水蓄冷空调系统简介

水蓄冷空调系统简介
水蓄冷空调系统简介

目录

1、水蓄冷空调系统简介

1.1 水蓄冷空调系统原理

1.2 实施目的

1.3 水蓄冷空调系统特点

1.4 系统设计原则

1.5 蓄冷模式选择

1.6 中旅温泉珠海有限公司实施水蓄冷系统空调好处

2、水蓄冷空调设计方案

2.1 基本情况

2.2 建设蓄冷系统可行性

2.3制冷站主要设备配置

2.4 水蓄冷中央空调系统主要增加设备

2.5 蓄冷水池

2.6 设计计算依据

2.7 水蓄冷系统经济性分析

3、电费节约计算方法

4、合作模式

5、蓄冷水池

4.1 蓄冷设备

4.2 水池保温

6、水蓄冷控制系统

5.1 控制目的

5.2 控制功能

1、水蓄冷空调系统简介

1.1水蓄冷空调原理

水蓄冷技术是将夜间电网多余的谷段电力与水的显热相结合来蓄冷,并在白天用电高峰时段使用蓄藏的低温冷冻水提供空调用冷。即空调主机晚上谷段电价制冷通过蓄冷槽蓄冷,高峰电价时段空调主机尽量不开机,为电网“移峰填谷”而节约电费支出。

1.2 实施目的

通过实施水蓄冷空调工程,取得国家电力部门的相关优惠电价政策,在实际的“谷制峰用”中,节约大量的空调电费,降低工厂的生产成本;也为节能环保做出了一定的贡献。

1.3 水蓄冷空调系统特点

水蓄冷空调代表着当今世界中央空调的先进水平,预示着中央空调的发展方向,有如下优点:

a.减少冷水机组容量,总用电负荷少,减少变压器配电容量与配电设施费。

b.利用峰谷荷电价差,大大减少空调年运行费。

c.使用灵活,节假日部分办公楼使用的空调可由蓄冷水槽直接提供,节能效果明显。

d.可以为较小的负荷(如只使用个别办公室)蓄冷水槽放冷定量供冷,而无需开主机。

e.具有应急功能,提高空调系统的可靠性。

f.上班前启动时间短,只需10—15分钟即可达到所需温度,常规系统约需1小时。

1.4系统设计原则

经济

水蓄冷系统设计须综合考虑影响初期投资及运行成本的各种因素,详尽研究系统的电费、峰谷电价结构及设备初期投资等因素,以期达到最佳的经济效益,在降低初期投资的同时节约更多的运行电费,转移更多的高峰用电量。

本项目原空调系统部分已投入运行,设计时需考虑不增加空调主机能满足新增建筑的供冷需求,节约设备投入,实现“小马拉大车”。

高效节能

进行水蓄冷系统设计时,须依据设计负荷的需求确定系统选型,尽可能地减少各种设备的装机容量,改善主机工作条件,提高主机效率,充分利用蓄冷装置的优势,尽量减少系统的能耗。

完整可靠

评价水蓄冷系统品质的最重要依据是系统的整体效能及运行稳定性,进行系统设计时,须结合蓄冷系统的运行特点,优选各种设备,符合系统整体运行要求,同时各种配套设备也要求能经受长期稳定工作的考验,减少对系统的维护,满足寿命要求。

1.5蓄冷模式选择

全量削峰蓄冷模式

主机在电力低谷期全负荷运行,制得系统全天电力高峰时段所需要的全部供冷量。在白天电力高峰期,所有主机停运,所需空调冷负荷全部由蓄冷水槽来提供。

优点:

a.最大限度的转移了电力高峰期的用电量,白天系统的用电容量小。

b.白天电力高峰期通过蓄冷水槽供冷,运行成本最低。

缺点:

a.系统的蓄冷容量、制冷主机及相应设备容量较大。

b.系统蓄冷槽的占地面积较大。

c.系统的初期投资较高。

负荷均衡的分量蓄冷模式

主机在电力低谷期全负荷运行,制得系统全天所需要的部分冷量;主机在设计日以满负荷运行,不足部分由蓄冷水槽补充。

优点:

a.系统的蓄冷容量、制冷主机及相应设备容量较小。

b.系统的占地面积较小。

c.初期投资最小,回收周期短。

缺点:

a.仅转移了电力高峰期的部分用电量,白天系统还需较大的配电容量。

b.运行费用较全量蓄冷高。

1.6中旅温泉珠海有限公司实施水蓄冷系统的好处

减少空调设备投资:在做水蓄冷系统改造后,水蓄冷空调系统相当于增加了一台备用机组,不用增加空调主机,不用增加相应的供配电设施。

优化空调系统:中旅温泉珠海有限公司原中央空调系统设计属于耗能型中央空调系统设计,通过水蓄冷系统的设计可将原系统进行优化,节省了大量空调运行电量。

降低运行电费:充分利用电价优惠政策,在夜间低谷电价时段制冷,在高峰电价时段放冷使用,能够做到部分移峰,大大降低空调运行电费。

节省空调运行电量:

1、由于充冷过程在夜间进行,夜间气温相比白天较低,制冷机效率大大上升,制冷单耗下降。

2、由于充冷时制冷机满负荷地高效运行,避免了正常供冷时难以避免的“大马拉小车”的现象,可有效地节省电量。

增加了空调系统的可靠性:

1、在突然停电时,不需开主机,只需开供冷泵,因此,使用备用电源仍可维持空调供冷。

2、电力供应紧张时,供电部门对正常中央空调要限电使用,但在全国各地,蓄冷中央空调往往得到额外支持,不在限制范围。

3、运行方式灵活:空调可按原有系统单独运行,也可与增加的蓄冷系统结合运行。

节省空调和电力设备的维护保养费用

1、空调设备容量和数量减少,电力设备容量降低,维护保养的人力、材料的消耗都将减少。

2、贮存装置调剂余缺,使制冷系统保持在最佳负荷下高效运转,免除“大马拉小车”。每天的设备运行时间随之大幅度减少,从而也延长了设备的使用寿命,减少了维护保养费用。

2、水蓄冷空调设计方案

2.1 基本情况

空调用冷主要是工艺用冷,24小时供冷,全年供冷天数约为360天。目前制冷站配置有冷水机组1300RT×2台,600RT×2台,。预计尖峰负荷为3200RT,晚上有富裕量,因此适合建设水蓄冷系统。预计设计日冷负荷表如下

设计日逐时冷负荷图

RT

2.2 建设蓄冷系统的可行性

中旅温泉珠海有限公司实际的供冷能力和负荷分布的情况,以及建设布局和其管理理念,我们可以得出如下结论:

a、其低谷时段的制冷能力基本处于闲置状态,有充分的能力实施低谷蓄冷;

b、严格的运行成本控制措施和管理制度,使工厂管理者本身具备降低中央空调系统运行成本和提高设备运行效率的内在动力

因此, 中旅温泉珠海有限公司完全具备建设蓄冷系统的基本条件。

2.3 制冷站主要设备配置如下表

2.4

2.5 蓄冷水池

中旅温泉珠海有限公司水蓄冷的蓄冷水池有效容积为2620m3。

蓄冷水池的容积按下式计算

Q×K=V ×η×△Tz×C

=9600RTH

式中:V —蓄冷水池容积,本项目2620m3;

Q —蓄冷量,(万kcal);

△Tz—蓄冷水池进、出水温差,本项目为9℃(4—13℃);

η—水池的容积效率,%,本项目为100%;

