重组蛋白质表达、复性与纯化
重组包涵体蛋白的变性溶解及复性研究

表达重组包涵体蛋白的变性溶解及复性研究概述高应瑞(译)目前,由于基因组序列数据库的快速扩增,重组蛋白的规模化生产已经成为迫切需要。
因此,通过基因重组生产蛋白质,必须考虑其蛋白特性和活性构象,以确定它们的生物学功能。
如果蛋白质的功能以及其基因的生物学功能未知,无论该蛋白质是在天然结构或在非天然结构,都不能通过生物活性评估来对其进行评估。
至今为止,有越来越多的异源重组蛋白成功得到表达。
其中大肠埃希氏菌(大肠杆菌)是最常使用的表达系统。
然而, 在大肠杆菌中异源表达外源基因往往会导致表达蛋白形成不溶性包涵体(IBS)。
包涵体必须经过变性溶解及复性过程后才会恢复其蛋白的生物活性。
包涵体复性过程的是一个非常复杂的过程,往往需要经过大量的反复试验才能确定其复性工艺参数。
在无活性的包涵体到具有生物活性蛋白的过程中,有两个最重要的影响因素:即包涵体的变性与复性。
包涵体蛋白的溶解必须使其蛋白肽链单分子进行分散并使最大程度减少蛋白质分子肽链内以及肽链之间的相互作用。
溶剂的选择,如尿素,盐酸胍,或洗涤剂等,在包涵体溶解过程中起关键作用,蛋白质变性溶解之后进行复性。
包涵体蛋白溶解后,即可进行蛋白复性。
蛋白复性过程不是单一反应,而蛋白的正确折叠与错误折叠和蛋白聚集的竞争过程。
在蛋白复性的竞争过程中,蛋白的复性率主要取决于变性剂的最终浓度以及溶剂的条件。
本文主要讨论的重点是复性工艺中对变性剂去除方式、溶剂、小分子添加剂以及工艺条件。
小分子添加剂的作用来自其在体内的功能定位。
小分子添加剂能够在生物体缺水的情况下维持体内蛋白质的稳定性,因此被命名为渗透剂[1,2]。
在另一个实例中,基因突变,蛋白的错误折叠常常导致蛋白的失活,从而导致机体生长的异常或某些细胞功能的异常。
实验已证明在某些小分子添加剂的存在时,这些失活蛋白质能够恢复正常功能,而且细胞能够生长正常。
由于小分子能够帮助蛋白质正确折叠,因此他们也被称为化学伴侣。
许多小分子添加剂都是渗透剂和化学伴侣。
蛋白质复性方法及其注意事项

蛋白质复性方法及其注意事项蛋白前期准备(1)查阅目标蛋白相关文献,了解其等电点,标签等注意点。
(2)如果目标蛋白易降解,可在纯化时加1—2mMDTT,全程低温,及时处理。
(3)透析Buffer的选择可参考文献。
蛋白复性包涵体:在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,或被膜包裹或形成无膜裸露结构,这种水不溶性的结构称为包涵体(Inclusion Bodies,IB)。
在E.coli中累积的重组蛋白会迅速地以包涵体形式被沉淀出来,这些包涵体蛋白是丧失生物活性的不可溶的错误折叠蛋白的聚集体。
包涵体的处理一般包括这么几步:包涵体的洗涤、溶解、纯化及复性。
如果过表达蛋白在包涵体中,那么通常有两个选择可以考虑:(1)退一步,优化表达条件;(2)接受包涵体并采取策略来将蛋白溶解以及复性。
这里主要考虑第二种方案。
包涵体的洗涤破碎细胞都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入蛋白酶抑制剂等,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。
洗涤Buffer:50mM Tris-HCl(pH8。
0), 2mM EDTA,2mM DTT,150mM NaCl,1%Triton X—100,1mg/ml Leupeptin,1mg/ml Pepstatin,1mM TCEP。
