计算方法插值法
计算方法第四章 插值法

4
3
xi 4 yi 2
9 16 3 4
2
0
4
7
9
16
第4章 插值法
应用背景
造函数表:三角函数、对数 预测:鸡蛋价格、城市用水量
《 计 算 方 法 》
数控加工:造船、飞机机翼骨架、服装 样片、模具加工、刀具 计算机辅助设计:潜水艇、汽车造型
服装样片
第4章 插值法
实际问题中,f (x)多样,复杂,通常只能观测到一些离散 数据;或者f (x)过于复杂而难以运算。这时我们要用近似函数 φ(x)来逼近f (x)。
《 计 算 方 法 》
φ (x)= y0
第4章 插值法
§2 线性插值与二次插值
2.1 线性插值
线性插值是代数多项式插值的最简单的形式。假设
《 计 算 方 法 》
给定了函数f (x)在两个互异点x0,x1的值,即
x x0值)
y y0 x0
y1
x1
x
第4章 插值法
现要用一线性函数
满足插值条件:
y( xi ) = yi , i = 0,1, 2
22
第4章 插值法 例:已知函数 y=f (x)的观测数据为
x
《 计 算 方 法 》
1 0
2 -5
3 -6
4 3
y
试求拉格朗日插值多项式。
第4章 插值法
《 计 算 方 法 》
( x 2)( x 3)( x 4) 解 :p3 ( x ) = 0 (1 2)(1 3)(1 4) ( x 1)( x 3)( x 4) ( 5) (2 1)(2 3)(2 4) ( x 1)( x 2)( x 4) ( 6) (3 1)(3 2)(3 4) ( x 1)( x 2)( x 3) 3 (4 1)(4 2)(4 3) = x3 4 x2 3
计算方法第三章(插值法)解答

Aitken(埃特肯)算法 N 0,1,,k , p ( x) L( x) N 0,1,,k ( x)
N 0,1,,k 1, p ( x) N 0,1,,k ( x) x p xk
Neville(列维尔)算法
( x xk )
Ni ,i 1,,k ( x) L( x) Ni ,i 1,,k 1 ( x) Ni 1,i 2,k ( x) Ni ,i 1,,k 1 ( x) xk xi ( x xi )
( x0 , y0 ), ( x1 , y1 )
容易求出,该函数为:
x x0 x x1 y y0 y1 x0 x1 x1 x0
一般插值问题:求过n+1个点
( x0 , y0 ), ( x1 , y1 ),,( xn , yn )
的不超过n次多项式 Ln ( x )。
Ln ( x) yi li ( x )
例子:求方程 x3-2x-5=0 在(2 , 3)内的根 思路: 设 y = f(x) =x3-2x-5 ,其反函数为 x=f -1(y),则 根为x* =f -1(0) 。先用3= f -1(16), 2= f -1(-1)插值,得 N0,1 (y) ≈f -1(y), 计算N0,1 (0)= 2.058823, f(2.058823) = -0.39 ,以-0.39为新的节点,继续……
第三章 插值法
第一节 插值多项式的基本概念
假设已经获得n+1点上的函数值
f xi yi , i 0,1,, n,
即提供了一张数据表
x
y f x
x0
y0
x1
y1
x2
xn
y2
《计算方法》第四章 插值方法

满足插值条件
P n (x ) a 0 a 1 x a n x n
Pn(xi)yi
Return 13
§4.2 拉格朗日多项式 /* Lagrange Polynomial */
1. 构造线性插值基函数的方法:
n= 1
已知 x0 , x1 ; y0 , y1 ,求 L1(x)= a0 +a1x使得 L1( x0 ) y0 , L1( x1) y1
R n(x)f(x)L n(x)
24
➢ Lagrange插值法的插值余项
设节点 ax0x1xnb,且 f 满足条件 f Cn[a,b], f (n1)在[a , b]内存在 , 截断误差(或插值余项):
R n(x)f(x)L n(x)f(( n n 1)1 ()!) n 1(x) , (a,b)
计算方法
第四章 插值方法
计算方法课程组
华中科技大学数学与统计学院
1
§4 插值方法
§4.1多项式插值问题的一般提法 §4.2 拉格朗日(Lagrange)插值 §4.3 差商与差分及其性质 §4.4 牛顿插值公式 §4.5 分段插值法 §4.6曲线拟合的最小二乘法
2
§4.0 引言
插值法是广泛应用于理论研究和生产实践的重 要数值方法, 它是用简单函数(特别是多项式或分 段多项式)为各种离散数组建立连续模型;为各种 非有理函数提供好的逼近方法。众所周知,反映 自然规律的数量关系的函数有三种表示方法:
y0 = f (x0) , …, yn = f (xn), 由此构造一个简单易算的近似函数
p(x) f(x),满足条件: p(xi) = f(xi) (i = 0, … n)。 这里的 p(x) 称为f(x) 的插值函数。 最常用的插值函数是 …?
插值法的最简单计算公式