K—冷损失附加率;一般取1.01~1.05,北京佩尔优科技有限公司可以作到1.005甚至以下。(北京佩尔优科技有限公司的技术,本项目K取1)

C —水的热容量,万kcal /.m3℃(C=0.1)。

2.6 设计计算依据

(一)全日负荷计算

全日负荷计算的数值与逐时负荷系数根据各建筑物的使用功能进行综合分析得到,再结合空调逐时冷负荷分布图及珠海市水蓄冷空调分时电价政策制定出设计日的水蓄冷空调的运行策略。

(二)各负荷条件下的各时段的负荷及蓄冷、放冷和供冷的运行模式

100%负荷(典型日负荷)

100%负荷(典型日负荷)的计算负荷表见下表,其最大负荷为1033RT,这种条件下,逐时负荷以及制冷设备供冷、蓄冷水池蓄冷与放冷详见图。

时间

此时采用2台600RT主机蓄冷8小时,在优先满足冷负荷要求的前提下,可以移除空调系统的电力高峰时段部分负荷。

75%负荷(非典型日负荷)

75%负荷的计算负荷表见下表,其最大负荷为2400RT,这种条件下,逐时负荷以及制冷设备供冷、蓄冷水池蓄冷与放冷详见图。

时间

此时采用2台600RT主机蓄冷8小时,在优先满足冷负荷要求的前提下,可以移除空调系统的电力高峰时段部分负荷。

50%负荷(非典型日负荷)

50%负荷的计算负荷表见下表,其最大负荷为1600RT,这种条件下,逐时负荷以及制冷设备供冷、蓄冷水池蓄冷与放冷详见图。

时间

此时采用2台600RT主机蓄冷8小时,在优先满足冷负荷要求的前提下,可以移除空调系统的电力高峰和部分平段负荷。

25%负荷(非典型日负荷)

25%负荷的计算负荷表见下表,其最大负荷为800RT,这种条件下,逐时负荷以及制冷设备供冷、蓄冷水池蓄冷与放冷详见图。

时间

此时采用2台600RT主机蓄冷8小时,在优先满足冷负荷要求的前提下,可以移除空调系统的全部时段负荷。

2.7 水蓄冷空调系统经济性分析

(一)根据珠海市电力部门的有关规定,常规空调其电价为:高峰时段0.9368元/度,平段0.6006元/度,谷段0.3108元/度。

(二)中旅温泉珠海有限公司经济性分析

由于中旅温泉珠海有限公司在执行分时电价的条件下,建设水蓄冷空调系统,运行中本着节约成本的目的,以下分析是基于保证良好的供冷温度出发给出的理论分析值。

从上表可以看出在中旅温泉珠海有限公司建设水蓄冷系统,每年可以减少192.82万KWh的高峰用电,减少56.22万KWh平段用电量,增加253.8万低谷用电量.

中旅温泉珠海有限公司机房部分预计每年电量约780万度,常规空调系统与水蓄冷空调系统如执行珠海市工业类分时电价,电价为:高峰时段0.9368元/度,平段0.6006元/度,谷段0.3108元/度。水蓄冷空调和常规空调运行费用见下表:

3、电费节约计算方法

当月所节省电费 = 当月应付电费—当月空调分时电表总电量实际支付的电费当月应付电费计算公式为:

当月应付电费=空调高峰转移电量×当月高峰电价+空调平段转移电量×当月平段电价+空调低谷转移电量×当月低谷电价。

空调高峰转移电量 = 空调总用电量×高峰时段供冷量/总供冷量;

空调平段转移电量 = 空调总用电量×平段时段供冷量/总供冷量;

空调低谷转移电量 = 空调总用电量×低谷时段供冷量/总供冷量。

其中,空调总用电量为空调系统高峰、平段、谷段各时段用电量之和;总供冷量和各时段供冷量为整个空调系统供冷量及其不同时段供冷量,包括制冷主机直接供冷和蓄冷槽供冷。

4、合作模式

●合作模式一:

由我公司提供中旅温泉珠海有限公司中央空调系统改造为水蓄冷的技术咨询,参与EMC商务运作,并负责提供贵公司水蓄冷改造的全部投资。合作期限为10年,合作期内我方和贵方按7 :3的比例分享由于转移高峰及平段电力而节省的用电成本收益,负责系统的维护和技术升级,并承担合作期内的电价政策风险。合作期满后,无偿将水蓄冷系统转交给中旅温泉珠海有限公司。

●合作模式二:

由我公司提供中旅温泉珠海有限公司中央空调系统改造为水蓄冷的技术咨询,并负责提供贵公司水蓄冷改造全部的 70%投资,由贵公司负责30%的投资。合作期限为10年,合作期内我方和贵方按5:5的比例分享由于转移高峰及平段电力而节省的用电成本收益,负责系统的维护和技术升级,并承担合作期内的电价政策风险。合作期满后,无偿将水蓄冷系统转交给中旅温泉珠海有限公司。

●合作模式三:

贵公司投资的水蓄冷系统,佩尔优公司对该项目总承包。同时,佩尔优公司长期负责设备的运行维护。佩尔优公司保证用户投资回收年限最长不超过四年,并由佩尔优公司申请世界银行/GEF中国节能促进项目实施机构(中国经济技术投资担保有限公司)实施投保。

5、蓄冷水池

北京佩尔优科技有限公司多年来潜心研究水蓄冷空调技术,并独立开发了具有自主知识产权的“大温差水蓄冷经济型中央空调系统”。该系统目前是世界上最先进的水蓄冷系统;蓄冷水池在放冷、蓄冷过程产生的斜温层的厚度、同一断面上的水温差、蓄冷槽的蓄冷密度和用于蓄冷的冷水机组在蓄冷时的COP值等所有指标都超过了美国、日本等发达国家类似系统的技术水平。

5.1蓄冷设备

蓄水槽设计有布水系统,布水系统按照弗兰克准则来设计,采用佩尔优公司国家专利技术,充分利用蓄水温差,并通过调温阀交换出稳定温度的空调用冷水。蓄水池通过水流分布器从池中取水和向池中送水,水流分布器可使水缓慢的流入和流出水池,以尽量减少紊流和扰乱温度剧变层。当蓄冷时,随着冷水不断从下部送入水池和热水不断从上部被抽出,温度剧变层稳步上升。反之,当取冷时,随着热水不断从上部流入和冷水不断从下部被抽出,温度剧变层逐渐下降。好的分层的蓄冷水池所蓄存能量的95%以上可以有效地用于供冷。

水流分布器放置于蓄冷水池的上部(热水)和底部(冷水)。它的作用是使水以重力流或活塞平稳地流入或引出水槽,以便使水按不同温度相应的密度差异依次分层,形成并维持一个稳定的斜温层,以确保水流在贮槽内均匀分布,扰动小。此斜温层流体力学特性可用弗兰德(Frande)准数决定,同时也受雷诺(Renolds)准数及系统运行合理与否的影响。

Fr准数的流体力学物理意义是作用于流体的惯性力与浮升力之比,无量纲。它是确立形成斜温层的必要条件,流体状态与Fr准数值之间的关系,经大量研究可以用下列数值作简单判别:

当Fr≤1时,在进出口水流中,浮力大于惯性力,则流型为重力流;

当Fr>1时,重力流仍将维持;

当Fr≈2时,惯性流为主、水流混合明显出现。所以为了使取冷时从上部进入的热水和蓄冷时从下部进入的冷水,主要依靠密度差而不是依靠惯性力横向流动,设计水流分布器时应保证Fr数约为1,而绝不大于2。

