象越明显。对一个图像来说,表现一个图像最主要的部分是低频部分,所以利用小波分解就可以达到去掉图像的高频部分而只保留低频部分的目的。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其它编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 本设计利用MATLAB工具箱中的Wavele Toolbox——小波工具箱对图像进行小波变换。

数字图像处理教学大纲(2014新版)

数字图像处理 课程编码:3073009223 课程名称:数字图像处理 总学分: 2 总学时:32 (讲课28,实验4) 课程英文名称:Digital Image Processing 先修课程:概率论与数理统计、线性代数、C++程序设计 适用专业:自动化专业等 一、课程性质、地位和任务 数字图像处理课程是自动化专业的专业选修课。本课程着重于培养学生解决智能化检测与控制中应用问题的初步能力,为在计算机视觉、模式识别等领域从事研究与开发打下坚实的理论基础。主要任务是学习数字图像处理的基本概念、基本原理、实现方法和实用技术,并能应用这些基本方法开发数字图像处理系统,为学习图像处理新方法奠定理论基础。 二、教学目标及要求 1.了解图像处理的概念及图像处理系统组成。 2.掌握数字图像处理中的灰度变换和空间滤波的各种方法。 3.了解图像变换,主要是离散和快速傅里叶变换等的原理及性质。 4.理解图像复原与重建技术中空间域和频域滤波的各种方法。 5. 理解解彩色图像的基础概念、模型和处理方法。 6. 了解形态学图像处理技术。 7. 了解图像分割的基本概念和方法。 三、教学内容及安排 第一章:绪论(2学时) 教学目标:了解数字图像处理的基本概念,发展历史,应用领域和研究内容。通过大量的实例讲解数字图像处理的应用领域;了解数字图像处理的基本步骤;了解图像处理系统的组成。 重点难点:数字图像处理基本步骤和图像处理系统的各组成部分构成。 1.1 什么是数字图像处理 1.2 数字图像处理的起源

1.3.1 伽马射线成像 1.3.2 X射线成像 1.3.3 紫外波段成像 1.3.4 可见光及红外波段成像 1.3.5 微波波段成像 1.3.6 无线电波成像 1.3.7 使用其他成像方式的例子 1.4 数字图像处理的基本步骤 1.5 图像处理系统的组成 第二章:数字图像基础(4学时) 教学目标:了解视觉感知要素;了解几种常用的图像获取方法;掌握图像的数字化过程及其图像分辨率之间的关系;掌握像素间的联系的概念;了解数字图像处理中的常用数学工具。 重点难点:要求重点掌握图像数字化过程及图像中像素的联系。 2.1 视觉感知要素(1学时) 2.1.1 人眼的构造 2.1.2 眼镜中图像的形成 2.1.3 亮度适应和辨别 2.2 光和电磁波谱 2.3 图像感知和获取(1学时) 2.3.1 用单个传感器获取图像 2.3.2 用条带传感器获取图像 2.3.3 用传感器阵列获取图像 2.3.4 简单的图像形成模型 2.4 图像取样和量化(1学时) 2.4.1 取样和量化的基本概念 2.4.2 数字图像表示 2.4.3 空间和灰度级分辨率 2.4.4 图像内插 2.5 像素间的一些基本关系(1学时) 2.5.1 相邻像素 2.5.2 临接性、连通性、区域和边界 2.5.3 距离度量 2.6 数字图像处理中所用数学工具的介绍 2.6.1 阵列与矩阵操作

基于小波变换的图像处理.

