CO2水吸收传质系数的测定 (1)

CO2水吸收传质系数的测定 (1)
CO2水吸收传质系数的测定 (1)

实验CO 2-水吸收传质系数的测定

一、实验目的

1. 掌握气液吸收过程传质系数测定的基本原理;

2. 熟悉实验装置,学习实验基本操作及数据处理方法;

3. 测定一定液流速率范围内的不同流速的吸收速率,求表征传质系数与湿润率的关系中的润湿指数和填料单元特性常数,了解作为填充模型的圆盘塔的液膜特性。

二、实验原理

水吸收二氧化碳属液膜控制过程,常压下吸收完全符合亨利定律。吸收宏观动力学方程为:

N K C A L m =? (1)

式中:N A 为吸收速度,即单位时间内,单位传质表面上吸收的物质的量,可用下式计算: N C F Q C C F A ==-/()/12 [千摩尔/米2·小时] (2)

式中:

C

—— 单位时间内吸收的物质的量 [千摩尔/小时] F

—— 传质表面积[米2] Q —— 液体流量[米3/小时]

——

为液体出入塔被吸收组分的分子浓度[千摩尔/米3],

对采用直流水吸收C 2=0 ?C m 为液相以摩尔浓度表示的对数平均推动力(千摩尔/米3),可由下式计算:

?C C C C C C C C C m =-----()()ln ****22112211

(3) C C 12**,为出、入塔液相被吸收组分的平衡浓度[千摩尔/米3]

可由亨利定律求出:

C=Hp=H ·P ·y (4)

H ——溶解系数[千摩尔/米3·大气压]

p ——被吸收组分气相分压[大气压]

P ——总压[大气压]

Y ——气相被吸收组分的摩尔分数

K

L

:液相以分子浓度差表示推动力时的传质总系数。液膜控制时,等于液相传质分系数[米/时],与流动状况、装置特征、流体物性有关。

1、从吸收速率方程可知,欲测定传质系数,必先测出一定条件下的吸收速率和对数平均推动力。它们可以根据气、液相CO2浓度、操作温度、压力、液流速率、圆盘尺寸、及数目等按式(2)、(3)、(4)求出。

2、对水与CO2系统,其液流速率对液相传质系数有显著影响。一般符合下式:

K

L

n

=αγ(5)

式中:γ为润湿率。即单位平均液流周边上的液体质量流量[千克/时·米],可按下式计算:

γδ

=Qr/(6)

式中:

r ——液体密度[千克/米3]

——平均液流周边[米]

Q ——流量[米3/时]

n

——润湿率的指数

据研究,在各种填充塔中水吸收CO2时,在一定的γ的范围内,K L与γ的关系如取平均值,有

20℃K L=0007385075

..γ[米/时] (7)

上式的平均误差一般在10%以内。

在圆盘塔吸收CO2,Stephens和Morris得到的关系式为:

20℃K L=00110707

..γ[米/时] (8)

但又强调,在相同条件下,不同圆盘塔装置中,液膜传质系数的测定也可有10%的误差。国外的Taypor等人,国内的周运达等人,使用不同的圆盘,其加工方法或材料不同,

发现当γ大于230.6[千克/时·米]时,n=10,α=0.001147。圆盘塔作为填充塔模型,其圆盘的液膜传质特性必须校正。校正后,其结果才与文献记载的一致。

本实验使用铝制圆盘,测定液体流量为10~25升/时之间的四个不同润湿率下的液膜传质系数K L,以log K L~logγ作图,所得直线斜率为n,截距为logα,可得α,这样,可写出K L与γ的关系式,并可供圆盘塔放大之用。

三、实验装置及流程

本实验采用自来水,在恒温下逆流吸收CO2,吸收的核心装置为圆盘塔(图三),整个系统分为两大部分。

1、圆盘吸收塔:

主要由高32cm,直径 2.5cm 的玻璃管和中央悬挂的一串铝制圆盘组成,圆盘直径

1.498cm,厚0.52cm,平均液流周边为0.039867共40个,及表面积0.02026米2

,每个圆盘

以纵向直角交叉排列,用适当的粘合剂固结,用金属丝将整串圆盘挂起并拉紧。

液体给入喷嘴直径3~4mm,高140mm,两者尺寸与液流速度、塔内压力相适应。喷嘴设置在最上一个圆盘上4~5cm处。

受液管扩大管内空腔,以免气体夹带,受液管上端呈喇叭口形,以免高液流速度下溅液。

塔底有一积液排出管,可排出因击溅或控制不当而带来的积液。

2、流程:

将水打入恒压头槽1内,然后流经恒温水浴2、流量计3、吸收塔4。恒压头槽设有一溢流管,保持其液位高度恒定,以稳定液体流量。并用流量计入口阀调节进塔液量。液体从吸收塔顶部入口管经喷嘴流入塔内圆盘,并经最下一个圆盘流入受液管,最后从平衡管4的排出口排出,平衡管能上下升降,以控制受液管中液面接近管口而不逸出,防止不必要的传质面积的引入。

被吸收气体来自钢瓶7,其CO2气体纯度在99%以上。气体经减压阀及流量计6计量,入吸收塔底部。气体自下而上,未被吸收的CO2,由塔顶排出至室外。

四、实验步骤

吸收剂采用自来水,被吸收物质是来自钢瓶的纯CO2。所用仪表及分析仪器事先应予以校正。测试过程在室温下进行,而液相进口温度应保持恒定。液体进、出口温差尽可能小。

1、塔体安装调整:

调整吸收塔处于垂直状态,圆盘位于塔正中,相邻两圆盘的面互相垂直,且圆盘支持线适度拉紧,进液喷嘴距最上一个圆盘4~5cm,最下一个圆盘距受液管顶端1~2cm。

2、气密试验:

切断液体系统与大气相通的各管道,开启气体流动系统各阀,最后开启钢瓶总阀,减压阀及调节阀,使气体少量流入系统,逐步关小放空阀,并调节气体流量适度,用肥皂水检查连接处,发现漏气酌情处理。

3、系统气体置换:

气体流动系统中各处积存的空气应予以排除,以免影响吸收气体浓度。吸收塔中空气应用排水取气法赶走,管道中空气用分段放空法排除。最后,通原料气一段时间,如从塔后排出的CO

浓度与钢瓶中一致,则认为置换彻底。气体用球胆取样,取样时球胆要置换3~4次。

2

4、液体系统试漏:

把水打入恒压头槽,调节液体流量计入口阀,使少量液体入塔,调节平衡瓶高度,维持受液面恒定,观察各处接头是否漏液。

5、液体流量计的读数:

调节流量计流量到予定范围内某值并保持恒定,然后从平衡瓶出口处用精密秒表及量筒测得1分钟流量,求出每小时流量,即为流量值。

6、测试:

维持气体流量恒定,流量按空塔气速为0.016[米/秒]计(转子流量计需用湿式气体流量计校准),液体进塔温度应保持一定,调节液体流量稳定在予定值。约30~45分钟后开始测定。首先用秒表和量筒测量液体流量,然后用500ml碘量瓶在液体出口处取样(注意管子应插在瓶底,以免CO2解吸)约5分钟取满,连续取3瓶,用盖子盖紧。同时取空白水样,及时进行分析,采完样后,再重测一次流量。在采液的同时,记录各操作条件数据,如气液进出口温度,气体出口压力、大气压、室温等。分析时用移液管(50ml)分别从样品瓶的中下部取三个平等样进行容量分析,如平等试样间反滴0.1M HCl体积差超过0.5ml,应补取平行试样重测,如后一瓶三个平行试样的平均值与前一瓶误差超过4%,表示系统不稳定应弃之。待稳定后重测。在整个实验中,应保持液体进口温度恒定。

依次在10~25L/h的液体流量范围内,以适当间隔测取四组数据,填入数据测定表中供计算。

7、停止:

首先切断气源总阀,待压力指针指零后,关闭气体调节阀和减压阀,关闭气体排入大气阀等,待恒压槽内液体流尽后,打开各液体导淋阀,排除管线中一切积液,然后关闭液体线路中各阀,严防空气进入。

五、数据处理

1. 液相中CO 2浓度分析

采用容量法,即以过量碱固定液相中CO 2后,再用盐酸反滴。取样时,移液管嘴插到样品瓶的中、下部,准确吸取50ml 样品,移入予先已放置20ml 0.1M 标准NaOH 溶液与6ml 10%BaCl 2(足量)溶液的三角瓶中,加2~3滴酚酞作指示剂,摇匀后,用0.1M 标准HCl 溶液反滴过量碱,待溶液粉红色刚消失,即为滴定终点,记录所耗盐酸体积。

反应式:

浓度计算式:

C C V C V NaOH NaOH =-?002.(()空白-C V HCl HCl [千摩尔/米3] (9)

式中C C NaOH HCl ,为标准NaOH 、HCl 的摩尔浓度[mol/l]

(C ·V)空白为水的空白校正试验的摩尔数,对蒸馏水取零,对自来水采用空白校正实验

测定,即取50ml 自来水加到10ml0.1M NaOH 与6ml10%BaCl 2混合液中,以酚酞为指示剂,用0.1M 标准HCl 溶液反滴至终点。所用碱的摩尔数与所用酸的摩尔数之差即为(C ·V)空白(注意每瓶都要做空白实验)。

六、结果与讨论

1、若不做空白实验,对结果有何影响?

2、分析过程中,若CO 2逸出,对结果有何影响?

水吸收二氧化硫填料塔课程设计..

《化工原理课程设计》报告 设计任务书 (一)设计题目 试设计一座填料吸收塔,用于脱除混于空气中的SO2,混合 气体的处理为2500m3/h,其中SO2(体积分数)8﹪。要求塔 板排放气体中含SO2低于0.4%,采用清水进行吸收。(二)操作条件 常压,20℃ (三)填料类型 选用塑料鲍尔环、陶瓷拉西环填料规格自选 (四)设计内容 1、吸收塔的物料衡算 2、吸收塔的工艺尺寸计算 3、填料层压降的计算 4、吸收塔接管尺寸的计算 5、绘制吸收塔的结构图

6、对设计过程的评述和有关问题的讨论 7、参考文献 8、附表 目录 一、概述 (4) 二、计算过程 (4) 1. 操作条件的确定 (4) 1.1吸收剂的选择 (4) 1.2装置流程的确定 (4) 1.3填料的类型与选择 (4) 1.4操作温度与压力的确定 (4) 2. 有关的工艺计算 (5) 2.1基础物性数据 (5) 2.2物料衡算 (6) 2.3填料塔的工艺尺寸的计算 (6) 2.4填料层降压计算 (11) 2.5吸收塔接管尺寸的计算 (12) 2.6附属设备……………………………………………… ..12 三、评价 (13) 四、参考文献 (13) 五、附表 (14)

一、概述 填料塔不但结构简单,且流体通过填料层的压降较小,易于用 耐腐蚀材料制造,所以它特别适用于处理量小,有腐蚀性的物 料及要求压降小的场合。液体自塔顶经液体分布器喷洒于填料 顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。因气 液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液 传质设备。 二、设计方案的确定 (一) 操作条件的确定 1.1吸收剂的选择 因为用水作吸收剂,同时SO2不作为产品,故采用纯溶剂。 1.2装置流程的确定 用水吸收SO2属于中等溶解度的吸收过程,故为提高传 质效率,选择用逆流吸收流程。 1.3填料的类型与选择 用不吸收SO2的过程,操作温度低,但操作压力高,因 为工业上通常选用塑料散堆填料,在塑料散堆填料中,塑