超声时用40-60ml裂解液,因为我们的超声仪很适合用100ml小烧杯,装40-60ml裂解液,这样能让超声头离液面不高不低,不会洒出来。
菌多就延长超声时间(全程冰浴)。
包涵体的溶解1、对于尿素和盐酸胍的选择:尿素和盐酸胍属中强度变性剂,易经透析和超滤除去。
它们对包涵体氢键有较强的可逆性变性作用,所需浓度尿素8—10M,盐酸胍6—8M。
尿素溶解包涵体较盐酸胍慢而弱,溶解度为70-90%,尿素在作用时间较长或温度较高时会裂解形成氰酸盐,对重组蛋白质的氨基进行共价修饰,但用尿素溶解具有不电离,呈中性,成本低,蛋白质复性后除去不会造成大量蛋白质沉淀以及溶解的包涵体可选用多种色谱法纯化等优点,故目前已被广泛采用。
重组蛋白的概述

重组蛋白的概述1.概述分离纯化组成了基因工程的下游处理(downstream processing)阶段,这一过程又和上游过程紧密相联系,上游过程的诸方面影响到下游的分离纯化,所以在进行目标蛋白质表达纯化时要统一考虑和整体设计,并充分考虑上游因素对下游的影响,如是否带有亲和标签,是否进行分泌表达。
目前应用最广泛的表达系统有三大类,分别是大肠杆菌表达系统、酵母表达系统和CHO细胞表达系统,不同的表达系统和培养方法显著影响下游的处理过程,目标蛋白表达是否形成包涵体,目标蛋白表达的定位(胞内、细胞内膜、周质空间和胞外),蛋白表达的量都依赖于所选择的表达系统。
选择将所表达的蛋白分泌到细胞外或周质空间可以避免破碎细胞的步骤,并且由于蛋白质种类少,目标蛋白容易纯化;而在细胞质内表达蛋白,可能是可溶性表达,可能形成包涵体,可溶性的蛋白往往需要复杂的纯化步骤,而包涵体易于分离,纯度较高,但回收具有生物活性的蛋白却变的相当困难,需要对聚集的蛋白进行变复性,通常活性蛋白的得率比较低,表1列出了不同策略对表达、纯化的影响,对于其中的有些缺点可以通过一定的方法进行克服和避免,如利用DNA重组技术给外源蛋白加上一个亲和纯化的标签,有助于可溶性外源蛋白的选择性纯化,并能保护目标蛋白不被降解(96)。
表 1 重组蛋白不同表达策略的优点和缺点表达策略优点缺点分泌表达至细胞外增强正确二硫键的形成降低蛋白酶对表达蛋白的降解可获得确定的N末端显著减少杂蛋白水平,简化纯化不需要细胞破碎表达水平低多数蛋白不能进行分泌表达表达蛋白需要进行浓缩细胞周质空间表达增强正确二硫键的形成可获得确定的N末端显著减少杂蛋白水平,简化纯化好些蛋白不能分泌进入周质空间没有大规模选择性的释放周质空间蛋白的技术周质蛋白酶可引起重组蛋白酶解胞内包涵体表达包涵体易于分离保护蛋白质不被降解蛋白质不具有活性对宿主细胞生长没有大的影响,通常可获得高的表达水平需要体外的折叠和溶解,得率较低具有不确定N末端胞内可溶性蛋白表达不需要体外溶解和折叠一般具有正确的结构和功能高水平的表达常难以得到需要复杂的纯化可发生蛋白质的酶解具有不确定的N末端在细胞的提取物中,除了目标蛋白外,还含有其它各种性质的蛋白、核酸、多糖等。
包涵体纯化方法及包涵体蛋白制备

包涵体纯化方法及包涵体蛋白制备重组蛋白在大肠杆菌、酵母、哺乳动物中的表达可分为三种形式:胞外分泌表达、胞内可溶性表达和胞内不溶性表达(即产物以包涵体形式存在)。
以包涵体形式存在的重组蛋白是无生物活性的,需要进行复性处理,然后再进行分离纯化。
包涵体纯化与传统生物大分子的分离纯化方法相似,即以分子的等电点、溶解性、亲疏水性以及与其它分子的亲和性等特征为基础进行纯化。
一、常用的包涵体纯化方法1. 金属亲和层析该方法主要利用蛋白质表面暴露的一些氨基酸残基和金属离子之间的相互作用来进行蛋白纯化。
我们在载体构建时可以加上一些亲和性标签(如His标签、GST标签、Flag标签等),以便采取亲和纯化的方式纯化蛋白。