基于小波变换的数字图像处理 摘要:本文先介绍了小波分析的基本理论,为图像处理模型的构建奠定了基础,在此基础上提出了小波分析在图像压缩,图像去噪,图像融合,图像增强等图像处理方面的应用,最后在MATLAB环境下进行仿真,验证了小波变化在图像处理方面的优势。 关键词:小波分析;图像压缩;图像去噪;图像融合;图像增强 引言 数字图像处理是利用计算机对科学研究和生产中出现的数字化可视化图像 信息进行处理,作为信息技术的一个重要领域受到了高度广泛的重视。数字化图像处理的今天,人们为图像建立数学模型并对图像特征给出各种描述,设计算子,优化处理等。迄今为止,研究数字图像处理应用中数学问题的理论越来越多,包括概率统计、调和分析、线性系统和偏微分方程等。 小波分析,作为一种新的数学分析工具,是泛函分析、傅立叶分析、样条分析、调和分析以及数值分析理论的完美结合,所以小波分析具有良好性质和实际应用背景,被广泛应用于计算机视觉、图像处理以及目标检测等领域,并在理论和方法上取得了重大进展,小波分析在图像处理及其相关领域所发挥的作用也越来越大。在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。但短时傅立叶分析只能在一个分辨率上进行,所以对很多应用来说不够精确,存在很大的缺陷。而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。 本文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,然后研究了小波分析在图像处理中的应用,包括图像压缩,图像去噪,图像融合,图像增强等,本文重点在图像去噪,最后用Matlab进行了仿真[1]。

外文翻译小波变换在图像处理中的仿真及应用

论文翻译 通信102 吴志昊 译文: 小波变换在图像处理中的仿真及应用 一、课题意义 在传统的傅立叶分析中, 信号完全是在频域展开的, 不包含任何时频的信息, 这对于某些应用来说是很恰当的, 因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要, 所以人们对傅立叶分析进行了推广, 提出了很多能表征时域和频域信息的信号分析方法, 如短时傅立叶变换, Gabor 变换, 时频分析, 小波变换等。而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷, 具有多分辨率分析的特点, 使其在图像处理中得到了广泛应用。 传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性。在实际应用中人们开始对Fourier变换进行各种改进,小波分析由此产生了。小波分析是一种新兴的数学分支,它是泛函数、Fourier分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier分析之后的又一有效的时频分析方法。小波变换与Fourier变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题。 小波变换是一种快速发展和比较流行的信号分析方法, 其在图像处理中有非常重要的应用, 包括图像压缩, 图像去噪, 图像融合, 图像分解, 图像增强等。小波分析是傅立叶分析思想方法的发展与延拓。除了连续小波(CWT)、离散小波(DWT), 还有小波包(Wavelet Packet)和多维小波。 小波分析在图像处理中有非常重要的应用, 包括图像压缩, 图像去噪, 图像融合, 图像分解, 图像增强等。小波变换是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的时间一频率窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,因此,小波变换在许多领域都得到了成功的应用,特别是小波变换的离散数字算法已被广泛用于许多问题的变换研究中。从此,小波变换越来越引进人们的重视,其应用领域来越来越广泛。 二、课题综述 (一)小波分析的应用与发展 小波分析的应用是与小波分析的理论研究紧密地结合在一起的。现在,它已经在科技信息产业领域取得了令人瞩目的成就。电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图象和信号处理。现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。从数学地角度来看,信号与图象处理可以统一看作是信号处理(图象可以看作是二维信号),在小波分析的许