本项目配水采用多次配水的方法,按佩尔优公司三次精细布水技术进行设计及施工,

以保持蓄冷水池内的水流速度场均匀。由布水管分水进行一次布水,一次布水管由镀锌钢板镀锌钢管制作而成。由镀锌钢板(射流孔)进行第二次布水,第二次布水板由角钢固定,角钢采用镀锌角钢。由配水帽进行第三次精细布水,配水帽为不锈钢材料。

5.2水池保温

为了减少蓄冷水池的冷量损失和减少因水池壁的传热引起斜温层的形成,必须对蓄冷水池外壁进行保温。蓄冷水罐先涂上防绣漆,再利用沥青粘贴两层聚乙烯保温材料,最后利用彩板和铆钉固定,保温效果很好。

6、水蓄冷控制系统

6.1 控制目的

(1)运行方式:由于空调的冷负荷是随室外气温的变化而变化的,也就是说,室外温度的变化,决定蓄冷量的多少,进而确定蓄冷冷水机组的运行数量。因此在夏季最热的时候,其运行方式是由主机和蓄冷槽联合供冷,在过渡季节其运行方式由部分供冷向全量供冷过渡,其具体运行方式为:

(2)运行管理模式:

本系统可提供四种供冷方式:

●蓄冷水池单独供冷。

●制冷机单独供冷。

●制冷机与蓄冷水池联合供冷。

●充冷供冷同时进行。

蓄冷控制系统通过对制冷主机、水蓄冷槽、系统水泵、冷却塔、系统管路调节阀等设备的运行进行监测和控制,调整蓄冷系统应用工况的运行模式,在安全和经济的条件下给空调末端系统提供稳定的供水温度。

6.2 控制功能

1).根据季节和机器运行情况,控制系统具备工况转换功能。

2).控制制冷主机、及外围设备的启停的数量及监测设备的工作状况与运行参数,

如:电动阀开关、调节与阀位显示及蓄冷量测量与显示等等。

水蓄冷、冰蓄冷空调系统浅析

水蓄冷、冰蓄冷空调系统浅析 发表时间:2019-03-21T15:47:56.907Z 来源:《防护工程》2018年第34期作者:丁岳峰 [导读] 在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。 中冶华天南京工程技术有限公司江苏南京 210000 引言 蓄冷技术,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并通过介质将冷量储存起来,在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。 正文 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 一、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰开式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下,选择制冷机的最佳平衡计算公式应为 qc=Q/(N1+CfN2) Qs=N2Cfqc, 式中qc:以空调工况为基点时的制冷机制冷量,kw,Qs:蓄冰槽容量,KWH; N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)n. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一般活塞式与离心式冷水机组约为0.65,螺杆式冷水机组约为0.7.它取决于工况的温度条件和机组型号。 根据这个公式,我们结合具体的工程,就可得出应配置的冷水机组的制冷能力与蓄冰槽容量。 2、空调系统部分夜间运行,而且所需的冷负荷比较大。在这种情况下,我样一般以夜间所需的冷负荷为依据。选择基载主机。然后从总负荷中扣除基载主机所承担的负荷,再按第一种情况合理配制冷水机与蓄冰槽。 二、水蓄冷 水蓄冷是利用3-7°C的低温水进行蓄冷,可直接与常规系统区配,无需其它专门设备。 其优点是:投资省,维修费用少,管理比较简单。但由于水的蓄能密度低,只能储存水的显热,故蓄水槽上地面积大。如若利用高层建筑内的消防水池,在确定制冷机容量与蓄冷槽的容量时,可根据消防水池的容量来计算出蓄冷量,然后根据剩余负荷量来确定制冷机组的制冷量。最后校核一下冷水机组能否满足夜间蓄冷的需要。 三、冰蓄冷与水蓄冷的对比 水蓄冷系统不仅从节能而且从节省初投资方面都具有很大的优越性,它充分利用了建筑的消防水池,不再占用建筑面积,节省了机房面积,但我们不能因此而完全肯定水蓄冷,否定冰蓄冷,他们各用各自的适用范围,下面我们来分析一下:根据公式qc=Q/(N1+CfN2) Qs=N2Cfqc 我们可得出蓄冷比率: η=Qs/Q=(N2Cfqc)/Q=(N2Cfqc)/[(N1+CfN2)×(N2Cfqc)/Q] =1/[1+(N1/(CfN2)) 对于一般的办公建筑来说,N1、Cf、N2均为确定值,分别为8.5,8,0.7,则η=1(1+8.5/0.7×8)=39.7% 在这个比率下,制冷机与蓄冷槽容量配置为最佳,对冰蓄冷而言,因蓄冰槽可根据蓄冷量的大小来配置,不受任何限制,我们就可根据这一比率来确定蓄冷量,从而配置出相应的制冷机与蓄冰槽,但对水蓄冷而言,因为它利用的是消防水池,而建筑物消防水池的容积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下限制下,对于空调面积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率接近于39.7%,则我们建议采用冰蓄冷系统,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率接于39.7%,甚至高于39.7%,则我们应采用水蓄冷系统,同时,应与水系统的分区结合起来。 造价方面,同等蓄冷量的水蓄冷系统造价约为冰蓄冷的一半或更低。冰蓄冷需要的双工况制冷机组价格高,装机容量大,增加了配电装置的费用,且冰槽的价格高,使用有乙二醇数量多,价格贵,管路系统和控制系统均较复杂,因此总造价高。 蓄冷系统装机容量方面,水蓄冷的蒸发温度与常规空调相差不大,且可采取并联供冷等方式使装机容量减小。冰蓄冷工质的蒸发温度较低,制冷机组在蓄冰工况下的制冷能力系数Cf为0.6~0.65(制冰温度为-6℃时),其制冷能力比制冷机组在空调工况下低0.4~0.35。相同制冷量下,冰蓄冷的双工况制冷机组容量要大于常规空调工况机组。 移峰量上看在同等投入的情况下,水蓄冷系统一般设计为全削峰,节省电费大大多于冰蓄冷系统。冰蓄冷为降低造价,一般为1/2或1/3削峰,节省电费少于水蓄冷系统。

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点:

水蓄冷系统

水蓄冷系统自然分层储水池布水系统设计 一、工程概况 本工程位于四川省成都市的一套错峰运行热回收空调系统,蓄水池采用的是现浇钢筋混凝土水池,形状为方形。 二、蓄冷形式的选择 考虑经济适用性能以及建造施工难度,本蓄冷系统采用自然分层水蓄冷形式。 三、蓄冷池布水系统的设置 自然分层系统主要是利用冷热水密度的不同,使温度低的冷水向下运动,温度高的热水向上运动,从而实现冷热水的分层。从热力学原理我们可以知道,两个温度不同的物体放在一起它们之间会有热传递,我们的蓄冷池水层也一样,会在冷热水层中间形成一个温度过度层,我们叫它斜温层,这个斜温层一方面会把我们的冷水冷量传递给热水(由于传递速率不大,冷量流失不多),另一方面又能起到一个冷热区域隔离的作用,因此蓄冷效果的好坏直接受到斜温层的影响,斜温层越稳定,那么我们的冷热区域热量混合就越少,所以自然分层蓄水池的关键是在冷热水层间建立稳定的斜温层。 1、布水管路系统的形式选择 本工程的储水池为方形,根据国内外实际运行经验,选择H型布管形式更加有效,因此我方对本工程也采用H型的布管形式,如下图所示: 布水器分为上下两层,上部为热水的进出口,下部为冷水的进出口,为了防止有压水扰动斜温层,冷水布水器的出水孔设置在管道的下部,热水布水器的出水孔设置在管道的上部,出水孔的宽度一般控制在管道圆周的90°—120°范围内,如下图所示: 冷水出水孔热水出水口