利用Ni2+和6×His tag之间的亲和性,通过在蛋白的N端或C端加上6~10个组氨酸,在一般或变性条件下借助它与Ni2+螯合柱的紧密结合能力,采用咪唑洗脱,或降低PH使组氨酸充分质子化,使其不再与Ni2+结合,从而分离纯化出带有6×His tag的融合蛋白,纯度通常能达到90%以上。
2.离子交换层析离子交换层析是根据在一定pH条件下,蛋白质所带电荷不同而进行的分离的方法。
常用的离子交换剂有羧甲基纤维素(阳离子交换剂,弱酸型)和二乙基氨基乙基纤维素(阴离子交换剂,弱碱型)。
阴离子交换基质结合带有负电荷的蛋白质,所以这类蛋白质被留在柱子上,需要通过提高洗脱液中的盐浓度等措施将其洗脱下来。
根据蛋白质结合能力不同,洗脱的速度会存在差异,通常结合较弱的蛋白质先被洗脱。
反之,阳离子交换基质会结合带有正电荷的蛋白质,可以通过提高洗脱液的PH或增加洗脱液中的盐浓度将蛋白洗脱下来。
3.凝胶过滤层析凝胶过滤层析通常又称为分子筛方法,主要是根据蛋白质的大小和形状达到分离和纯化的目的。
一般是大分子先流出来,小分子后流出来。
此方法的优点在于层析所用的凝胶属于惰性载体,不带电荷并且吸附力弱,可较广的温度范围内进行。
基因重组蛋白包涵体的复性研究

蛋白质与介质的疏水 性相互结合
rhIFN-γ,rhIFN-β, 重组人粒细胞集落刺激因子rhGC-CSF
离子交换色谱 蛋白质与介质间存在 Papiloma virus(HPV), E7MS2 fusion protein,
(IEC)
电荷作用力
重组白细胞分泌抑制因子rSLPI,抗原疫苗蛋白
亲和色谱 (AFC)
需要进行蛋白质翻译后修饰(如糖基化)就具有生物 活性的基因工程蛋白
基因重组蛋白包涵体的复性研究
51%
基因重组蛋白包涵体的复性研究
8.2 包涵体的形成
在大肠杆菌中表达的基因工程蛋白常常以包涵体的形式 沉积于细胞内,表现为无活性的不溶性聚集物
包涵体:外源目的基因在宿主系统中高水平表达时,因各 种原因导致基因表达产物的一级结构(即氨基酸序列)虽 然正确,而其高级结构是错误的,即:没有生物活性的包 涵体。包涵体直径约0.5-1μm,具有很高的密度(约1.3 mg/ml),相差显微镜下有折光性,呈非水溶性,只溶于高 浓度变性剂如尿素、盐酸胍等。
• 由于I向N转化是一个慢的过程,当蛋白质在此时放置较长 的一段时间,I就可以慢慢地向N转化
基因重组蛋白包涵体的复性研究
影响复性效率的因素
• 4)氧化还原环境
• 复性不仅要降低或去除变性剂,同时必须提供SH-氧化形 成S-S的环境→合适的氧化还原环境
• 采用配对的氧化型和还原型巯基物质 • 配对低分子量巯基试剂包括GSSG/GSH、半胱氨酸或巯基
基因重组蛋白包涵体的复性研究
包涵体形成的几种可能性
• 研究发现:低表达时很少形成包涵体,表达量越高越易形成包涵体。 • 1)少量蛋白产生时是可溶的,表达量过高,积聚量超过其在细胞
内溶解度时沉淀; • 2)合成速度太快,以至于没有足够的时间进行折叠,二硫键不能
重组蛋白分离纯化的方法策略及案例介绍

肽配体结合为基础。同时,带有 GST 的蛋白与配体结合是可逆的,能够在温和,非变性的条件下通过加入还原型 谷胱甘肽被洗脱下来。
材料 BL21 感受态细胞 PGEX 表达载体 LB 培养基 Amp(氨苄青霉素) IPTG 蛋白酶抑制剂 缓冲液 1(100mmol/L Tris,PH 8.5,500mmol/L NaCl) 缓冲液 2(100mmol/L NaAc,PH 4.5,500mmol/L NaCl) PBS 缓冲液(100mmol/L NaCl,2.7mmol/L KCl,10mmol/L Na2HPO4,1.8mmol/L KH2PO4) 洗脱缓冲液(50mmol/L Tris,PH 8.0,10mmol/L GSH) 微量紫外分光光度计 超声波破碎仪 高速冷冻离心机 GST 柱