数字图像处理课后题答案

1. 图像处理的主要方法分几大类 答:图字图像处理方法分为大两类:空间域处理(空域法)和变换域处理(频域法)。 空域法:直接对获取的数字图像进行处理。 频域法:对先对获取的数字图像进行正交变换,得到变换系数阵列,然后再进行处理,最后再逆变换到空 间域,得到图像的处理结果 2. 图像处理的主要内容是什么 答:图形数字化(图像获取):把连续图像用一组数字表示,便于用计算机分析处理。图像变换:对图像进 行正交变换,以便进行处理。图像增强:对图像的某些特征进行强调或锐化而不增加图像的相关数据。图 像复原:去除图像中的噪声干扰和模糊,恢复图像的客观面目。图像编码:在满足一定的图形质量要求下 对图像进行编码,可以压缩表示图像的数据。图像分析:对图像中感兴趣的目标进行检测和测量,从而获 得所需的客观信息。图像识别:找到图像的特征,以便进一步处理。图像理解:在图像分析的基础上得出 对图像内容含义的理解及解释,从而指导和规划行为。 3. 名词解释:灰度、像素、图像分辨率、图像深度、图像数据量。 答:像素:在卫星图像上,由卫星传感器记录下的最小的分立要素(有空间分量和谱分量两种)。通常,表 示图像的二维数组是连续的,将连续参数 x,y ,和 f 取离散值后,图像被分割成很多小的网格,每个网格 即为像素 图像分辨率:指对原始图像的采样分辨率,即图像水平或垂直方向单位长度上所包含的采样点 数。单位是“像素点/单位长度” 图像深度是指存储每个像素所用的位数,也用于量度图像的色彩分辨率.图像深度确定彩色图像的每个像素 可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数.它决定了彩色图像中可出现的最多颜色 数,或灰度图像中的最大灰度等级(图像深度:位图图像中,各像素点的亮度或色彩信息用二进制数位来表 示,这一数据位的位数即为像素深度,也叫图像深度。图像深度越深,能够表现的颜色数量越多,图像的 色彩也越丰富。) 图像数据量:图像数据量是一幅图像的总像素点数目与每个像素点所需字节数的乘积。 4. , 5. 什么是采样与量化 答:扫描:按照一定的先后顺序对图像进行遍历的过程。采样:将空间上连续的图像变成离散点的操作。 采样过程即可看作将图像平面划分成网格的过程。量化:将采样得到的灰度值转换为离散的整数值。灰度 级:一幅图像中不同灰度值的个数。一般取0~255,即256个灰度级 5.说明图像函数 的各个参数的具体含义。 答:其中,x 、y 、z 是空间坐标,λ是波长,t 是时间,I 是像素点的强度。它表示活动的、彩色的、三维 的视频图像。对于静止图像,则与时间t 无关;对于单色图像,则波长λ为常数;对于平面图像,则与坐 标z 无关。 1.请解释马赫带效应,马赫带效应和同时对比度反映了什么共同的问题 答:马赫带效应:基于视觉系统有趋向于过高或过低估计不同亮度区域边界值的现象。同时对比度现象: 此现象表明人眼对某个区域感觉到的亮度不仅仅依赖它的强度,而与环境亮度有关 共同点: 它们都反映了人类视觉感知的主观亮度并不是物体表面照度的简单函数。 2. 色彩具有那几个基本属性描述这些基本属性的含义。 答:色彩是光的物理属性和人眼的视觉属性的综合反映。色彩具有三个基本属性:色调、饱和度和亮度 色调是与混合光谱中主要光波长相联系的(红绿蓝)饱和度表示颜色的深浅程度,与一定色调的纯度有关, 纯光谱色是完全饱和的,随着白光的加入饱和度逐渐减少。(如深红、浅红等)亮度与物体的反射率成正比。 颜色中掺入白色越多就越明亮,掺入黑色越多亮度越小。 { 3.什么是视觉的空间频率特性什么是视觉的时间特性 答:视觉的空间频率特性:空间频率是指视像空间变化的快慢。明亮的图像(清晰明快的画面)意味着有 ),,,,(t z y x f I λ=

小波变换图像处理实现程序课题实现步骤(精)

%这个是 2D-DWT 的函数,是 haar 小波 %c是图像像素矩阵 steps 是变换的阶数 function dwtc = dwt_haar(c, steps % DWTC = CWT_HARR(C - Discrete Wavelet Transform using Haar filter % % M D Plumbley Nov 2003 N = length(c-1; % Max index for filter: 0 .. N % If no steps to do, or the sequence is a single sample, the DWT is itself if (0==N | steps == 0 dwtc = c; return end % Check that N+1 is divisible by 2 if (mod(N+1,2~=0 disp(['Not divisible 2: ' num2str(N+1]; return end % Set the Haar analysis filter h0 = [1/2 1/2]; % Haar Low-pass filter h1 = [-1/2 1/2]; %Haar High-pass filter

% Filter the signal lowpass_c = conv(h0, c; hipass_c =conv(h1, c; % Subsample by factor of 2 and scale c1 = sqrt(2*lowpass_c(2:2:end; d1 = sqrt(2*hipass_c(2:2:end; % Recursively call dwt_haar on the low-pass part, with 1 fewer steps dwtc1 = dwt_haar(c1, steps-1; % Construct the DWT from c1 and d1 dwtc = [dwtc1 d1]; % Done return -------------------------- 分割线 -------------------------- 调用这个函数的例子下面的东西放在另一个文档里 读入一个图像‘ lena ’应该是个最基础的图像了 ~ 之后分别作 0阶和 1阶 2D-DWT 的变换 改变阶数可以做更高阶的 clear all im = imreadreal('lena.bmp'; %read image data