插值法的最简单计算公式全文共四篇示例,供读者参考第一篇示例:插值法是一种常用的数值计算方法,用于通过已知数据点推断出未知数据点的值。
在实际问题中,往往会遇到数据点不连续或者缺失的情况,这时就需要通过插值法来填补这些数据点,以便更准确地进行计算和分析。
插值法的最简单计算公式是线性插值法。
线性插值法假设数据点之间的变化是线性的,通过已知的两个数据点来推断出中间的未知数据点的值。
其计算公式为:设已知数据点为(x0, y0)和(x1, y1),需要插值的点为x,其在(x0, x1)之间,且x0 < x < x1,插值公式为:y = y0 + (y1 - y0) * (x - x0) / (x1 - x0)y为插值点x对应的值,y0和y1分别为已知数据点x0和x1对应的值。
通过这个线性插值公式,可以方便地计算出中间未知点的值。
举一个简单的例子来说明线性插值法的应用。
假设有一组数据点为(1, 2)和(3, 6),现在需要插值得到x=2时的值。
根据线性插值公式,我们可以计算出:y = 2 + (6 - 2) * (2 - 1) / (3 - 1) = 2 + 4 * 1 / 2 = 2 + 2 = 4当x=2时,线性插值法得到的值为4。
通过这个简单的例子,可以看出线性插值法的计算公式的简单易懂,适用于很多实际问题中的插值计算。
除了线性插值法,还有其他更复杂的插值方法,如多项式插值、样条插值等,它们能够更精确地拟合数据并减小误差。
在一些简单的情况下,线性插值法已经足够满足需求,并且计算起来更加直观和方便。
在实际应用中,插值法经常用于图像处理、信号处理、数据分析等领域。
通过插值法,可以将不连续的数据点连接起来,填补缺失的数据,使得数据更加完整和连续,方便后续的处理和分析。
插值法是一种简单而有效的数值计算方法,其中线性插值法是最简单的计算公式之一。
通过这个简单的公式,可以方便地推断出未知数据点的值,并在实际应用中发挥重要作用。
计算方法Chapter01 - 插值方法

若函数族
中的函数 ( x) 满足条件
( xi ) = f ( xi ),
i = 0,1,, n
( 1)
n ( x ) x f ( x ) 则称 为 在 中关于节点 i i =0 的一个插值函数。
f ( x) ——被插值函数; [a, b] ——插值区间;
xi in=0 ——插值节点; 式(1)——插值条件.
x12 x1n
2 n x2 x2
范德蒙行列式
x
2 n
n n
V=
x
0 i j n
( x j xi )
10
插值多项式的存在唯一性(续)
V= ( x j xi ) 0 i j n
由于 x0 , x1 , x2 , ..., xn 是 n 1 个互异的节点,即:
求插值函数(x)的问题称为插值问题。
5
插值问题
于是人们希望建立一个简单的而便于计算的函数 (x) 使其近似的代替 f (x)。
y 被插值函数 f (x) 插值函数 (x)
插值节点 0 x0 x1 x2 x3
… …… xn x
6
插值区间
多项式插值问题
对于不同的函数族Φ 的选择,得到不同的插值问题
( x0 , y0 ) 0
p2(x)
x0
x1
x2
x
19
抛物线插值(续)
p2 ( x ) = y0l0 ( x ) y1l1 ( x ) y2l2 ( x )
( x x1 )( x x2 ) ( x0 x1 )( x0 x2 )
( x x0 )( x x2 ) ( x1 x0 )( x1 x2 ) ( x x0 )( x x1 ) ( x2 x0 )( x2 x1 )
计算方法插值法-Lagrange插值