由上表可知选择将所表达的蛋白分泌到细胞外或周质空间可避免破碎细胞的步骤,而且细胞外和周质空间内的 蛋白种类较少,目的蛋白易纯化;而在细胞质内表达重组蛋白时,重组蛋白通常是可溶性表达,但也易形成包涵体。 可溶性蛋白往往需要复杂的纯化步骤,而包涵体易于分离且纯度较高,但回收具有生物活性的蛋白质却变得相当困 难,通常需要对聚集的蛋白进行变,复性,而通常情况下活性蛋白的得率比较低。德泰生物凭借多年的蛋白表达服 务操作经验和相关的技术,可以提供可溶性重组蛋白保证型服务和更高纯度的上清蛋白。
分离纯化原则总结: 1 应尽可能利用蛋白质不同物理特性选择所用的分离纯化技术,而不是利用相同技术多次纯化; 2 不同的蛋白在性质上有很大区别,每一步纯化步骤都应当充分利用目的蛋白和杂质成分物理性质差异; 3 在纯化早期阶段要尽量减少处理体积,方便后续纯化; 4 在纯化后期阶段,再使用造价高的纯化方法,有利于纯化材料的重复使用,减少再生复杂性。
包涵体的纯化和复性情况总结

板块一、大肠杆菌(这里讨论的大肠杆菌为非分泌到培养基中的重组蛋白,是否有重组蛋白分泌到培养基中的工程菌我没有见过。
)一、关于菌体的量大肠杆菌表达的基因工程蛋白是纯化人员最方便获得的原料,对纯化工艺开发来说几乎没有原料方面的限制。
常看到有战友用个几毫升的菌液去做纯化,对此我十分不解,同样要做,为什么不多做点呢?很少的菌体会给纯化带来一些难以估计的问题,工艺的重复性和放大往往出现问题。
因此,要做个好工艺就多发酵表达一些菌体吧。
我做纯化时,初始工艺摸索用的菌体量一般为10g左右。
二、关于是否包涵体表达包涵体的定义我就不讲了。
我要讲的是,一个基因工程蛋白是否是包涵体表达的说法本身就不完全准确。
至于包涵体在电镜下的晶体颗粒表现等等对我们纯化来说毫无意义,我相信做纯化工艺的人没有谁去看这个电镜,也不关心。
我们判断的依据只是SDS-PAGE,目的蛋白在破菌沉淀中,我们就认为是包涵体表达,但这是一个似是而非的结论。
看着没问题,实际上是有毛病的。
关键在于你用的是什么破菌缓冲液!有些蛋白在用缓冲液A破菌时是在破菌沉淀中,而用缓冲液B破菌时却在破菌上清中。
缓冲液A和B的差别可能只是pH上相差1-2个单位。
那么它是包涵体表达还是可溶上清表达呢?说这个问题主要在于有些战友往往非常在意他的目标蛋白是否包涵体表达。
甚至还有包涵体表达就用专门的包涵体蛋白纯化方法等等。
我们应该关心的是目标蛋白在什么缓冲体系下是可溶的,在什么缓冲体系下是不溶的!不要让包涵体这个概念给你误导。
三、关于表达量我们常常在发表的文章上看到,我这个工程菌的目标蛋白的表达量达到菌体总蛋白的30%、50%等等。
我要说都是文章的作者在忽悠。
不知道他们是如何定量的,用的最多的大概就是SDS-PAGE的扫描分析吧。
且不说一个SDS-PAGE不能表现出所有的菌体蛋白,电泳的染色方法、染色脱色强度、照片的曝光强度、扫描分析时的条带选择等等无不对这个百分比影响巨大。
在公司的QC部门做的对此应该最有体验,20%的条带要它变成30%又有何难?我的观点是对待表达量的描述不可定量,只能定性。
蛋白质复性技术

一、基本原理
• (4)色谱复性:在色谱的过程中实现复性, 称为色谱复性法。优点在于,色谱固定相 对变性蛋白质吸附性能低,甚至完全消除, 变性蛋白质在脱离变性剂的环境发生聚集, 产生沉淀。提高复性质量和活性收率。在 蛋白质复性 的同时可使目的蛋白质与杂质 蛋白质分离,达到复性和纯化的双重效果。
一、基本原理
蛋白质复性