小波变换与PCNN在图像处理中的比较与结合

收稿日期:2005-10-25 基金项目:国家自然科学基金(60572011/f010204),“985”特色项目计划基金(LZ985-231-582627),甘肃省自然科学基金(YS021-A22-00910) 小波变换与PC NN 在图像处理中的比较与结合 田 勇,敦建征,马义德,夏春水,吴记群 (兰州大学信息科学与工程学院,甘肃兰州 730000) 摘 要: 主要介绍了小波变换和PCNN 的基本原理,结合它们在图像处理中的应用,比较说明了小波变换和PCNN 各自的优缺点.通过分析表明,将小波变换和PCNN 技术相结合在图像处理中会产生更好的效果. 关键词: 小波变换;脉冲耦合神经网络(PCNN);图像处理 中图分类号: TN 911.73 文献标识码: A 文章编号:1004-0366(2006)04-0053-03 The Comparison Between Wavelet Transform and PC NN in Image Processing and Their Combination TIAN Yo ng ,DUN Jian-zheng,M A Yi-de,X IA Chun-shui,W U J i-qun (School of Information Science &Engineering ,L anzhou University ,Lanzhou 730000,China ) Abstract : The ba sic principles of w av elet transfo rm and PCNN a re first https://www.360docs.net/doc/774081099.html, bining their applicatio ns in the image processing ,w e analy ze their adva ntag es and draw backs respectiv ely.From the analysis ,it is co ncluded tha t w e will g et better effects if we co mbine the tw o techniques tog ether in the imag e processing . Key words : wav elet transform;pulse co upled neural netw o rk(PCNN);image processing 小波变换可对函数或信号进行多尺度的细化分析,解决了傅立叶变换不能解决的许多问题,被认为是时间——尺度分析和多分辨率分析的一种新技术[1] .目前,它已被广泛应用于分形、信号处理、图像处理、地震勘探、语音识别等应用领域[1~4].脉冲耦合神经网络PCNN (Pulse Co upled Neural Netw ork,PCNN)是一种不同于传统人工神经网络的新型神经网络.PCNN 有着生物学的背景,是根据对动物的大脑视觉皮层同步脉冲发放所获得的实验结果[5~8] ,建立起来的一种神经网络数学模型.PCNN 在图像处理中的应用已经取得巨大成果[9~12].PCNN 在旋转、平移、尺度不变性等方面起着重要的作用.而小波变换的长处在于它能够生成含有输入信息显著特征的系数并且能够对信号进行由粗及精的逐级多分辨率分析.我们发现小波变换和PCNN 有许多相似点,只是在性能和本质特征上有一些差别. 1 小波变换理论简介 [13~16] 小波(wav elet)即小区域的波.“小”是指在时域 具有紧支集或近似紧支集;“波”指小波具有正负交替的波动性.连续小波函数的确切定义为:设J (t )为一平方可积函数,即J (t )∈L 2(R ),若J (k )(其傅里叶变换)满足容许条件(Admissible Co nditio n) C J =∫ R |J (k )|2 |k |d k <∞(1) 则称J (t )为一个基本小波或母小波(M other Wav elet). 小波函数具有多样性,实际应用中应根据支撑长度、对称性、正则性等标准选择合适的小波.常用的小波有:Haar 小波,Daubechies (dbN )小波系,Bio rthog onal(biorN r.Nd)小波系,Coiflet(coifN )小波系,Sy mletsA (sym N )小波系,M orlet 小波,M exican Hat 小波,M eyer 小波,Battle-Lemarie 小 第18卷 第4期2006年12月 甘肃科学学报Journal of Gans u Sciences Vol.18 No.4 Dec.2006