2、布水器的设计计算 由于蓄冷系统的冷热水温度相差不大,通常小于20℃,所以水的密度差不大,形成的斜温层不是很稳定,因此要求布水器出口的水流速度足够小,以免造成对斜温层的扰动破坏,那么我们就需要一个适当的Fr 数以及Re 数,来保证斜温层的稳定,根据国内外经验,要保证维持稳定的斜温层,Fr ≤2,Re=(240—280),具体的计算式及各参数的含义如下: Fr=[]2/)21(g /ρρρ-h L Q 其中Q 为进口最大流量,m 3/h ,g 为重力加速度,9.8m/s2,h 为最小进水口高度,m ρ1为进口水密度,Kg/m 3, ρ2为储水池内水密度,Kg/m 3,L 为布水器的有效长度,m 。 Re=q/v2 其中q 为布水器单位长度的流量,m 3/s;v 为进口水的运行粘度,㎡/s 。 根据我们的需求运行工况,把数据带入以上两式,就可以求出相应的布水管在水池的最小高度h ,以及布水管单位长度上的出水孔个数及出水孔的大小孔径。 3、布水器管径配置计算 根据主机的额定供水量控制水流速度在1.2m/s 查设计手册求出管径。 4、水泵及水—水板式换热器的选择 根据流量及流速控制扬程,进行水泵的选型,板换根据负荷量进行选择。 5、管网的布置根据现场实际情况根据建筑给排水施工图集综合考虑。

水蓄冷方案(DOC)

第一章工程概况简述 1.工程概况及主要工程内容 工程概况:本项目位于广东省清远市清新区太平镇万邦鞋业办公大厦,总建筑面积约:15000m2,空调面积:10000m2,建筑总高15m,其中楼层主要为研发室,办公室、制模室、空调设备房等等。 本项目主要工程内容为:中央空调机房冷源系统,冷冻水管立管、每楼层预留水管到管井口、蓄水槽防水、保温及布水工程等。 2.设计概况 本次设计采用大温差水蓄冷中央空调系统,夏季设计日总尖峰冷负荷为875KW。 冷源配置:整体规划主机选用1台250RT螺杆机及1台114RT螺杆式,该设备为甲方提供.主机夜间水蓄冷,即夜间为蓄冷工况:供回水温度为 4.5℃/12.5℃,白天为空调工况:供回水温度为7℃/12℃,冷却水供回水温度为32℃/37℃。两台主机在夜间可同时蓄冷或单独蓄冷,把一个蓄冷水池蓄满为止. 本项目一个蓄冷水池的总容积 800m3,按容积利用率0.95计算,蓄冷水池的可利用容积大于760m3。 本项目蓄冷工况运行时,水池进/出水温度为 4.5/12.5 ℃;放冷工况运行时,水池进/出水温度为12.5/4.5 ℃,均采用8 ℃温差。 考虑到水池中冷热水间的热传导和斜温层等因素影响,蓄冷水池的完善度一般取0.90~0.95;考虑到保温层传热的影响,冷损失附加率一般取1.01~1.02。因此,本项目实际蓄冷量约为3200kWh(即915RT)。

第二章制冷系统技术方案 1.设计依据 本方案设计依据如下: 业主提供的设计资料 《采暖通风与空气调节设计规范》 (GB 50019-2003) 《蓄冷空调工程技术规程》 (JGJ 158-2008) 《通风与空调工程施工质量验收规范》(GB 50242002) 《采暖通风与空气调节设计规范》(GB 50019-2003) 《全国民用建筑工程设计技术措施——暖通空调?动力》(2003版) 《全国民用建筑工程设计技术措施——给水排水》(2003版) 《蓄冷空调工程实用新技术》方贵银教授编著 2.负荷计算 水蓄冷空调系统的负荷计算采用国家现行《采暖通风与空气调节规范》(GB50019-2003)的有关规定,求得蓄冷—放冷周期内逐时负荷和总负荷,并绘制出负荷曲线图,作为确定系统形式、运行策略和设备容量的依据。采用系数法对逐时冷负荷进行估算。其中设计日各时段冷负荷值如下表:一期设计日尖峰冷负荷为1156RT,采用逐时负荷系数法,设计日逐时冷负荷分布如下: 表设计日各时段负荷值情况

水蓄冷和冰蓄冷选型参考

水蓄冷和冰蓄冷选型参考 来源:本站原创时间:2010-6-12 点击数: 826 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 一、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰开式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下,选择制冷机的最佳平衡计算公式应为 qc=Q/(N1+CfN2)Qs=N2Cfqc, 式中qc:以空调工况为基点时的制冷机制冷量,kw,Qs:蓄冰槽容量,KWH; N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)n. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一般活塞式与离心式冷水机组约为0.65,螺杆式冷水机组约为0.7.它取决于工况的温度条件和机组型号。 根据这个公式,我们结合具体的工程,就可得出应配置的冷水机组的制冷能力与蓄冰槽容量。 2、空调系统部分夜间运行,而且所需的冷负荷比较大。在这种情况下,我样一般以夜间所需的冷负荷为依据。选择基载主机。然后从总负荷中扣除基载主机所承担的负荷,再按第一种情况合理配制冷水

水蓄冷方案汇总

第一章工程概况简述 1. 工程概况及主要工程内容 工程概况:本项目位于广东省清远市清新区太平镇万邦鞋业办公大厦, 总建筑面积约:15000m2空调面积:10000m2建筑总高15m其中楼层主要为研发室,办公室、制模室、空调设备房等等。 本项目主要工程内容为:中央空调机房冷源系统,冷冻水管立管、每楼层预留水管到管井口、蓄水槽防水、保温及布水工程等。 2. 设计概况 本次设计采用大温差水蓄冷中央空调系统,夏季设计日总尖峰冷负荷为 875KW。 冷源配置:整体规划主机选用1台250RT螺杆机及1台114RT螺杆式,该设备为甲方提供?主机夜间水蓄冷,即夜间为蓄冷工况:供回水温度为 4.5 C /12.5 C,白天为空调工况:供回水温度为7C/12 C,冷却水供回水温度为32C /37C。两台主机在夜间可同时蓄冷或单独蓄冷,把一个蓄冷水池蓄满为止. 本项目一个蓄冷水池的总容积800 m3,按容积利用率0.95计算,蓄冷水池的可利用容积大于760m3。 本项目蓄冷工况运行时,水池进/出水温度为4.5/12.5 C;放冷工况运行时,水池进/出水温度为12.5/4.5 C,均采用8 C温差。 考虑到水池中冷热水间的热传导和斜温层等因素影响,蓄冷水池的完善度一般取0.90?0.95 ;考虑到保温层传热的影响,冷损失附加率一般取1.01?1.02。因此,本项目实际蓄冷量约为3200kWh (即915RT)。