填料吸收传质系数的测定

序号:40 化工原理实验报告 实验名称:填料吸收传质系数的测定 学院:化学工程学院 专业:化学工程与工艺

1、熟悉填料塔的构造与操作。 2、观察填料塔流体力学状况,测定压降与气速的关系曲线。 3、掌握总传质系数K x a 的测定方法并分析影响因素。 4、学习气液连续接触式填料塔,利用船只速率方程处理传质问题的办法。 一、 实验原理 本装置先用吸收柱讲将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数a x K ,并进行关联,得到 b a V AL K ?=a x 的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。本实 验引入了计算机在线数据采集技术,加快了数据记录与处理的速度。 1、填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa 线)。当有喷淋量时,在低气速下(c 点以前)压降也正比于气速的1.8~2次幂,但大于同一气速下干填料的压降(图中bc 段)。随气速的增加,出现载点(图1中c 点),持液量开始增大,压降-气速线向上 弯,斜率变陡(图中cd 段)。到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。 图一 填料层压降-空塔气速关系示意图 2、传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验是对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓度差计算填料层传质平均推动力。整理得到相应的传质速率方式为: m p x A x V a K G ???=

实验四填料吸收塔的操作及吸收传质系数的测定

实验四填料吸收塔的操作及吸收传质系数的测定姓名:学号:;学院专业级班; 同组同学姓名:;;。 实验日期:;天气:;室温:大气压:;成绩: . 一、实验目的 1.了解填料吸收塔的结构和操作流程; 2.掌握产生液泛现象的原因和过程。 3.明确吸收塔填料层压降p与空塔气速u在双对数坐标中的关系曲线及其意义,了 解实际操作气速与泛点气速之间的关系 4.了解吸收剂进口条件的变化对吸收操作结果的影响; 5. 掌握气相总容积吸收传质系数Ky,α的测定方法 二、基本原理 吸收是指利用气体中各组分在液相中溶解度的差异而分离气体混合物的操作。在吸收过 程中,所用液体成为吸收剂(或溶剂);气体中被溶解的组分称为吸收质或溶质;不被溶解 的气体组分称为惰性气体或载体;吸收操作所得到的液体称为溶液(主要成分为吸收剂和溶质);剩余的气体为尾气,主要成分为惰性气体,还有残余的吸收质。 1.气液相平衡关系 大多数气体物质A溶解形成稀溶液时,稀溶液上方溶质A的平衡分压p A*与其在溶液 中的 摩尔分数x A成正比: p A* = Ex A (4-1) 这就是亨利定律。式中,E为亨利系数(kPa)。 若气相组成也用平衡摩尔分数y*表示,则(3-4-1)式可写为:

y A* = Ex A/p (4-2) 令E/p= m,则 y A* = mx A (4-3) 式中,m为相平衡系数,量纲为1。 吸收过程中,溶液和气体的总量在不断变化,使得吸收过程的计算比较复杂。为了简便 起见,工程计算中采用在吸收过程中数量不变的惰性气体(如空气)和纯吸收剂为基准,用 物质的量之比(也称为比摩尔分数)来表示气相和液相中吸收质A的含量,并分别用Y A和 X A表示。平衡时,其关系式为: Y A*= mX A/(1?(1?m)X A) 当溶液浓度很低时,X A很小,则1+(1-m)X A?1,式(3-4-4)可简化为: Y A*=mX A 2.填料吸收塔流体力学特性 填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。填料层上方有液体分布装置,可以使液体均匀喷洒在填料塔上。液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降△P的产生。填料塔的流体力学特性是吸收设备的主要参数,它包括压强降液泛规律。了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。填料塔的流体力学特性的测定主要是确定适宜操作气速。 在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降△P与空塔气速u的关系可用式△P=u1.8-2.0表示。在双对数坐标系中为一条直线,斜率为 1.8— 2.0。在有一条喷淋(L≠0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守△P∝u1.8-2.0这一关系。但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。当气速增加到某一值时。由于上升气流与下降液体的摩擦阻力增大,开始阻碍液体的顺利下流,以致于填料层内的气液量随气速的增加而增加,此现象称为拦液现象,此点为载点,开始拦液时的空塔气速称为载点气速。进入载液区后,当空塔气速再进一步增大,则填料层内拦液量不断增高,到达某一气速时,气、液间的摩擦力完全阻止液体向下流动,填料层的压力将急剧升高,在△P∝u n关系式中,n的数值可达10左右,此点称为泛点。在不同的喷淋密度下,在双对数坐标中可得到一系列这样的折线。随着喷淋密度的增加,填料层的载点气速和泛点气速下降。 本实验以水和空气为工作介质,在一定喷淋密度下,逐步增大气速,记录填料层的压降与塔顶表压的大小,直到发生液泛为止。 3.吸收速率方程式

填料塔课程设计--填料吸收塔的设计

课程设计 题目:填料吸收塔的设计 教学院:化学与材料工程学院 专业:应用化工技术2010级(1)班学号: 学生姓名: 指导教师: 2012年6 月3 日

课程设计任务书 2011 ~ 2012 学年第 2 学期 一、课程设计题目 填料吸收塔的设计 二、工艺条件 1.处理能力:1500m3/h混合气(空气、SO2) 2.年工作日:300天 3.混合气中含SO2: 3%(体积分数) 4.SO2排放浓度:0.16% 5.操作压力:常压操作 6.操作温度:20℃ 7.相对湿度:70% 8.填料类型:自选(塑料鲍尔环,陶瓷拉西环等) 9.平衡线方程:(20℃) 三、课程设计内容 1.设计方案的选择及流程说明; 2.工艺计算; 3.主要设备工艺尺寸设计; (1)塔径的确定; (2)填料层高度计算; (3)总塔高、总压降及接管尺寸的确定。 4.辅助设备选型与计算。 四、进度安排 1.课程设计准备阶段:收集查阅资料,并借阅相关工程设计用书; 2.设计分析讨论阶段:确定设计思路,正确选用设计参数,树立工程观点,小组分工协作,较好完成设计任务; 3.计算设计阶段:完成物料衡算、流体力学性能验算及主要设备的工艺设计计算; 4. 课程设计说明书编写阶段:整理文字资料计计算数据,用简洁的文字和适当的图表