基于小波变换的数字图像处理

基于小波变换的数字图像处理(MATLAB源代码) clear all; close all; clc; M=256;%原图像长度 N=64; %水印长度 [filename1,pathname]=uigetfile('*.*','select the image'); image1=imread(num2str(filename1)); subplot(2,2,1);imshow(image1); title('original image'); % orginal image for watermarking image1=double(image1); imagew=imread('dmg2.tif'); subplot(2,2,2);imshow(imagew);title('original watermark'); %original watermark %嵌入水印 [ca,ch,cv,cd] = dwt2(image1,'db1'); [cas,chs,cvs,cds] = dwt2(ca,'db1'); for i=1:N for j=1:N if imagew(i,j)==0 a=-1; else a=1; end Ca(i,j)=cas(i,j)*(1+a*0.03); end end IM= idwt2(Ca,chs,cvs,cds,'db1') ; markedimage=double(idwt2(IM,ch,cv,cd,'db1')); %显示嵌入后水印图像 subplot(2,2,3);colormap(gray(256));image(markedimage);title('marked image'); imwrite(markedimage,gray(256),'watermarked.bmp','bmp'); %提取水印 image1=imread(num2str(filename1));image1=double(image1); imaged=imread('watermarked.bmp'); [ca,ch,cv,cd] = dwt2(image1,'db1'); [cas,chs,cvs,cds]=dwt2(ca,'db1'); [caa,chh,cvv,cdd]=dwt2(imaged,'db1'); [caas,chhs,cvvs,cdds]=dwt2(caa,'db1'); for p=1:N for q=1:N

小波变换图像处理实现程序课题实现步骤

%这个是2D-DWT的函数,是haar小波 %c是图像像素矩阵steps是变换的阶数 function dwtc = dwt_haar(c, steps) % DWTC = CWT_HARR(C) - Discrete Wavelet Transform using Haar filter % % M D Plumbley Nov 2003 N = length(c)-1; % Max index for filter: 0 .. N % If no steps to do, or the sequence is a single sample, the DWT is itself if (0==N | steps == 0) dwtc = c; return end % Check that N+1 is divisible by 2 if (mod(N+1,2)~=0) disp(['Not divisible 2: ' num2str(N+1)]); return end % Set the Haar analysis filter h0 = [1/2 1/2]; % Haar Low-pass filter h1 = [-1/2 1/2]; %Haar High-pass filter % Filter the signal lowpass_c = conv(h0, c); hipass_c =conv(h1, c); % Subsample by factor of 2 and scale c1 = sqrt(2)*lowpass_c(2:2:end); d1 = sqrt(2)*hipass_c(2:2:end); % Recursively call dwt_haar on the low-pass part, with 1 fewer steps dwtc1 = dwt_haar(c1, steps-1); % Construct the DWT from c1 and d1 dwtc = [dwtc1 d1]; % Done return -------------------------- 分割线-------------------------- 调用这个函数的例子下面的东西放在另一个文档里

利用小波变换实现彩色图像增强

利用小波变换实现彩色图像增强 专业:通信工程姓名:李厚福指导教师:王建华 摘要:中国有句谚语“百闻不如一见”,可见视觉信息的重要性。图像是人们获得信息和传递信息的最重要的媒体,人类视觉信息的获取和传播的最主要载体也是图像,因此图像的增强处理受到越来越多的人们关注。而图像在获取或传输过程中,由于各种原因,可能对图像造成破坏,使图像失真,为了满足人们的视觉效果,必须对这些降质的图像进行处理,满足实际需要,使用不同的方法进行图像增强处理,尽可能对图像进行还原。 图像增强技术是数字图像处理的一个重要分支,其方法有很多,主要可以分为空间域增强和频率域增强两大类。但是传统的方法在增强图像的同时,也会带来相应的块效应,不符合人们的视觉效果。小波变换是多尺度多分辨率的分解方式,可以将噪声和信号在不同尺度上分开,根据噪声分布的规律就可以达到图像增强的目的。本文对小波变换理论、小波阈值滤波和增强的方法,小波阈值滤波及增强中的阈值函数和阈值的选取做了理论上的研究,重点研究利用小波变换对图像进行增强处理。关键词:小波变换,图像增强,噪声,信号