第二章制冷系统技术方案 1.设计依据 本方案设计依据如下: 业主提供的设计资料 《采暖通风与空气调节设计规范》(GB 50019-2003) 《蓄冷空调工程技术规程》(JGJ 158-2008) 《通风与空调工程施工质量验收规范》(GB 50242002) 《采暖通风与空气调节设计规范》(GB 50019-2003) 《全国民用建筑工程设计技术措施一一暖通空调?动力(>2003版) 《全国民用建筑工程设计技术措施一一给水排水》(2003版) 《蓄冷空调工程实用新技术》方贵银教授编著 2.负荷计算 水蓄冷空调系统的负荷计算采用国家现行《采暖通风与空气调节规范》(GB50019-2003的有关规定,求得蓄冷一放冷周期内逐时负荷和总负荷,并绘制出负荷曲线图,作为确定系统形式、运行策略和设备容量的依据。采用系数法对逐时冷负荷进行估算。其中设计日各时段冷负荷值如下表: 一期设计日尖峰冷负荷为1156RT采用逐时负荷系数法,设计日逐时冷负荷分布如下:

蓄冷空调系统设计

(1)一、空调蓄冰 电能难于储存,单靠供电机构本身的设备难以达到"削峰填谷"的目标,无法尽 量在电力低谷期间使用电力;当然,有些电力公司由于电网调峰能力不足,建 设抽水蓄能电站进行调峰,但其初投资高、运行费用大,难以推广。因此,大 多数国家的供电机构都采用各种行政和经济手段,迫使用户各自将用电高峰削平,并尽量将用电时间转移到夜间,蓄冷系统就是在这种情况下发展起来的。 蓄冷系统就是在不需冷量或需冷量少的时间(如夜间),利用制冷设备将 蓄冷介质中的热量移出,进行蓄冷,然后将此冷量用在空调用冷或工艺用冷高 峰期。蓄冷介质可以是水、冰或共晶盐。因此,蓄冷系统的特点是:转移制冷 设备的运行时间;这样,一方面可以利用夜间的廉价电,另一方面也就减少了 白天的峰值电负荷,达到电力移峰填谷的目的。 空调系统是现代公用建筑与商业用房不可缺少的设施,其耗电量很大,而且 基本处于电负荷峰值期。例如,饭店和办公楼每平米建筑面积的空调峰值耗电 量约40~60瓦;以北京为例,目前,公用与商用建筑的空调用电负荷约为60 万千瓦,约为高峰电负荷的16%,因此,空调负荷具有很大的削峰填谷潜力。二、全负荷蓄冷与部分负荷蓄冷 除某些工业空调系统以外,商用建筑空调和一般工业建筑用空调均非全日空调,通常空调系统每天只需运行10~14小时,而且几乎均在非满负荷下工作。图1-1中的A部分为某建筑典型设计日空调冷负荷图。如果不采用蓄冷,制冷 机组的制冷量应满足瞬时最大负荷的需要,即qmax 为应选制冷机组的容量。 蓄冷系统的设计思想通常有二种,即:全负荷蓄冷和部分负荷蓄冷。 1. 全负荷蓄冷 全负荷蓄冷或称负荷转移,其策略是将电高峰期的冷负荷全部转移到电力 低谷期。如图1-1,全天所需冷量A均由用电低谷或平峰时间所蓄存的冷量供给;即蓄冷量B+C等于A,在用电高峰时间制冷机不运行。这样,全负荷蓄冷 系统需设置较大的制冷机和蓄冷装置。虽然,运行费用低,但设备投资高、蓄

水蓄冷简介

1、水蓄冷空调原理 水蓄冷技术是将夜间电网多余的谷段电力与水的显热相结合来蓄冷,并在白天用电高峰时段使用蓄藏的低温冷冻水提供空调用冷。即空调主机晚上谷段电价制冷通过蓄冷槽蓄冷,高峰电价时段空调主机尽量不开机,为电网“移峰填谷”而节约电费支出。 2、实施目的 通过实施水蓄冷空调工程,取得国家电力部门的相关优惠电价政策(见下表),在实际的“谷制峰用”中,节约大量的空调电费,降低贵公司的运行成本。 大工业用电峰谷电价表 从2005年6月1日抄见电量起执行

二、电力优惠政策 针对广东省目前电力供求紧张的形势,为充分运用电价政策引导电力用户移峰填谷,缓解电力供求矛盾,根据国家有关电价政策,结合我省实际,施行了分时段的电价,常规空调其电价为:高峰段1.0189元/度,平段0.6526元/度,谷段0.3368元/度。 3、水蓄冷中央空调的优点 采用蓄冷空调系统后,可以将原常规系统中设计运行8小时或10小时的制冷机组压缩容量35-45%,在电网后半夜低谷时间(低电价)开机,将冷量以冷冻水的方式蓄存起来,在电网高峰用电(高价电)时间内,制冷机组停机或者满足部分空调负荷,其余部分用蓄存的冷量来满足,从而达到"削峰填谷",均衡用电及降低电力设备容量的目的。水蓄冷空调具有以下优点: A、节省新装用户的空调系统初投资 (1)节省空调制冷系统投资

制冷系统(包括冷却塔等辅机)的容量按日平均负荷选择即可,无需再按冷耗峰值配制。用于宾馆、公寓,机电设施容量减少20-30%,用于办公楼、大厦及单班制企业,减少50-60%。所节省的基建投资及电力增容费,足以补偿蓄冷设施之所需并有较大结余。(湖北省中医 医院采取3台1300KW冷水机组满足住院4.3万平米的 面积,比原设计减少一台1300KW冷水机组 (2)节省电力投资 设备容量减少,所需输电和变电设备的容量也相应减少,电力报装费用及电力设备投资降低。 实现“小马拉大车”,在扩建面积不大的建筑中,可不增设主机,仅增设空调末段设备,即可保证新建建筑的空调功能和要求。 B、节省空调系统运行电费 (1)我国现已实行峰谷用电分时计费,高峰时段与下半夜电价比为3-5∶1(湖北峰谷差为3.75∶1,签定协议后,电力公司与用户方签署备忘录保证优惠电价和优先供电),谷制峰用,充分利用夜间低谷电,节省大量运行电费(湖北武汉市中商广场一年可节约空调运行费用70万元)。 C、节省空调系统运行电量 (1)夜间气温较低,制冷单耗随之下降6-8%

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用 1、冰蓄冷空调系统原理及主要特点 冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽的冷能释放出来,满足空调用冷的需要。因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。 冰蓄冷空调系统具有以下主要特点: (1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧; (2)冰水主机的容量减少,节省增容费用; (3)总用电设施容量减少,可减少基本电费支出; (4)利用低谷段电价的优惠可减少运行电费; (5)冰水温可低至1~4℃,减少空调设备风管的费用; (6)冷却水泵、冷冻水泵、冷却塔容量减少; (7)电力高压侧及低压侧设备容量减少; (8)室相对湿度低,冷却速度快,舒适性好; (9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小; (10)充分利用24h有效时间,减少了能量的间歇耗损;

(11)充分利用夜间气温变化,提高机组产冷量; (12)投资费用与常规空调相当,经济效益佳。 冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。 2系统的组成及制冰方式分类 2.1系统组成 冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。 2.2制冰方式分类 根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。动态制冰方式在制冰过程中有冰晶、冰浆生成,且处于运动状态。每一种制冰具体形式都有其自身的特点和适用的场合。 3运行策略与自动控制 3.1运行策略