表达自己的设计思想及设计成果。 五、基本要求 1.格式规范,文字排版正确; 2. 主要设备的工艺设计计算需包含:物料衡算,能量衡量,工艺参数的选定,设备的结 构设计和工艺尺寸的设计计算; 3.工艺流程图:以2号图纸用单线图的形式绘制,标出主体设备与辅助设备的物料方向,物流量、能流量,主要测量点; 4. 填料塔工艺条件图:以2号图纸绘制,图面应包括设备的主要工艺尺寸,技术特性表 和接管表; 5. 按时完成课程设计任务,上交完整的设计说明书一份。 教研室主任签名: 年月日

填料吸收塔的操作和吸收系数的测定

昆明理工大学实验报告 课题名称:化工原理实验 实验名称:填料吸收塔的操作和吸收系数的测定 姓名:成绩: 学号:班级: 实验日期: 实验内容:1.测定干填料及不同液体喷淋密度下填料的阻力降△P与空塔气速u的关系曲线,并确定液泛气速。 2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混合气体中氨的体积吸收系数K a。 Y

填料吸收塔的操作和吸收系数的测定 一、实验目的 1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。 2.熟悉填料塔的流体力学特性。 3.掌握总传质系数K Y a测定方法。 4.了解空塔气速和液体喷淋密度对传质系数的影响。 二、基本原理 1.填料塔流体力学特性 填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、θ网环都属于实体填料。填料层上方有液体分布装置,可以使液体均匀喷洒在填料塔上。液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降△P的产生。填料塔的流体力学特性是吸收设备的主要参数,它包括压强降液泛规律。了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。填料塔的流体力学特性的测定主要是确定适宜操作气速。 在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降△P与空塔气速u的关系可用式△P=u1.8—2.0表示。在双对数坐标系中为一条直线,斜率为1.8—2.0。在有一条喷淋(L≠0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守△P∝u1.8—2.0这一关系。但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。当气速增加到某一值时。由于上升气流与下降液体的摩擦阻力增大,开始阻碍液体的顺利下流,以致于填料层内的气液量随气速的增加而增加,此现象称为拦液现象,此点为载点,开始拦液时的空塔气速称为载点气速。进入载液区后,当空塔气速再进一步增大,则填料层内拦液量不断增高,到达某一气速时,气、液间的摩擦力完全阻止液体向下流动,填料层的压力将急剧升高,在△P∝u n关系式中,n的数值可达10左右,此点称为泛点。在不同的喷淋密度下,在双对数坐标中可得到一系列这样的折线。随着喷淋密度的增加,填料层的载点气速和泛点气速下降。 本实验以水和空气为工作介质,在一定喷淋密度下,逐步增大气速,记录填料层的压降与塔顶表压的大小,直到发生液泛为止。 2.体积吸收系数K Y a的测定 在吸收操作中,气体混合物和吸收剂分别从塔底和塔顶进入塔内,气液两相在塔内逆流接触,使气体混合物中的溶质溶解在吸收质中,于是塔顶主要为惰性组分,塔底为溶质与吸收剂的混合液。反映吸收性能的主要参数是吸收系数,影响吸收系数的因素很多,其中有气体的流速、液体的喷淋密度、温度、填料的自由体积、比表面积以及气液两相的物理化学性质等。吸收系数不可能有一个通用的计算式,工程上常对同类型的生产设备或中间试验设备进行吸收系数的实验测定。对于相同的物料系统和一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况的不同而变化。 本实验用水吸收空气—氨混合气体中的氨气。氨气为易溶气体,操作属于气膜控制。在

实验四填料塔吸收传质系数的测定

实验四填料塔吸收传质 系数的测定 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

4填料塔吸收传质系数的测定 4.1实验目的 1. 了解填料塔吸收装置的基本结构及流程; 2. 掌握总体积传质系数的测定方法; 3. 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 4.了解气相色谱仪和六通阀在线检测CO 2浓度和测量方法。 4.2实验原理 气体吸收是典型的传质过程之一。由于CO 2气体无味、无毒、廉价,所以气体吸收实验选择CO 2作为溶质组分是最为适宜的。本实验采用水吸收空气中的CO 2组分。一般将配置的原料气中的CO 2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。又CO 2在水中的溶解度很小,所以此体系CO 2气体的吸收过程属于液膜控制过程。因此,本实验主要测定K xa 和H OL 。 1)计算公式 填料层高度Z 为 OL OL x x xa Z N H x x dx K L dZ z ?=-= =? ?* 1 2 0 (6-1) 式中: L 液体通过塔截面的摩尔流量,kmol/(m 2·s); K xa △X 为推动力的液相总体积传质系数,kmol/(m 3 ·s); H OL 传质单元高度,m ; N OL 传质单元数,无因次。 令:吸收因数A=L/mG (6-2)

])1ln[(11 1 121A mx y mx y A A N OL +----= (6-3) 2)测定方法 (1)空气流量和水流量的测定 本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。 (2)测定塔顶和塔底气相组成y 1和y 2; (3)平衡关系。 本实验的平衡关系可写成 y =m x (6-4) 式中: m 相平衡常数,m =E /P ; E 亨利系数,E =f (t),Pa ,根据液相温度测定值由附录查得; p 总压,Pa ,取压力表指示值。 对清水而言,x 2=0,由全塔物料衡算 可得x 1。 4.3实验装置与流程 1〕装置流程 本实验装置流程如图6-1所示:水经转子流量计后送入填料塔塔顶再经喷淋头喷淋在填料顶层。由风机输送来的空气和由钢瓶输送来的二氧化碳气体混合后,一起进入气体混合稳压罐,然后经转子流量计计量后进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程可看成是等温吸收过程。