第一章绪论 1.1课题研究的意义 图像是人们获取信息和传递信息的最重要的媒体,人类视觉信息的获取和传播的主要载体也是图像。对于生活中的指纹识别,视频监控,生活拍照,医学拍照等无不与图像有着紧密的关系。所以图像增强的目的是改善图像的视觉效果,这对人们的生活有着重要的意义。 图像增强作为基本的图像处理技术,其目的是要改善图像的视觉效果。针对给定图像的应用场合,通过处理设法有选择的突出便于人或机器分析有用的信息,将原来模糊的图像变得清晰,抑制一些没有的信息,得以改善图像质量,丰富信息量,加强图像判读和识别效果,以提高图像的使用价值。 图像增强有很多种方法,传统的方法在增强图像的同时,也会带来相应的块效应,不符合人们的视觉效果。对于其性质随实践是稳定不变的信号,傅立叶变换是理想的工具。但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波变换。小波变换是傅立叶变换的发展与延拓,它对不同频率成分在时域上的取样步长具有调节性,高频则小,低频则大。具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。小波变换解决了傅立叶变换不能解决的许多困难问题,运用到图像增强方面有很重要的现实意义。

基于小波变换的图像处理综述

Value Engineering 1小波变换的定义 小波分析是对Fourier 分析的一个重要补充和完善。因此,小波变换的定义应该是尽可能的由少数几个函数生成的;而理想的小波基应该是类似于Fourier 分析的。小波分析主要可以分为两个变换,即连续小波变换和离散小波变换。 2小波分析处理图像的发展 小波分析是一个不断发展的过程,经历“应用-理论-应用”的循环过程。小波分析是多学科交叉理论的结晶,包含泛函数分析、数值分析、分形理论、信息论、调和理论以及逼近论和时频分析等。并提出一种自适应的时-频局部化方法,可在时-频域任意转换,可聚焦任意信号的时段和频段,称为数学中的“望远镜”和“显微镜”。小波变换是Fourier 变换的深层次发展,是近年来工程领域关注的热点,将小波分析用于无损检测、医学CT 、构件探伤等。小波起源就与信号处理密不可分,1984年,法国工程师J.Morlet 和Grossman 对地质信号的分界提出了伸缩、平移的概念,首次提出”Wavelets ”一词。1985年,法国大数学家Meyer 提出光滑正交小波的理念,证明一维小波的存在性,构造出小波函数,是小波数学理论的先驱。随后与他的学生Lemarie 提出多尺度分析的思想。1988年,比利时数学家Ingrid Daubechies 构造出具有紧支撑的有限光滑小波函数,并撰写的《小波十讲(Ten Lectures on Wavelets )》为小波研究和应用领域的专家学者提供了系统的小波理论讲解。1989年,Mallat 在多分辨的基础上,构造mallat 算法进行分解和重构,打开了小波应用的大门。1990年,Latto 和Tenenbaum 将小波分析用于偏微分方程求解,为小波分析的普及、发展及应用提供了动力。 3小波在图像处理中的主要应用:3.1图像变换小波变换具有捕获点奇异性的能力, 而一维信号中的奇异性主要表现为点奇异性,因此,利用小波变换处理一维信号可以取得很好的效果。图像变换相当于是对数字图像阵列的预处理。因为图像阵列维数相对较大,能够直接进行处理复杂度高、计算繁复,就需要一种算法将它变换,减少计算量,小波变换亦能达到良好去除冗余度的效果。 3.2图像压缩 数字图像的压缩目的即减少图像所需的比特数,经小波变换,通过时间域压缩图像的压缩比比传统的压缩方法高,速度快,而压缩后要能够保持信号与图像的特征基本是不变的,这也是一种有损压缩,但是在传递中抗干扰能力相对较强。Shappro 推倒出离散正交小波变换,提出“嵌入”式的“零树”小波编码图像压缩方法,相比于其它图像编码方法压缩比高、无方块效应。目前,基于小波变换的基础发展起来的图像编码方法称为新的静止图像压缩标准。而基于小波变换分析的压缩方法比较成功的是格型矢量量化小波系数编码,小波包最优基方法,多级树集合分裂算法(SPIHT ),小波域多尺度ARMA 模型纹理方法等。 3.3图像增强与恢复 图像去噪方法分空域滤波、频域滤波和最优线性滤波法。Donoho 和Johnstone 在高斯噪声模型下,应用多维独立正态变量决策理论,提出了小波阈值去噪方法和改进的信号去噪的软阈值方法和硬阈值方法,推导出VisuShrink 阈值公式及SureShrink 阈值公式,从理论上证明该阈值是渐进最优的。Weaver 等人通过分析小波变换高频、低频系数的相关特性,提出基于小波变换域内高、低系数相关的去噪方法。图像复原即利用模糊理论、粗糙集理论等去模糊,研究表明,模糊图像是由降质函数与清晰图像卷积得到,通过分析使图像模糊的因素,如高斯噪声、脉冲噪声、白噪声等,建立图像退化模型,根据采集图像提供的资料恢复清晰的图像。 3.4图像分割 —————————————————————— —作者简介:黄奎(1990-),男,重庆人,硕士,研究方向为水工结构工程。 基于小波变换的图像处理综述 Overview of Image Processing Based on Wavelet Transform 黄奎HUANG Kui (重庆交通大学, 重庆400074)(Chongqing Jiaotong University ,Chongqing 400074,China ) 摘要:小波分析主要广泛应用在科学研究和工程技术中。虽然在现阶段的小波理论相对成熟,近些年关于小波理论的应用和研 究也在不断的发展和更新。小波变化在图像处理领域中的应用也囊括图像与处理的所有方面。本文通过介绍小波变换的起源,将小波 应用在图像处理中的压缩、还原图像、边缘检测和图像分割,宏观剖析小波的研究现状历史、发展动向及优势。 Abstract:The wavelet analysis is widely used in scientific research and engineering technology.Although the wavelet theory is relatively mature at this stage,the application and researches on the wavelet theory in recent years is also in constant development and renewal.The application of wavelet transform in image processing covers all aspects of image processing.Through the introduction of the origin of wavelet transform,and by applying wavelet in image compression,image restoration,edge detection and image segmentation,this article analyzes the research situation,development trend and advantage of wavelet. 关键词:小波分析;图像;应用;边缘检测;宏观剖析Key words:wavelet analysis ;image ;application ;edge detection ;macro analysis 中图分类号:TP391文献标识码:A 文章编号:1006-4311(2015)08-0255-02·255· DOI:10.14018/https://www.360docs.net/doc/774081099.html,13-1085/n.2015.08.143