冰蓄冷空调系统

冰蓄冷空调系统 一.简介 夏季,普遍使用的空调系统已成为建筑物高峰用电的大户,由于电力用户的用电性质不同,各类用户最大负荷出现的时间不同,这样负荷的累加就形成了用电的高峰和低谷负荷,高峰负荷的大小决定了电网必须投入的发电设备容量(包括发电机组和输配电设备等的容量),如果各类用户最大负荷出现的时间过分集中,为了满足高峰期用户电力需求,电力部门一方面必须建设新电站增加电网容量,一方面必须提高电网的调峰能力,适应用户的负荷变化,用户方面也需采取节电和调荷措施,否则,只能通过拉闸限电的方法减轻电站运行压力。 昼夜蓄冷调荷技术就是针对这种局面提出并得以运用的。它是让制冷机组在夜间电力负荷低谷时运行,并将产生的冷量储存起来,在次日需要时再将冷量释放出来满足用冷负荷,以实现用户侧冷复合用电的移峰调谷,达到均衡电网负荷的目的。 简单地说,蓄冷调荷技术有以下三方面的社会效益: 1)通过移峰调谷,达到均衡电网负荷的目的。减少国家对新增电站和电网的投资,同时减少调峰调荷的工作,避免限电拉闸。 2)稳定电厂机组负荷水平,改善机组运行效率。 3)减少CO2和烟尘排放量,从而保护环境,减轻温室效应(火力发电机组负荷率低 时,CO2和烟尘排放量大)。 4)对用户来说,利用夜间电价低廉时段制冰,在电价高峰时段使用,能大大减少

空调 系统运行费用。 对用户的作用: 1)减少制冷机容量,提高制冷系统运行的可靠性。 2)减少水泵,冷却塔的装机容量 3)减少配电容量,从而减少部分投资 4)减少运行费用 5)可采用低温送风系统,提高工作空间的环境质量 6)可作紧急冷源使用 7)将计算机控制结合进蓄冰系统中,实现运行模式的优化 冰蓄冷中央空调已逐渐成为移峰填谷,均衡电网用电,提高电网经济运行水平的有力手段,它代表了集中空调设计的发展方向。 二.蓄冷技术的分类: 1 水蓄冷 水蓄冷是利用水的显热()进行蓄冷,即夜间制出2-5度的低温水供白 天使用,供回水温差一般8度。 2 冰蓄冷 冰蓄冷是利用冰的熔解热(335KJ/KG)进行蓄冷,由于水的熔解热远大于水的显热,故蓄冰槽容积远小于蓄水槽容积。 常用冰蓄冷系统有: 1)冰盘管式(外融冰方式) 冰直接冻结在蒸发盘管上,融冰是使空调回水通过冰与冰之间形成自然通道,与

冰蓄冷、水蓄冷方面总结

1 本资料由“江南雨”整理总结 共1页 冷蓄冷系统特点:1、电力移峰填谷、均衡电力负荷,社会效益显著;2、享受峰谷电价,与常规空调相比,运行费用大大降低,经济效益显著;3、降低电力设施投资(无电力增容费),冷机无需按峰值负荷造型,冷机容量和装设功率小于常规空调系统,一般可减少30%~50%,电力高压侧和低压侧容量减少,降低电力建设费用;4、充分利用设备,冰蓄冷空调制冷满负荷运行比例增大,提高冷机COP值和运行效率,冷机工作状态稳定,提高设备利用率并延长机组寿命;5、投资比较,冰蓄冷空调一次性投资比常规空调略高(仅机房部分,末端设备与常规空调系统相同),但若计入配电设施建设费等,有可能投资相当或增加不多,甚至可能投资降低。效率比较:夜间冷机制冷工况进行时,由于气温下降带来的得益可补偿由蒸发温度下降所带来的损失。 全负荷蓄冰空调系统运行电费最省,但由于设备的使用效率低(主机高峰期不运行),所需的主机和储冰器的容量较大,与主机配套的冷却塔和电力设备也大,一次投资费用最多。因此全负荷蓄冰空调在实际工程中较少采用。 部分负荷蓄冰空调在日间电力高峰期,由储冰器和制冷主机联合供冷,设备的使用效率高,相对于全负荷蓄冰模式,主机和储冰器的容量最多可减少至近一半,可实现最少的初投资和最短的投资回收期。但该模式的运行电费比全负荷蓄冰模式高。 新建项目的投资比较:水蓄冷空调增加了水蓄冷槽、蓄冷放冷泵,但减少了主机系统的配置容量,因此初投资与常规空调系统基本相当,甚至低于常规空调系统。冷蓄冷空调由于需增加双工况主机、冰蓄冷设备、乙二醇溶液、乙二醇泵、低温板换等设备,因此初投资明显高出常规空调系统。 系统效率比较:水蓄冷空调系统在蓄冷时比常规系统出水温度低3℃左右,主机的COP值降低有限,考虑到整个系统节能性(如蓄冷时夜间气温比较低,冷却效率高)水蓄冷系统基本不增加耗电量,多数系统甚至可节省电量,真正做到节钱又节能。冷蓄冷空调系统在制冰时,其乙二醇溶液温度需降至‐6℃左右,比常规空调系统温度降低了13℃左右,因此冰蓄冷空调比常规空调的COP值下降了30%~35%。另外,乙二醇溶液的换热性能比水要差。 实用性比较:水蓄冷空调采用常规冷机即可,因此水蓄冷空调既适合新建项目又适合改造项目。冰蓄冷空调需要采用双工况主机、冰蓄冷设备、乙二醇溶液、乙二醇泵、低温板换等设备,因此冰蓄冷难以适用于改造项目,只能用于新建项目。 运行及维护费用:水蓄冷不存在相变,操作简单,易于维护,其运行成本和维护成本低。冰蓄冷系统蓄冷及放冷过程中都有相变过程,操作复杂,运行费用高,维护繁琐。一般来讲同等蓄冷量的冰蓄冷系统的维护费用是水蓄冷系统的2~3倍。 蓄冷系统的制冷机容量不仅与尖峰负荷有关,也与整个设计日逐时负荷分布有关,其值可能小于尖峰负荷,也可能大于尖峰负荷。因此,冰蓄冷的制冷机容量可能大于也可能小于常规系统的制冷机容量。

水蓄冷中央空调技术方案.doc

深圳市信义玻璃厂中央空调系统 技 术 经 济 分 析 深圳市安朗节能有限公司 2010年9月

目录 一、空调系统的特点 (2) 1.水蓄冷空调系统特点 (2) 2.常规电制冷冷水机组系统特点 (3) 3.风冷热泵系统特点 (3) 二、项目概况及经济技术条件 (5) 1.项目概况 (5) 2.电力政策 (5) 三、项目空调系统初期投资分析 (6) 1.常规电制冷+风冷热泵系统 (6) 2.水蓄冷系统初投资 (6) 四、项目空调系统机房运行费用分析 (7) 1.运行策略分析 (7) 2.运行费用计算 (8) 五、经济性分析 (9)