水吸收氨气填料塔设计样本

东南大学成贤学院 课程设计报告 题目填料吸收塔的设计 课程名称化工原理课程设计 专业制药工程 班级 学生姓名 学号 设计地点东南大学成贤学院 指导教师 设计起止时间:2012 年8月28日至2012 年9 月14 日

目录 课程任务设计书 (3) 第一节吸收塔简介 (4) 1.1 吸收技术概况 (4) 1.2 吸收设备--填料塔概况 (4) 1.3 典型的吸收过程 (5) 第二节填料塔主体设计方案的确定 (6) 2.1 装置流程的确定 (6) 2.2 吸收剂的选择 (6) 2.3 填料的类型与选择 (7) 2.3.1填料种类的选择 (7) 2.3.2 填料规格的选择 (8) 2.3.3 填料材质的选择 (8) 第三节填料塔工艺尺寸的计算 (10) 3.1 基础物性数据 (10) 3.1.1 液相物性数据 (10) 3.1.2 气相物性数据 (10) 3.1.3 气液相平衡数据 (10) 3.2 物料衡算及校核 (11) 3.2.1水吸收氨气平衡关系 (11) 3.2.2绘制X-Y图 (11) 3.2.3物料衡算 (16) 3.3 塔径的计算及校核 (18) 3.3.1塔径的计算 (18) 3.3.2塔径的校核 (20) 3.4 填料层高度的计算及分段 (20) 3.4.1填料层高度的计算 (20) 3.4.2 填料层的分段 (23) 3.5 填料层压降的计算 (23) 第四节其他辅助设备的计算与选择 (24) 4.1 吸收塔的主要接管尺寸计算 (24) 4.2 气体进出口的压降计算 (24)

4.3 离心泵的选择与计算 (24) 附件一: 1.计算结果汇总 (26) 2.主要符号及说明 (27) 3.参考文献 (28) 4. 个人小结 (28) 附件二: 1.填料塔设备图 (30) 2.塔设备流程图 (31) 3.埃克特通用压降关联图 (32) 4.X-Y关系图(见计算过程)

射线的吸收与物质吸收系数的测定

实验九Y射线的吸收与物质吸收系数U的测定 实验目的 1 .了解射线与物质相互作用的特性 2.了解窄束射线在物质中的吸收规律 3?测量其在不同物质中的吸收系数 实验原理 一、射线与物质的作用 射线是由于原子核由激发态到较低的激发态退激(而原子序数Z和质量数A均保持不变)的过程中产生的,包括:(1)或衰变的副产品(2)核反应(3) 基态激发三部分,是处于激发态原子核损失能量的最显著方式;由于射线具不 带电、静止质量为0等特点决定了它同物质的作用方式与带电粒子不同,带电粒子(或粒子等)在一连串的多次电离和激发事件中不断地损失其能量,而射线与物质的相互作用却在单次事件中完全吸收或散射。光子(射线)通过物体时会与其中的下述带电体发生相互作用: 1)被束缚在原子中的电子; 2)自由电子(单个电子); 3)库仑场(核或电子的); 4)核子(单个核子或整个核)。 这些类型的相互作用可以导致:光子的完全吸收、弹性散射、非弹性散射三 种效应中的一种(在从约10KeV到约10MeV范围内,大部分相互作用产生下列过程中的一种)表现为: 光电效应: 低能光子所有的能量被一个束缚电 子吸收,核电子将其能量的一部分用来克 服原子对它的束缚,成为光电子;其余的 能量则作为动能,发生光电效应。 (光电效 应)

康普顿效应: 光子还可以被原子或单个电子散射, 当 光子的能量(约在 1MeV )大大超过 电子的结合能时,光子与核外电子发生非 弹性碰撞,光子的一部分能量转移给电 子,使它反冲出来,而散射光子的能量和 运动方向都发生了变化,发生康普顿效应。 电子对效应: 若入射光子的能量超过 1.02MeV , 光子在带电粒子的库仑场作用下则 可能产生正、负电子对,产生的电子对 总动能等于 光子能量减去这两个电子 的静止质量能(2mc 2=l.022MeV ) 子发生光电效应、康普顿效应和电子对效应损失能量; 射线一旦与吸收物质 原子发生这三种相互作用,原来能量为 h 的光子就消失,或散射后能量改变、 并偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射 束中移去。 二、物质对 射线的吸收规律: 作用特点: 射线与物质原子间的相互作用只要发生一次碰撞就是一次大的 能量转移;它不同于带电粒子穿过物质时,经过许多次小能量转移的碰撞来损失 它的能量。带电粒子在物质中是逐渐损失能量, 最后停止下来,有射程概念; 射 线穿过物质时,强度逐渐减弱,按指数规律衰减,不与物质发生相互作用的光子 穿过吸收层,其能量保持不变,因而没有射程概念可言,但可用“半吸收厚度” 来表示射线对物质的穿透情况。 吸收规律:本实验研究的主要是窄束 射线在物质中的吸收规律。所谓窄束 射线是指不包括散射成份的射线束,通过吸收片后的 光子,仅由未经相互作用 或称为未经碰撞的光子所组成。 “窄束” 一词是实验上通过准直器得到细小的束而 从上面的讨论可以清楚地看到,当 光子穿过吸收物质时,通过与物质原 (电子对效应)