b
a
x2
用 的值作为f(x)的近似值,不仅希望 能较好地逼近f(x),而且还希望它计算简单 。
评论:
由于代数多项式具有数值计算和理论分析方便的优点。所以本章主要介绍利用代数多项式进行插值,即代数插值。
定义:若存在一个次数不超过n次的多项式
使得满足:
则称P(x)为f(x)的n次插值多项式。
因为 ,所以方程组有解唯一解:
系数矩阵
可用于求2次插值多项式
仿照线性插值,现在试图用基函数的方法确定2次插值多项式
显然 应该有以下的形式
由 确定系数
从而导出
求二次式 ,使满足条件:
01
02
类似地可以构造出插值多项式
于是确定了3个抛物插值的基函数:
x0
x2
x1
x
y
1
y=l0(x)
y=l1(x)
y=l2(x)
3个抛物插值的基函数
取已知数据 作为线性组合系数,将基函数 线性组合可得
容易看出,P(x)满足条件
即
一般形式的拉格朗日插值多项式
已知: 2个插值点可求出一次插值多项式,而 3个插值点可求出二次插值多项式。
…
…
插值点增加到n+1个时,可通过n+1个不同的已知点 来构造一个次数为n的代数多项式P(x)。先构造一个特殊n次多项式 的插值问题,使其在各节点 上满足
对于线性插值,误差公式:
01
对于抛物插值(2次插值),误差公式:
02
例2.8 已知x0 =100, x1 =121,用线性插值近似计算 的时候,估计在x=115时的截断误差.
解: 由插值余项公式知
得
计算方法(2)-插值法

2
2
yk1 2
f (xk
h
2
),
y
k
1 2
f (xk
h) 2
21
3.牛顿向后插值公式
Nn (xn
th)
yn
tyn
t(t 1) 2!
2
yn
t(t
1)
(t n!
n
1)
n
yn
(t 0)
插值余项
Rn
(xn
th)
t(t
1) (t (n 1)!
Nn (x0
th)
y0
ty0
t(t 1) 2!
2
y0Leabharlann 插值余项t(t
1)
(t n!
n
1)
n
y0
Rn (x0
th)
t(t
1) (t (n 1)!
n)
h n1
f
(n1) ( ),
(x0 , xn )
20
二.向后差分与牛顿向后插值公式
杂.
根据f(x)函数表或复杂的解析表达式构
造某个简单函数P(x)作为f(x)的近似.
2
2.问题的提法
1)已知条件 设函数y f (x)在区间[a,b]上
连 续, 且 在n 1个不 同点a x0 , x1, , xn b 上 分 别 取 值y0 , y1, , yn
计算方法 插值法