一、基本原理
1、包含体 • 是指以大肠杆菌为宿主细胞的基因表达产物由 于不能分泌到细胞外,而在细胞内聚集形成的 没有生物活性的固体颗粒。 • 一般含有50%以上的重组蛋白,其余为核糖体 元件、RNA聚合酶、内毒素、外膜蛋白ompC、 ompF和ompA等,环状或缺口的质粒DNA,以 及脂体、脂多糖等,大小为0.5-1um,具有很 高的密度(约1.3mg/ml),无定形,呈非水溶 性,只溶于变性剂如尿素、盐酸胍等。
一、基本原理
• (2)洗涤:为了除去包含体上粘附的杂质, 如膜蛋白或核酸,应用洗涤液洗涤包含体, 通常用低浓度的变性剂,过高浓度的尿素或 盐酸胍会使包含体溶解,如2M尿素洗涤。 此外可以用温和去垢剂洗涤去除膜碎片和 膜蛋白。
一、基本原理
• (3)溶解:一般用强的变性剂如尿素、盐 酸胍通过离子间的相互作用,打断包含体 蛋白质分子内和分子间的各种化学键,使 多肽伸展,一般来讲,盐酸胍优于尿素, 因为盐酸胍是较尿素强的变性剂,它能使 尿素不能溶解的包含体溶解,而且尿素分 解的异氰酸盐能导致多肽链的自由氨基甲 酰化,特别是在碱性pH值下长期保温时。
一、基本原理
3、蛋白质复性
• 由于包含体中的重组蛋白缺乏生物学活性, 加上剧烈的处理条件,使蛋白的高级结构 破坏,因此重组蛋白的复性特别必要。 通去除还原剂使二硫键正常形成。
一、基本原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种融合蛋白表达载体
• Protein A • GST(glutathione S-transferase) • CBD (chitin-binding domain, BioLabs; cellulose-binding domain, Novagen) calmodulin-binding domain, Stratagene) • MBP (maltose-binding protein) • GFP (green fluorescence protein) • Thioredoxin **帮助二硫键形成 • Dsb (periplasma enzyme DsbA, DsbC) ** 二硫键的形成与 • SUMO (small ubiquitin-related modifier) • KSI (ketosteroid isomerase) 基本上全部沉淀 帮助分泌到周质 可用亲和层析纯化 帮助可溶化
昆虫细胞
• 可以病毒感染的型式在成虫中生产, 也可在体外培养细胞中生产蛋白; • 适合分泌型和膜蛋白的表达,有加 糖修饰; • 糖链有所区别,表达量有限; • 作为药物宿主细胞未被FDA认可
CHO细胞
• 可进行分泌表达,有天然 立体结构,加糖方式与人 体蛋白质完全一致; • 表达量不够高,培养成本 较高
包含体蛋白质的复性方法
• 透析法: 简单; 但费时, 费缓冲液, 蛋白质 量少,浓度不能过高(容易产生沉淀) • 快速稀释法: 最常用的小规模复性方法; 但比较费时,费缓冲液, 蛋白质的浓度不能 高(容易产生沉淀) • 超滤透析法: 比较省缓冲液, 处理量大; 但费时, 要控制好蛋白质浓度 • 凝胶过滤法: 快速, 可重复性高, 不会产生 沉淀, 操作复杂一点
(pET12/20/22)
• 采用带MBD融合 (pMAL载体, Biolabs) • 采用带SUMO融合
(pET SUMO, Invitrogen)
纯化方便: 先用 EDTA/蔗糖 溶液处理, 然后 5 mM MgSO4 洗出
各种用于抗体识别的标记
• His-tag (6-8 Histidine)
(Bacillus thuringiensis)