目前,本工程中央空调系统采用的是较为普遍的常规电制冷机组与风冷模块机供冷,虽然该系统十分简单,容易操作,但从其运行情况来看,却存在不节能,运行费用高,效果不好等缺点,现在根据甲方要求,对该系统进行改造,从而达到解决以上问题的目的,根据深圳市的电价政策等措施,推荐采用水蓄冷中央空调系统。 一、空调系统的特点 1.水蓄冷空调系统特点 水蓄冷空调是利用夜间低谷荷电力制冷储存在蓄能装置中,白天将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的先进水平,预示着中央空调的发展方向,有如下优点: a.利用蓄能技术移峰填谷,平衡电网负荷,提高电厂发电设备的利用率, 降低电厂电网的运行成本,节约电厂、电网的基础建设投入。 b.减少冷水机组容量,降低主机一次性投资;总用电负荷少,减少配电 容量与配电设施费。利用峰谷荷电价差,大大减少空调年运行费。c.使用灵活,过渡季节、节假日或者下班后部分办公室使用空调可由蓄 冷槽提供,无需开主机,节能效果明显。具有应急功能,提高空调系统的可靠性。 d.启动时间短,只需15-20分钟即可达到所需温度,而常规系统则需1 小时左右。 e.可实现大温差低温送风变风量空调系统,缩小送水(风)管的管径,

水蓄冷空调系统简介

目录 1、水蓄冷空调系统简介 1.1 水蓄冷空调系统原理 1.2 实施目的 1.3 水蓄冷空调系统特点 1.4 系统设计原则 1.5 蓄冷模式选择 1.6 中旅温泉珠海有限公司实施水蓄冷系统空调好处 2、水蓄冷空调设计方案 2.1 基本情况 2.2 建设蓄冷系统可行性 2.3制冷站主要设备配置 2.4 水蓄冷中央空调系统主要增加设备 2.5 蓄冷水池 2.6 设计计算依据 2.7 水蓄冷系统经济性分析 3、电费节约计算方法 4、合作模式 5、蓄冷水池 4.1 蓄冷设备 4.2 水池保温 6、水蓄冷控制系统 5.1 控制目的 5.2 控制功能

1、水蓄冷空调系统简介 1.1水蓄冷空调原理 水蓄冷技术是将夜间电网多余的谷段电力与水的显热相结合来蓄冷,并在白天用电高峰时段使用蓄藏的低温冷冻水提供空调用冷。即空调主机晚上谷段电价制冷通过蓄冷槽蓄冷,高峰电价时段空调主机尽量不开机,为电网“移峰填谷”而节约电费支出。 1.2 实施目的 通过实施水蓄冷空调工程,取得国家电力部门的相关优惠电价政策,在实际的“谷制峰用”中,节约大量的空调电费,降低工厂的生产成本;也为节能环保做出了一定的贡献。 1.3 水蓄冷空调系统特点 水蓄冷空调代表着当今世界中央空调的先进水平,预示着中央空调的发展方向,有如下优点: a.减少冷水机组容量,总用电负荷少,减少变压器配电容量与配电设施费。 b.利用峰谷荷电价差,大大减少空调年运行费。 c.使用灵活,节假日部分办公楼使用的空调可由蓄冷水槽直接提供,节能效果明显。 d.可以为较小的负荷(如只使用个别办公室)蓄冷水槽放冷定量供冷,而无需开主机。 e.具有应急功能,提高空调系统的可靠性。 f.上班前启动时间短,只需10—15分钟即可达到所需温度,常规系统约需1小时。 1.4系统设计原则 经济 水蓄冷系统设计须综合考虑影响初期投资及运行成本的各种因素,详尽研究系统的电费、峰谷电价结构及设备初期投资等因素,以期达到最佳的经济效益,在降低初期投资的同时节约更多的运行电费,转移更多的高峰用电量。 本项目原空调系统部分已投入运行,设计时需考虑不增加空调主机能满足新增建筑的供冷需求,节约设备投入,实现“小马拉大车”。

水蓄冷空调

中央空调水蓄冷系统的原理图 一、水蓄冷系统的原理 1、空调谁蓄冷的构成和原理流程图 水蓄冷的主要组成部分:制冷机组、蓄冷水池(蓄冷罐)、板式换热器、供冷水泵、蓄冷水泵、放冷水泵、冷却塔和冷却水泵。与常规制冷系统相比,水蓄冷系统比常规系统多蓄冷水池(蓄冷罐)、板式换热器、蓄冷水泵和放冷水泵等设备。 2、大温差水蓄冷典型系统的原理 系统的基本组成如图所示(可以部分地下或者全地下结构)。空调投入运转时,阀K热、K冷开启,K旁关闭。供冷泵的启停及其出口阀开度由楼宇的需冷量而定,冷水机和充冷泵的开停则由电价的时段划分而定,二者互不干扰。 2.1、充冷工况:电力低价时段,冷水机满载运转,其输出水量G1大於楼宇所需的冷冻水量

G2,余量G3=G1-G2自贮柜“冷端”输入经均流布水环槽注入贮柜底部。柜内冷冻水与回水的交界面上升,升达上布水环槽上缘,充冷过程终结。 2.2、放冷工况:楼宇所需冷冻水量G2大於冷水机出水量G1时,G3=G1-G2<0,自贮柜底部输出的冷冻水经供冷泵馈至楼宇,在换热升温后经K热返回贮柜上布水环槽。贮柜内,冷冻水与回水的界面下降。 3、水蓄冷空调的适用场合 水蓄冷空调由于在夜间需要开动制冷机组进行蓄冷,因此它最适合在夜间没有供冷要求或仅需部分供冷的场所。适合采用水蓄冷技术的具体场合与冰蓄冷空调相同。 与冰蓄冷技术相比,水蓄冷技术显著节省了投资总额,而且不但适用于新建项目,也适合应用于改造项目。对原有系统在无需进行任何改动的情况下,只需在原系统中添加水蓄冷设备所需的管路即可,对原有系统没有任何影响。 4、如何选择水蓄冷或冰蓄冷方式改造? 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 4.1、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰方式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 4.1.1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下, 选择制冷机的最佳平衡计算公式应为: Qc=Q/(N1+C f*N2) Qs= N2* C f *Qc, 式中 Q:以空调工况为基点时的制冷机制冷量(kw), Qs:蓄冰槽容量(KWH); N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)N. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一

水蓄冷空调设计手册

水蓄冷空调设计手册 1.水蓄冷空调系统的形式 根据空调系统冷负荷的情况和用户所在地区的分时电价,将水蓄冷分成三种形式。 1.1 完全蓄冷 将全天的空调冷负荷完全转移到电力低谷时段。完全蓄冷的日运行示意图见图1,从图中可以看出,全天空调时段所需要的冷量均由蓄冷系统供给。这种蓄冷运行模式运行费用最省。 这种水蓄冷方式适宜于仅有白天冷负荷的空调系统。 图1 完全蓄冷运行图 时间 1.2 完全削峰蓄冷 将高峰时段的空调冷负荷完全转移到电力低谷时段。完全削峰蓄冷的日运行图见图2,从图中可以看出,全天高峰时段空调所需要的冷量均由蓄冷系统供给(图中 8.00~11.00,18.00~21.00为高峰用电时间)。 这种水蓄冷方式适宜于仅有白天冷负荷的空调系统。

万kcal/h 123456789101112131415161718192021222324 时间 图2 完全削峰蓄冷运行图 1.3 部分负荷蓄冷 将全天空调的冷负荷部分转移到电力低谷时段。部分负荷蓄冷的日运行示意图见图3,从图中可以看出,夜间用电低谷时段储存冷量,补充高峰时段空调所需要的冷量。 这种水蓄冷形式可根据空调制冷系统制冷能力与可能建设蓄冷水池的大小,在运行过程中可执行完全削峰加填平、完全削峰与局部削峰等运行模式。 完全削峰蓄冷是部分削峰的一个特例,它比较特殊,因为这种蓄冷形式的单位能量的运行费用最便宜。