例见 P.74 例 1。 (2) 差商与牛顿基本插值多项式 考虑到拉格朗日插值的缺点:增加新的结点,需重新计算,工作量较大! 改进的方向:选取形式: a 0 + a1 ( x − x0 ) + a 2 ( x − x0 )( x − x1 ) + L + a n ( x − x0 )( x − x1 ) L ( x − xn −1 ) ; (称之为 n 次牛顿插值多项式) 记 N n ( x) = a 0 + a1 ( x − x0 ) + a 2 ( x − x0 )( x − x1 ) + L + a n ( x − x0 )( x − x1 ) L ( x − x n −1 ) 为了给出 a i 简明计算表达式,引入差商(或均差)概念。 定义 1.
第二章 插值与拟合
§1.插值概念与基础理论
(1) 提法: 给定函数表 x y = f ( x) x0 y0 x1 y1
K K
xn yn
其中假定 f ( x) 在区间 [a, b] 上连续,设 x0 , x1 , L, x n 为区间 [a, b] 上 n + 1 个互不相同的 点,要求在一个性质优良、便于计算的函数类 {P ( x)} 中,选一个使 P ( xi ) = y i (i = 0,1,L, n) L (*) 的函数 P( x) 作为 f ( x) 的近似,这就是最基本的插值问题。 [a, b] 称为插值区间; x0 , x1 , L, x n 为插值节点; {P ( x)} 称为插值函数类;(*)称为插 值条件; P( x) 称为插值函数;求插值函数 P( x) 的方法称为插值法。 本章取 Pn ( x) = a 0 + a1 x + L + a n x n ,其中 a 0 , a1 , L, a n 为实数, Pn ( x) 为次数不超 过 n 的插值代数多项式,相应的插值问题称为 n 次代数多项式插值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Rn ( x ) K ( x) ( x - xi )
i 0
n
考察 j ( t ) Rn ( t ) - K ( x ) ( t - x i )
i0
n
j(t)有 n+2 个不同的根 x0 …
f (n ( x ) - L(nn
1)
xn x, j ( n1) ( x ) 0, x (a, b)
x - x0 y x1 - x 0 1
l ( x) y
i 0 i
1
i
l0(x)
l1(x)
n1
希望找到li(x),i = 0, …, n 使得 li(xj)=ij ;然后令
Pn ( x )
l (x) y
i0 i
n
i
,则显然有Pn(xi) = yi 。
每个 li 有 n 个根 x0 … xi-1, xi+1 … xn li ( x) Ci ( x - x j )
插值法 比较古老, 常用的方法。 当未知函数 y = f(x) 非常复杂时,在一系列节 点 x0 … xn 处测得函数值: y0 = f(x0) … yn = f(xn) 由此构造一个简单易算的近似函数 P(x) f(x), 满足条件P(xi) = f(xi) (i = 0, … n),称P(x) 为f(x) 的插值函数。 最常用的插值函数是多项式
项式是唯一存在的。 证明:
i 0, ... , n 的 n 阶插值多
若除了Ln(x) 外还有另一 n 阶多项式 Pn(x) 满足 Pn(xi) = yi 。 考察 Qn ( x) Pn ( x) - Ln ( x) , 则 Qn 的阶数 n 而 Qn 有 n + 1 个不同的根 x0 … xn
只附加一项上去即可。
先介绍均差的定义及性质 均差的定义:
性质1(线性组合)
f ( xi ) 1 ( xi ) i 0 n
n
其中
k 1 ( x ) ( x - x i ) ,
i 0
k
1 ( x i ) ( x i - x j ) k
j 0 ji
2
3!
6
4
3
2
x
2
5 0.00077 0.00044 R2 18
sin 50 = 0.7660444…
2次插值的实际误差 0.00061
§2 均差与牛顿插值公式
Lagrange 插值虽然易算,但若要增加一个节点 时,全部基函数 li(x) 都需重新算过。 将 Ln(x) 改写成 a0 a1 ( x - x0 ) a2 ( x - x0 )( x - x1 ) ... an ( x - x0 )...(x - xn-1 ) 的形式,希望每加一个节点时,
x(a ,b) M
将
( n 1)! i 0
n 1
n
| x - xi |
作为误差估计上限。
当 f(x) 为任一个次数 n 的多项式时,f ( n1) ( x) 0 , 可知 Rn ( x ) 0 ,即插值多项式对于次数 n 的多项 式是精确的。
例:已知
sin 1 , sin 1 , sin 3 6 2 4 3 2 2
拉格朗日插值余项
n 设节点 a x0 x1 xn b ,且 f 满足条件 f C [a, b] , f ( n1)在[a , b]内存在, 考察截断误差
Rn ( x) f ( x) - Ln ( x)
Rn(x) 至少有 n+1 个根 给定 x xi (i = 0, …, n),
分别利用 sin x 的2次 Lagrange 插值计算 sin 50 并估计误差。
(x - )( x ) ( x )( x ) ( x )( x 1 1 4 3 6 3 6 4) L2 ( x ) 3 ( 6 - 4 )( 6 - 3 ) 2 ( 4 - 6 )( 4 - 3 ) 2 ( 3 - 6 )( 3 - 4 ) 2 sin 50 0 L2 ( 5 ) 0.76543 18 - cos x 1 cos 3 R ( x) ( x - )( x - )( x - ) ;
k
性质2(对称性) 差商的值与 xi 的顺序无关! 性质3(与导数的关系)
f [ x0 , ... , xk ] f ( k ) ( ) /(k !)
Y
y f x
y P x
y0
y1
x1
yn
0 a x0
xn b
X
§1 拉格朗日多项式
n 求 n 次多项式 Pn ( x) a0 a1 x an x 使得
Pn ( x i , n
条件:无重合节点,即 i j
n=1
P1 ( x 0 ) y0 , P1 ( x1 ) y1
( x ) - K ( x )( n 1) ! 0
f ( n 1) ( x ) K ( x) ( n 1) !
f ( n1) ( x ) n Rn ( x ) ( x - xi ) (n 1) ! i 0
通常不能确定 x , 而是估计 f ( n1) ( x ) M n1 ,
ji
li ( xi ) 1
n
Ci
1 j i ( xi - x j )
Ln ( x ) l i ( x ) yi
i 0 n
(x - xj ) li ( x ) ( xi - x j ) ji
j 0
n次插值基函数, Lagrange插值多项式
定理 (唯一性) 满足 P( xi ) yi ,
xi x j
已知 x0 , x1 ; y0 , y1 ,求 P1 ( x) a0 a1 x 使得 可见 P1(x) 是过 ( x0 , y0 ) 和 ( x1, y1 ) 两点的直线。 y1 - y 0 P1 ( x ) y0 ( x - x0 ) x1 - x 0
=
x - x1 y + x 0 - x1 0