真核细胞表达体系
酵母细胞 昆虫细胞 植物细胞/组织 哺乳动物细胞/组织
酵母细胞
• 可生产分泌型蛋白;有天然立体结构, 有加糖修饰功能;可进行染色体整合型 基因表达; • 糖链与哺乳动物加工的不一致,培养上 清多糖浓度高; • 商品化表达体系:
酿酒酵母(Saccharomyce cerevisiae); 毕氏酵母 (Pichia pastoris); 裂殖酵母(Schizosaccharomyce pombe)
Timed addition of PDI to refolding Fab/red.
• T7-tag (MASMTGGQQMG) • HSV-tag (QPELAPEDPED) • S-tag (KETAAKFERQHMDS) • VSV-G-tag (TTDIEMNRLGK)
• HA-tag (YPYDVPDYA)
•
• Flag-tag (DYKDDDDK)
为什么要 Myc-tag (EQKLISEEDL) 加 tag ?
在大肠杆菌中表达 重组蛋白质
• 如果目的蛋白质有二硫键并需要 正确的立体结构, 尽可能进行可 溶性表达; • 如果目的蛋白质没有二硫键或只 用来制备抗血清, 采用包含体表达 比较好; • 如果目的多肽的分子量小于 10 kDa, 一定要进行融合表达
大肠杆菌表达载体分类
按蛋白质类型分
• 单纯表达: pJLA系列, 用NcoI/NdeI导入AUG的载体 • 融合表达: 融合各种tag, GST, CBD, MAL, GFP, etc • 分泌表达: pel/ompT分泌肽
特殊的表达用菌株
• BL21(DE3)/pLysS : 自身表达T7 RNA polymerase 适用pET系列等带T7启动子的载体 • M15/SG13009 : 自身表达T5 RNA polymerase 适用pQE系列等带T5启动子的载体 • BL21TrxB(DE3) : thioredoxin reductase 突变 • Origami : thioredoxin reductase/glutathione reductase 双突变 适合带thioredoxin reductase的 融合表达载体, 帮助形成更多的二硫键 • BR21CodonPlusRIL: 富含AT的真核生物基因的表达 • BR21CodonPlusRP: 富含GC的真核生物基因的表达
人PDI的结构特征
PDI 作用机理
Folding assistant/chaperone
PDI has been shown to catalyze reactivation of non-native proteins without disulfide bonds. This function is independent from the redox/isomerase function, as it has been shown to exist in vitro with several model substrates that do not contain disulfides in their native structure.
重要的原核表达质粒提供商
• • • • • • • • • • Novagen Stratagene Invitrogen BioLabs Qiagen Pharmacia Promega Clontech Roche Gibco/BRL
The protein folding Problem
How to get to the bottom of the funnel? And,what is at the bottom?