(完整版)13液液传质系数的测定

液液传质系数的测定 A 实验目的 (1) 掌握用刘易斯池测定液液传质系数的实验方法; (2) 测定醋酸在水与醋酸乙酯中的传质系数; (3) 探讨流动情况、物系性质对液液界面传质的影响机理。 B 实验原理 实际萃取设备效率的高低,以及怎样才能提高其效率,是人们十分关心的问题。为了解决这些问题,必须研究影响传质速率的因素和规律,以及探讨传质过程的机理。 近几十年来,人们虽已对两相接触界面的动力学状态,物质通过界面的传递机理和相界面对传递过程的阻力等问题进行了研究,但由于液液间传质过程的复杂性,许多问题还没有得到满意的解答,有些工程问题不得不借助于实验的方法或凭经验进行处理。 工业设备中,常将一种液相以滴状分散于另一液相中进行萃取。但当流体流经填料、筛板等内部构件时,会引起两相高度的分散和强烈的湍动,传质过程和分子扩散变得复杂,再加上液滴的凝聚与分散,流体的轴向返混等问题影响传质速率的主要因素,如两相实际接触面积、传质推动力都难以确定。因此,在实验研究中,常将过程进行分解,采用理想化和模拟的方法进行处理。 1954年刘易斯[1] (Lewis)提出用一个恒定界面的容器,研究液液传质的方法,它能在给定界面面积的情况下,分别控制两相的搅拌强度,以造成一个相内全混,界面无返混的理想流动状况,因而不仅明显地改善了设备内流体力学条件及相际接触状况,而且不存在因液滴的形成与凝聚而造成端效应的麻烦。本实验即采用改进型的刘易斯池 [2] [3] 进行实验。由于刘易斯池具有恒定界面的特点,当实验在给定搅拌速度及恒定的温度下,测定两相浓度随时间的变化关系,就可借助物料衡算及速率方程获得传质系数。 () * W W W W W C C K dt dC A V -=?- (1) () 0* 0000C C K dt dC A V -=? (2) 若溶质在两相的平衡分配系数m 可近似地取为常数,则

水吸收二氧化硫填料塔的设计方案 (2)

湖南农业大学 实习报告 学生姓名学号 年级专业及班级20 级()班指导教师姓名 实习类型实习时间 实习地点 学院

填写说明 一、学生的教学实习、生产实习、毕业(教育)实习和综合实习均应填写实习 日记,并撰写实习报告; 二、学生的实习报告和实习日记将作为评价实习成绩的重要依据; 三、学生应在实习结束后的一个星期内将实习报告统一交实习指导教师; 四、指导教师应对学生的实习报告和实习日记逐一认真审阅,并作出客观实际 的正确评价; 五、实习报告经学院审核后作为教学档案长期保存。

一设计任务书 (一)设计题目 炉石焙烧送出的气体冷却至25℃后送入填料塔中,用20℃清水洗涤以除去其中的SO 2 。入塔 炉气流量为h m/ 20003其中SO 2的摩尔分数为0.05,要求SO 2 的吸收率为95%。吸收塔为常压 操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度,试设计一符合上述要求的填料吸收塔。 操作条件 (1)操作压力常压 (2)操作温度20℃ 设计内容 (1)吸收塔的物料衡算; (2)吸收塔的工艺尺寸计算; (3)液体分布器简要设计; (4)绘制吸收塔设计条件图;

目录 一、设计方案简介 二、吸收塔的工艺计算 三、液体分布器简要设计 四、附图

一、设计方案简介 1)方案的确定 属中等溶解度的吸收过程,为提高传质效率,选用逆流吸收流程。因用水作为吸用水吸收SO 2 不作为产品,故采用纯溶剂 收剂,且SO 2 2)填料的类型与选择 对于水吸收SO 过程,操作温度及操作压力较低,工业上通常选用塑料散装填料。在塑料散装 2 填料中,塑料阶梯环填料的综合性能较好,故此选用DN38聚丙烯阶梯环填料。 阶梯环是对鲍尔环的改进。与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种。 空隙率堆积个数堆积重量填料因子m-1规格比表面积 m2/m3 38*19*1.2 132.5 0.91 27200 57.5 175.8 3)设计步骤 (一)吸收塔的物料衡算; (二)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降; (三)设计液体分布器及辅助设备的选型; (四)绘制有关吸收操作图纸。

实验八 吸收系数的测定

4.8吸收系数的测定 一、实验目的 1. 了解填料吸收装置的基本流程及设备结构; 2. 掌握总体积吸收系数的测定方法,了解单膜控制过程的特点; 3. 了解气体空塔速度和喷淋密度对总吸收系数的影响; 4. 了解气体流速与压降的关系。 5. 吸收率的测定 二、基本原理 要决定填料塔的塔高,总吸收系数是有待确定的参量,而实验测定是其来源之一,另外在测定生产中塔的性能时,也需要测定总吸收系数,在吸收过程为单膜控制时,单膜吸收系数近似等于总吸收系数,因而可用总吸收系数的测定,代替单膜吸收系数的测定,从而可建立单膜吸收系数的实验关系式。 当吸收溶液的浓度小于10%时,平衡关系服从亨利定律,则总吸收系数为 m Y Y h Y Y G K ??-= )(21α (4-35) 式中:h —填料层高度,m ; Y 1、Y 2—分别为塔底与塔顶的气体摩尔流量,kmol/(m 2·h); ΔY m —气相平均推动力。 三.实验装置的基本情况: 图4-16 填料吸收塔实验装置流程示意图 1-鼓风机、2-空气流量调节阀、3-空气转子流量计、4-空气温度、5-液封管、6-吸收液取样口、7-填料吸收塔、8-氨瓶阀门、9-氨转子流量计、10-氨流量调节阀、11-水转子流量计、12-水流量调节阀、13-U 型管压差计、14-吸收瓶、15-量气管、16-水准瓶、17-氨气瓶、18-氨气温度、20-吸收液温度、21-空气进入流量计处压力 实验流程示意图见图4-16,空气由鼓风机1送入空气转子流量计3计量,空气通过流量