小波变换图像去噪MATLAB实现

基于小波图像去噪的MATLAB 实现 一、 论文背景 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一张图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、 课题原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成: ())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积:

《数字图像处理》习题参考答案与解析

《数字图像处理》习题参考答案 第1 章概述 1.1 连续图像和数字图像如何相互转换?答:数字图像将图像看成是许多大小相同、 形状一致的像素组成。这样,数字图像可以 用二维矩阵表示。将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。图像的数字化包括离散和量化两个主要步骤。在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。 1.2 采用数字图像处理有何优点?答:数字图像处理与光学等 模拟方式相比具有以下鲜明的特点: 1.具有数字信号处理技术共有的特点。(1)处理精度高。(2)重现性能好。(3)灵活性高。 2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。 3.数字图像处理技术适用面宽。 4.数字图像处理技术综合性强。 1.3 数字图像处理主要包括哪些研究内容?答:图像处理的任务是将客观世界的景象进 行获取并转化为数字图像、进行增强、变换、 编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。 1.4 讨论数字图像处理系统的组成。列举你熟悉的图像处理系统并分析它们的组成和功能。 答:如图1.8,数字图像处理系统是应用计算机或专用数字设备对图像信息进行处理的信息系统。图像处理系统包括图像处理硬件和图像处理软件。图像处理硬件主要由图像输入设备、图像运算处理设备(微计算机)、图像存储器、图像输出设备等组成。软件系统包括操作系统、控制软件及应用软件等。 图1.8 数字图像处理系统结构 图 1