万kcal/h 1357911131517192123 时间 图3 部分蓄冷运行图 通常蓄冷系统是采用完全蓄冷还是部分蓄冷可根据建筑物设计日空调负荷分布曲线图来确定。原则上说,对于设计日尖峰负荷远大于平均负荷,则系统宜采用全部蓄冷;反之,对于设计日尖峰负荷与平均负荷相差不大,制冷能力又较大,且全天运行时,宜采用部分蓄冷(削峰蓄冷)。全部蓄冷式系统的投资较高,占地面积较大,一般不太采用;但由于完全蓄冷的经济效益与社会效益最好,完全蓄冷的形式在条件允许的场合,还是应该提倡采用的。而部分蓄冷式系统的初期投资与常规空调系统相差不大(制冷设备减少,增加蓄冷设备,二者相差不多),运行费用大幅度下降,这种水蓄冷形式同样是应该推广采用的。 2. 水蓄冷空调系统设计 2.1水蓄冷空调系统设计的一般原则 2.1.1 水蓄冷空调系统设计的组成 蓄冷空调系统一般由制冷设备、蓄冷水池、辅助设备、设备之间的管道连接以及控制系统组成。蓄冷空调系统形式多种多样,无论采用哪一种形式,其最终的目的是为用户提供一个舒适的环境。蓄冷空调系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全、可靠、耐用和节能的系统的目的。 2.1.2 水蓄冷空调的基本运行模式

水蓄冷技术

水蓄冷、蓄热知识总结 一、所属行业:空调 二、技术名称:水蓄冷技术 三、适用范围: 具有分时电价地区的医院、宾馆、商场、办公楼、住宅小区、工矿企业等空调系统和工艺用冷领域 四、技术内容: 1.技术原理 水蓄冷中央空调系统是用水为介质,将夜间电网多余的谷段电力(低电价时)与水的显热相结合来蓄冷,以低温冷冻水形式储存冷量,并在用电高峰时段(高电价时)使用储存的低温冷冻水来作为冷源的空调系统 2.关键技术 蓄冷水箱的结构形式应能防止所蓄冷水和回流热水的混合,提高蓄冷水箱的蓄冷效率,增加蓄村冷水可用能量,因此如何降低冷温水界面间斜温层的厚度是技术的关键。 3.工艺流程

五、主要技术指标: 斜温层厚度控制在0.9米内,水箱完善度达95%以上 六、技术应用现状: 国内已经建成的水蓄冷空调项目超过50个,广西、北京、湖北等地的项目较多,其中由XX承建的ZZ的水蓄冷空调项目已被列为XX省研究级示范工程。 七、典型用户: XX精密陶瓷有限公司(电子行业),用于空调制冷。改造前,两台制冷量100万kcal/h冷水机组白天12小时适时供冷,改造后,增加一台容积960立方的蓄冷槽,投资额85万元,夜间电力低谷期8小时开动两台冷水机组对蓄冷罐充冷,白天12小时以蓄冷罐对外供冷,冷水机组不运行。运行效果:1、企业空调节电:12%;2、日运行费用节省:5608kWh×0.75元/kWh - 4908×0.3元= 2734元/天; 3、年运行费用节省: 42万元。投资回收期二年。 XX药业,用于区域供冷。改造前空调总建筑面积30000平米,设计日最大冷负荷3208kW,扩建后空调总建筑面积45000平米,设计日最大冷负荷5197kW,增设1800立方蓄冷水槽,不增加冷水机组。运行效果:水蓄冷改扩建与常规空调扩建比较,年运行费用节约34万元,投资增加43万元,不到二年即可回收多余投资。 八、推广前景和节能潜力: 中国政府部门实行了电力供应峰谷不同电价政策,采用需求侧管理(DSM)的水蓄冷技术来达到削峰填谷,是缓解电力建设和新增用电矛盾的有效的解决途径之一。各地区也出台了各项有关促进蓄冷空调工程发展的政策,推动了蓄冷空调技术的发展和应用。水蓄冷技术不但适用于新建项目,也适合应用于改造项目。可以使用常规冷水机组,适用于常规供冷系统的扩容和改造。并且能够实现蓄冷和蓄热的双重用途。 我国水蓄冷空调工程载冷体工作温差由原来的5℃提高到10℃,甚至更大,使蓄冷密度由原来的5.8KW/M3(5,000大卡/ M3)提高到11.6KW/M3 (10,000大卡/ M3)或更大,由此使蓄冷水槽的容积大大减少,工程造价降低、传热损耗乃至载冷体输送功耗也随之减小,当蓄冷量大于7000kW.h(603万kcal),或蓄冷容积大于760m3时,在各种蓄冷方式中水蓄冷最为经济,尤其在建筑物附近有空地可建蓄冷水罐(槽)或已有的消防水池可利用时,更有其推广使用的价值。夜间气温降低,制冷效率随之可提高6-8%,系统满负荷运转时间大幅度增加,从而使空调系统的总节电率达10%-22%。

冰蓄冷空调原理

冰蓄冷空调原理 Revised by Jack on December 14,2020

冰蓄冷空调原理 冰蓄冷空调技术是指在用电低谷时用电制冰并暂时蓄存在蓄冰装置中, 在需要时( 用电高峰) 把。由此可以实现对电网的“移峰填谷”, 有利于降低发电装机容量, 维持电网的安全高效运行。 一、蓄冰空调系统组成部分 (1)制冷主机。 ①作用:制冷主机(双工况机组)负责对载冷剂(乙二醇)降温,输出冷源。 ②工作原理:制冷剂经过压缩机变成液态,在蒸发器气化吸热把冷量传递到盘管系统。 (2)蓄冷设备。 ①作用:蓄冷设备(蓄冰罐、槽)主要功能是储存冷源并阻隔与外界冷热交换。 ②工作原理:蓄冰罐、槽外壁采用保温隔热材料层,隔绝与外界冷热交换,保持 罐、槽内的温度 (3)用户风机盘管系统。 ①作用:把冷源送到需要制冷房间。 ②工作原理:水经过换热板吸收冷量,经过冷冻泵输送到需要制冷的房间。 ③④⑤⑥二、蓄冰空调系统工作原理 (1)制冷机组(双工况机组)运行,将载冷剂(20%浓度的乙二醇液)流经主机降温,再输送至蓄冰罐对蓄冰罐中的水降温,降温一般降至-3℃左右,于此同时蓄冰罐的另一侧管道把乙二醇输送出,经过冷冻泵回流主机中,就这样低温的乙二醇对蓄冰罐的水进行循环降温。 (2)另一方面,经过主机降温的乙二醇液流经融冰式换热板,向风机盘管输送冷量,进入换热板前℃,通过换热板后载冷剂温度上升到℃,载冷剂通过冷冻泵回流制冷机组。 三、夜间蓄冰

夜间,用户风机盘管系统停止运行,前段只运行工况机组,打开V3、V1节流阀,关闭V2、V4、V5节流阀,让-3~℃低温20%浓度的乙二醇溶液被主机运送到蓄冰罐,在蓄冰罐中吸收热量,然后通过冷冻泵回流工况机组,一直循环,让蓄冰罐中的水冰化90%以上,白天高峰负荷时,储冰罐中0℃的水被输送到融冰板式换热器,换热后的高温水回流到储冰罐,被洒在冰上直接进行融冰,只要罐中有冰就可以一直保持出水温度在℃左右,为融冰板式换热器的另一侧提供5-7℃的冷冰用于供冷 gGuLoKI1721m

相关文档
最新文档