按启动子分
• • • • • lac及衍生的tac , trc, pac, rac等启动子 IPTG诱导 lamda phage PL和PR 启动子 热诱导 T7 启动子 IPTG诱导 T5 启动子 IPTG诱导 ara启动子 阿拉伯糖诱导
常用表达载体
• pJLA50X系列; pcDNAII; etc • pET系列 (T7 promoter, Novagen公司) • p pMAL系列 (周质表达, BioLabs公司) • pGEX系列 (GST融合表达, Pharmacia公司) • pBAD系列 (Arabinose诱导型) •pTYB系列 (CBD融合, 可以自我切割, BioLabs)
让表达产物可溶化
• 采用MBD融合 • 采用GST融合 • 采用CBD融合 • 采用thioredoxin融合 • 采用Origami等宿主菌 • 降低菌体培养的速度
温度 (15-30℃), 降低转速
让蛋白质分泌到间质去
• 采用CBD融合 (pET36/37) • 采用Dsb融合 (pET39/40) • 采用带pelB/ompT引导肽的载体
有可能以后能做到的事
在大肠杆菌中直接生产有活性的胰岛素 在大肠杆菌中生产人凝血IX因子 在大肠杆菌生产Calcitonin类C端酰胺化短肽 在大肠杆菌中进行蛋白质的糖基化修饰 在酵母中进行与哺乳动物细胞一致的糖基化 在鸡输卵管中进行与哺乳动物细胞一致的糖基化 提高乳腺分泌表达的Factor IX类因子的活性 在植物中得到与哺乳动物细胞一致的糖基化
植物组织
• 植物可大面积种植,可以廉 价大规模生产; • 转基因植物制作费时,表达 的组织特异性较难控制; • 表达量较难提高,分离纯化 不方便
动物乳腺组织
• 分泌生产有天然立体结构和 活性的蛋白质至乳汁,产量 高,分离纯化方便,特别适 合药用蛋白的生产; • 转基因动物制作花费巨大, 实验周期长
鸟类输卵管组织
• 分泌生产有天然立体结构的 蛋白质到蛋清,产量高,容 易贮存和运输,分离纯化方 便; • 实验成本低,饲养费用低; • 加糖方式可能与人有所不同
体系选择
研究基因功能: 大肠杆菌, 裂殖酵母,昆虫细胞, CHO细胞 多肽药物生产: 大肠杆菌, 毕氏酵母, CHO细胞, 乳腺组织 疫苗: 大肠杆菌, 酵母, 大多数沿用细胞培养产物进行灭毒 单抗生产: 杂交瘤细胞 工业酶生产: 各种微生物
枯草杆菌
(Bacillus subtilis)
• 分泌蛋白质能力强,一般有天然 立体结构; • 无加糖修饰功能,培养液中蛋白 酶活性高,重组蛋白易受蛋白酶 的水解; • 质粒不稳定,尚无商品化的表达 载体
其
他
•乳酸菌 (Lactic acid bacteria) •沙门氏菌 (Salmonella typhimurium) •苏云金杆菌
•基因表达体系及优劣势 •大肠杆菌表达体系 •蛋白质的复性 •工作中经常碰到的问题
基因表达体系
1. 原核体系 2. 真核体系
大肠杆菌 (Escherichia coli)
• 遗传背景清楚,基因工程操 作方便,商品化表达载体种 类齐全,表达效率高; • 基本不分泌,易形成包含体 (无正确折叠的立体结构),无 加糖等修饰
重组蛋白质的 表达、复性与纯化
复旦大学生物化学系 黄伟达 whuang@, 2005年12月8日于华东理工大学
为什么要重组基因表达?
1. 2. 3. 4. 5. 6. 蛋白质功能研究 生物制药和疫苗生产 疾病的基因治疗 食品、化工用酶制剂 抗虫、抗逆植物改良 细胞代谢产物的富集
• 亲和层析复性法, 水相二相法, etc
分子伴侣
(Molecular Chaperone)
A molecular chaperone is able to transiently bind and thus stabilize an unstable conformation of another protein, thereby facilitating correct folding by preventing misfolding and aggregation.