计处的温度由温度计4测量,空气流量由放空阀2调节,氨气由氨瓶送出,?经过氨瓶总阀8进入氨气转子流量计9计量,?氨气通过转子流量计处温度由实验时大气温度代替。其流量由阀10调节5,然后进入空气管道与空气混合后进入吸收塔7的底部,水由自来水管经水转子流量计11,水的流量由阀12调节,然后进入塔顶。分析塔顶尾气浓度时靠降低水准瓶16的位置,将塔顶尾气吸入吸收瓶14和量气管15。?在吸入塔顶尾气之前,予先在吸收瓶14内放入5mL 已知浓度的硫酸作为吸收尾气中氨之用。 吸收液的取样可用塔底6取样口进行。填料层压降用∪形管压差计13测定。 四. 实验方法及步骤: 1. 测量干填料层(△P /Z)─u 关系曲线: 先全开调节阀 2,后启动鼓风机,用阀 2 调节进塔的空气流量,按空气流量从小到大的顺序读取填料层压降△P,转子流量计读数和流量计处空气温度,?然后在对数坐标纸上以空塔气速 u 为横坐标,以单位高度的压降△P /Z 为纵坐标,标绘干填料层(△P /Z)─u 关系曲线(见图二). 2. 测量某喷淋量下填料层(△P /Z)─u 关系曲线: 用水喷淋量为40L /h 时,用上面相同方法读取填料层压降△P,?转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, ?一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为40L /h 下(△P /z)─u?关系曲线(见图二),确定液泛气速并与观察的液泛气速相比较。 ⑴选泽适宜的空气流量和水流量(建议水流量为30L /h)?根据空气转子流量计读数为保证混合气体中氨组分为0.02-0.03左右摩尔比,计算出氨气流量计流量读数。 (2)先调节好空气流量和水流量,打开氨气瓶总阀8调节氨流量,使其达到需要值,在空气,氨气和水的流量不变条件下操作一定时间过程基本稳定后,?记录各流量计读数和温度,记录塔底排出液的温度,并分析塔顶尾气及塔底吸收液的浓度。 (3)尾气分析方法: a.排出两个量气管内空气,使其中水面达到最上端的刻度线零点处,并关闭三通旋塞。 b.用移液管向吸收瓶内装入5mL 浓度为0.005M左右的硫酸并加入1─2滴甲基橙指示液。 c.将水准瓶移至下方的实验架上,缓慢地旋转三通旋塞,让塔顶尾气通过吸收瓶,旋塞的开度不宜过大,以能使吸收瓶内液体以适宜的速度不断循环流动为限。 从尾气开始通入吸收瓶起就必需始终观察瓶内液体的颜色,?中和反应达到终点时立即关闭三通旋塞,?在量气管内水面与水准瓶内水面齐平的条件下读取量气管内空气的体积。 若某量气管内已充满空气,但吸收瓶内未达到终点,可关闭对应的三通旋塞,?读取该量气管内的空气体积,同时启用另一个量气管,继续让尾气通过吸收瓶。 d.用下式计算尾气浓度Y 2 因为氨与硫酸中和反应式为: 2NH 3+H 2SO 4=(NH 4)2SO 4 所以到达化学计量点(滴定终点)时,被滴物的摩尔数n NH3和滴定剂的摩尔数 n H2SO4 之比为: n NH3∶n H2SO4=2∶1 n NH3=2n H2SO4=2M H2SO4·VH2SO4 Y2= 空气 N n NH 3 = 4 .220 (4 2422)量气管 量气管T T V SO H SO H V M ? ? 式中: n NH3,N 空气─分别为NH3和空气的摩尔系数, M H2SO4─硫酸溶液体积摩尔浓度, mol 溶质/l 溶液

实验四填料塔吸收传质系数的测定

4填料塔吸收传质系数的测定 实验目的 1. 了解填料塔吸收装置的基本结构及流程; 2. 掌握总体积传质系数的测定方法; 3. 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 4.了解气相色谱仪和六通阀在线检测CO 2浓度和测量方法。 实验原理 气体吸收是典型的传质过程之一。由于CO 2气体无味、无毒、廉价,所以气体吸收实验选择CO 2作为溶质组分是最为适宜的。本实验采用水吸收空气中的CO 2组分。一般将配置的原料气中的CO 2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。又CO 2在水中的溶解度很小,所以此体系CO 2气体的吸收过程属于液膜控制过程。因此,本实验主要测定K xa 和H OL 。 1)计算公式 填料层高度Z 为 OL OL x x xa Z N H x x dx K L dZ z ?=-= =? ?* 1 2 0 (6-1) 式中: L 液体通过塔截面的摩尔流量,kmol/(m 2·s); K xa △X 为推动力的液相总体积传质系数,kmol/(m 3 ·s); H OL 传质单元高度,m ; N OL 传质单元数,无因次。 令:吸收因数A=L/mG (6-2) ])1ln[(11 1 121A mx y mx y A A N OL +----= ?(6-3)

2)测定方法 (1)空气流量和水流量的测定 本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。 (2)测定塔顶和塔底气相组成y 1和y 2 ; (3)平衡关系。 本实验的平衡关系可写成 y=m x(6-4) 式中:m相平衡常数,m=E/P; E亨利系数,E=f(t),Pa,根据液相温度测定值由附录查得; p总压,Pa,取压力表指示值。 对清水而言,x2=0,由全塔物料衡算 可得x1。 实验装置与流程 1〕装置流程 本实验装置流程如图6-1所示:水经转子流量计后送入填料塔塔顶再经喷淋头喷淋在填料顶层。由风机输送来的空气和由钢瓶输送来的二氧化碳气体混合后,一起进入气体混合稳压罐,然后经转子流量计计量后进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程可看成是等温吸收过程。 图6—1吸收装置流程图 2〕主要设备 (1)吸收塔:高效填料塔,塔径100mm,塔内装有金属丝网板波纹规整填料,填