1.5 常见的数字图像处理开发工具有哪些?各有什么特点? 答.目前图像处理系统开发的主流工具为 Visual C++(面向对象可视化集成工具) 和 MATLAB 的图像处理工具箱(Image Processing Tool box)。两种开发工具各有所长且有 相互间的软件接口。 Microsoft 公司的 VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开 发出来的 Win 32 程序有着运行速度快、可移植能力强等优点。VC++所提供的 Microsoft 基础类库 MFC 对大部分与用户设计有关的 Win 32 应用程序接口 API 进行了封装,提高 了代码的可重用性,大大缩短了应用程序开发周期,降低了开发成本。由于图像格式多且 复杂,为了减轻程序员将主要精力放在特定问题的图像处理算法上,VC++ 6.0 提供的动 态链接库 ImageLoad.dll 支持BMP、JPG、TIF 等常用6 种格式的读写功能。 MATLAB 的图像处理工具箱MATLAB 是由MathWorks 公司推出的用于数值计算的有力工具,是一种第四代计算机语言,它具有相当强大的矩阵运算和操作功能,力求使人们摆脱繁 杂的程序代码。MATLAB 图像处理工具箱提供了丰富的图像处理函数,灵活运用这些函数可 以完成大部分图像处理工作,从而大大节省编写低层算法代码的时间,避免程序设计中的重 复劳动。MATLAB 图像处理工具箱涵盖了在工程实践中经常遇到的图像处理手段和算法,如 图形句柄、图像的表示、图像变换、二维滤波器、图像增强、四叉树分解域边缘检测、二值 图像处理、小波分析、分形几何、图形用户界面等。但是,MATLAB 也存在不足之处限制了 其在图像处理软件中实际应用。首先,强大的功能只能在安装有MA TLAB 系统的机器上使用 图像处理工具箱中的函数或自编的 m 文件来实现。其次,MATLAB 使用行解释方式执行代码,执行速度很慢。第三,MATLAB 擅长矩阵运算,但对于循环处理和图形界面的处理不及C++ 等语言。为此,通应用程序接口API 和编译器与其他高级语言(如C、 C++、Java 等)混 合编程将会发挥各种程序设计语言之长协同完成图像处理任务。API 支持 MA TLAB 与外部数 据与程序的交互。编译器产生独立于MATLAB 环境的程序,从而使其他语言的应用程序使用MATLAB。 1.6 常见的数字图像应用软件有哪些?各有什么特点?答:图像应用软件是可直接供 用户使用的商品化软件。用户从使用功能出发,只要了解 软件的操作方法就可以完成图像处理的任务。对大部分用户来说,商品化的图像应用软件无 需用户进行编程,操作方便,功能齐全,已经能满足一般需求,因而得到广泛应用。常用图 像处理应用软件有以下几种: 1.PHOTOSHOP:当今世界上一流的图像设计与制作工具,其优越性能令其产品望尘莫及。PHOTOSHOP 已成为出版界中图像处理的专业标准。高版本的 PHOTOSHOP 支持多达 20 多种图像格式和 TWAIN 接口,接受一般扫描仪、数码相机等图像输入设备采集的图像。PHOTOSHOP 支持多图层的工作方式,只是 PHOTOSHOP 的最大特色。使用图层功能可以很 方便地编辑和修改图像,使平面设计充满创意。利用 PHOTOSHOP 还可以方便地对图像进 行各种平面处理、绘制简单的几何图形、对文字进行艺术加工、进行图像格式和颜色模式 的转换、改变图像的尺寸和分辨率、制作网页图像等。 2.CorelDRAW:一种基于矢量绘图、功能强大的图形图像制作与设计软件。位图式图像是 由象素组成的,与其相对,矢量式图像以几何、色彩参数描述图像,其内容以线条和色块为主。可见,采用不同的技术手段可以满足用户的设计要求。位图式图像善于表现连续、丰富 色调的自然景物,数据量较大;而矢量式图像强于表现线条、色块的图案,数据量较小。 合理的利用两种不同类型的图像表现方式,往往会收到意想不到的艺术效果。CorelDraw是

相关文档
最新文档