填料吸收塔设计

山东农业大学环境工程原理课程设计 题目清水吸收二氧化硫填料吸收塔的设计 学院资源与环境学院 专业班级环境工程09级 学生姓名XXXX 学生学号20095539 指导教师孙老师 2011年12月28 日

第一章前言............................................................................................................... - 1 - 第一节填料塔的主体结构与特点 ........................................................................ - 1 - 第二节填料塔的设计任务及步骤 ........................................................................ - 1 - 第三节填料塔设计条件及操作条件..................................................................... - 2 - 第二章吸收塔主体设计方案的确定 ............................................................................. - 2 - 第一节吸收剂选择 ............................................................................................. - 2 - 第二节填料的类型与选择................................................................................... - 2 - 第三章吸收塔的工艺计算 ...................................................- 3 -第一节基础物性数据.......................................................................................... - 3 - 一、液相物性数据.......................................................................................... - 3 - 二、气相物性数据.......................................................................................... - 3 - 三、气液相平衡数据 ...................................................................................... - 4 - 第二节物料衡算................................................................................................. - 4 - 第四章填料塔的工艺尺寸的计算................................................................................. - 5 - 第一节填料塔直径的计算 ...............................................- 5 - 一、确定空塔气速........................................................................................ - 5 - 二、塔径计算: ............................................................................................. - 6 - 三、塔径校核................................................................................................. - 6 - 第二节传质单元的计算........................................................................................ - 8 - 一、传质单元数计算 ...................................................................................... - 8 - 二、传质单元高度计算................................................................................... - 8 - 第三节高度的计算..............................................................................................- 11 - 一、填料层高度的计算..................................................................................- 11 - 二、塔附属高度的计算..................................................................................- 12 - 第四节填料层压降的计算 ...................................................................................- 12 - 第五章塔内件设计 ............................................................................................- 14 - 第一节液体分布器计算 .....................................................................................- 14 - 一、液体分布器 ............................................................................................- 14 - 二、布液孔数................................................................................................- 14 - 第二节填料塔内件的选择..................................................................................- 14 - 一、液体分布器 ............................................................................................- 14 - 二、液体再分布器.........................................................................................- 15 - 三、填料支撑板 ..........................................................................................- 15 - 四、填料压板与床层限制板...........................................................................- 16 - 五、气体进出口装置与排液装置....................................................................- 16 - 主要参考文献 ..............................................................- 16 -附录一:工艺设计计算结果汇总 .............................................- 17 -附录二:主要符号说明................................................................................................- 18 - 附录三:二氧化硫填料塔设计图(单位:mm).............................................................- 20 -

伽马射线吸收系数的测量

γ射线的吸收与物质吸收系数μ的测定 初阳学院综合理科081班马甲帅08800140 指导老师林根金 摘要: 本实验研究的主要是窄束γ射线在金属物质中的吸收规律。测量γ射线在不同厚度的铅、铝中的吸收系数。通过对γ射线的吸收特性,分析与物质的吸收系数与物质的面密度,厚度等因素有关。根据已知一定放射源对一定材料的吸收系数来测量该材料的厚度。 关键词:γ射线吸收系数μ60Co、137Cs放射源 引言:γ射线首先由法国科学家P.V.维拉德发现,是继α、β射线后发现的第三种原子核射线。原子核衰变和核反应均可产生γ射线。γ射线具有比X射线还要强的穿透能力。γ射线是处于激发态原子核损失能量的最显著方式,γ跃迁可定义为一个核由激发态到较低的激发态、而原子序数Z和质数A均保持不变的退激发过程。γ射线是光子,光子会与被束缚在原子中的电子、自由电子、库伦场、核子等带电体发生相互作用。不同能量的γ射线与物质的相互作用效果不同,为了有效地屏蔽γ辐射,需要根据物质对γ射线的吸收规律来选择合适的材料及厚度,反之,利用物质对γ射线的吸收规律可以进行探伤及测厚等。因此研究不同物质对γ射线的吸收规律的现实意义非常巨大,如在核技术的应用与辐射防护设计和材料科学等许多领域都有应用。 正文 1实验原理 1.1 γ射线与带电体的作用原理 γ射线与带电体的相互作用会导致三种效应中的一种。理论上讲,γ射线可能的吸收核散射有12种过程。这些效应所释放的能量在10KeV到10MeV之间的只有三种,也就是基本上每种相互作用都产生一种主要的和吸收散射过程。这三种主要过程是: 1.1.1光电效应: 低能γ光子所有的能量被一个束缚电子吸收,核电子将其能量的一部分用来克服原子对它的束缚,成为光电子;其余的能量则作为动能,发生光电效应。 1.1.2 康普顿效应: γ光子还可以被原子或单个电子散射,当γ光子的能量(约在1MeV)大大超过电子的结合能时,光子与核外电子发生非弹性碰撞,光子的一部分能量转移给电子,使它反冲出来,而散射光子的能量和运动方向都发生了变化,发生康普顿效应。 1.1.3 电子对效应: 若入射光子的能量超过1.02MeV,γ光子在带电粒子的库仑场作用下则可能产生正、负电子对,产生的电子对总动能等于γ光子能量减去这两个电子的静止质量能(2mc2=1.022MeV) 1.2 三种γ射线与带电体发生相互作用的基础上,物质对γ射线的吸收规律如下: 1.2.1作用特点:γ射线与物质原子间的相互作用只要发生一次碰撞就是一次大的能量

相关文档
最新文档