幂等矩阵的性质毕业论文

幂等矩阵的性质毕业论文
幂等矩阵的性质毕业论文

幂等矩阵的性质

目录

中文摘要 (1)

英文摘要 (1)

1 引言 (1)

2 幂等矩阵的概念 (3)

3 幂等矩阵的性质 (4)

3. 1 幂等矩阵的主要性质 (4)

3. 2 幂等矩阵的等价性命题 (7)

3. 3 幂等矩阵的线性组合的相关性质 (11)

4 幂等矩阵与其他矩阵的关系 (14)

4. 1 幂等矩阵与对合矩阵 (14)

4. 1. 1 对合矩阵 (14)

4. 1. 2 幂等矩阵与对合矩阵的关系 (15)

4. 2 幂等矩阵与投影矩阵 (16)

4. 2. 1 投影矩阵 (16)

4. 2. 2 幂等矩阵与投影矩阵的关系 (17)

结束语 (19)

参考文献 (20)

致 (21)

英文原文 (22)

英文译文 (29)

幂等矩阵的性质

数学与应用数学专业2009级王素云

摘要:本文对幂等矩阵的一些性质进行归纳总结及推广, 并将幂等矩阵与其他特殊矩阵进行了比较. 给出幂等矩阵的概念. 讨论幂等矩阵的主要性质, 并将其进行推广. 然后研究了幂等矩阵的等价性命题, 以及幂等矩阵的线性组合的相关性质. 再结合对合矩阵和投影矩阵更深入的研究幂等矩阵的性质, 分别讨论了幂等矩阵与对合矩阵, 幂等矩阵与投影矩阵的关系.

关键字: 幂等矩阵; 性质; 对合矩阵; 投影矩阵; 广义逆矩阵

PROPERTIES OF IDEMPOTENT MATRIX

Suyun Wang, Grade 2009, Mathematics and Applied Mathematics

Abstract In this paper, some properties of the idempotent matrix are summarized and extended, and idempotent matrices are compared with other special matrix. The concept of idempotent matrices are given. The main properties of the idempotent matrix are discussed and promoted . Then, the equivalent propositions of idempotent matrix and the nature of the linear combinations of idempotent matrices are studied. The involution matrix and the projection matrix are used to discuss the nature of the idempotent matrices much deeper. The relationship between the idempotent matrix and involution matrix, the idempotent matrix and the projection matrix are discussed.

Key Words the idempotent; the nature; involution matrix; the projection matrix; generalized inverse matrix

1 引言

幂等矩阵是矩阵中非常特殊的一类矩阵,也是非常重要且非常常见的一类矩阵,很多其他特殊矩阵都与幂等矩阵有着密切的联系,如对合矩阵及投影矩阵。幂等矩阵在数学领域及其他许多领域的应用都非常广泛,幂等矩阵更是矩阵论中的一个基础部分,幂等矩阵在可对角化矩阵的分解中具有重要作用。近年来有关此问题的研究吸引了国外许多研究学者的关注,关于幂等矩阵的研究已经成为矩阵论中的活跃的研究领域。幂等矩阵在研究广义逆矩阵中占有非常重要的地位,研究幂等矩阵的性质是研究其他特殊矩阵的基础。广义逆的思想可追溯到1903年(E.)i.弗雷德霍姆的工作,他讨论了关于积分算子的一种广义逆(他称之为伪逆)。1904年,D.希尔伯特在广义格林函数的讨论中,含蓄地提出了微分算子的广义逆。而任意矩阵的广义逆定义最早是由E.H.穆尔在1920年提出的,他以抽象的形式发表在美国数学会会刊上。当时人们对此似乎很少注意。这一概念在以后30年中没有多大发展。曾远荣在1933年,F.J.默里和J.·诺伊曼在1936年对希尔伯特空间中线性算子的广义逆作过讨论。T.N.E.格雷维尔、C.R.拉奥和其他人也作出了重要的贡献。1955年,罗斯证明了存在唯一的+

X满足前述性质①~④,并以此作为+A的定义。1956年,R.

=A

拉多证明了罗斯定义的广义逆与穆尔定义的广义逆是等价的,因此通称+A 为穆尔-罗斯广义逆矩阵。幂等矩阵是国外学者都非常感兴趣的一类矩阵,如文[1]中研究了幂等矩阵的可对角化性质,证明了幂等矩阵是可对角化的;文[2]研究了幂等矩阵的伴随矩阵的幂等性等等。本文在接下来的章节中,我们将先给出幂等矩阵的定义及几个简单命题,并证明之。然后给出幂等矩阵的一系列性质,在前人的基础上进行总结以及推广,并进行证明。再给出幂等矩阵的等价命题,并给出证明。然后讨论幂等矩阵的线性组合的相关性质,再结合对合矩阵和投影矩阵及幂等矩阵分别于对合矩阵和投影矩阵的关系对幂等矩阵进行深入研究。

2 幂等矩阵的概念

定义2.1]3[ 若n n C A ?∈有性质A A =2, 则称A 为幂等矩阵.

为了更好地了解幂等矩阵, 现在来看以下几个命题:

命题2.1 若n 阶方阵A 是幂等矩阵, 则与A 相似的任意n 阶方阵是幂等矩阵.

证明 设A B ~(即矩阵B 与矩阵A 相似),则B AP P t s C P n n =∈?-?1.,可逆,

且 P A P AP P AP P B 21112---=?=, 又 A A =2,

B AP P P A P B ===∴--1212. B ∴是幂等矩阵.

命题2.1也可以表述为: 若A 是幂等矩阵, 则对于任意可逆阵T , AT T 1-也为幂等矩阵. 命题2.2 若n 阶方阵A 是幂等矩阵, 则A 的转置T A , A 的伴随矩阵*A 及A E -都是幂等矩阵.

证明 ()()T T

T A A A ==22, 即T A 为幂等矩阵; 对*A , 先证明对任意两个幂等矩阵B A 、, 有关系式()***A B AB

=.

由binet Cauchy -公式有:

()()=j i AB ,*矩阵AB 的第i 行第j 列的代数余子式

所以, ()()()2

*****2*A A A AA A A ====; 对A E -, 有 ()A E A A E A A E A E -=+-=+-=-22222. 命题2.3 若A 是幂等矩阵, A 的k 次幂仍是幂等矩阵. 证明 可用数学归纳法证明. 当1=k 时, 显然成立.

假设当n k =时, 命题成立, 现考虑1+n 情形: ()1222221+++=?=?==n n n n n A A A A A A A .

即当1+=n k 时命题仍成立, 由数学归纳法知, 对任意N k ∈命题都成立.

3 幂等矩阵的性质

3.1 幂等矩阵的主要性质

性质3.1.1 0矩阵和单位矩阵E 都是幂等矩阵. 由0和E 的定义可知命题成立.

性质3.1.2 幂等矩阵A 满足: ()()0=-=-A A E A E A . 证明 ()02=-=-=-A A A A A E A .

()02=-=-=-A A A A A A E .

性质3.1.3 若矩阵B A ,均为幂等矩阵, 且BA AB =, 则AB 与T T B A 也是幂等矩阵.

证明 ()AB B A B AB A B BA A AB AB AB ==??=??=?=222. 同理, T T B A 也是幂等矩阵.

性质3.1.4 若幂等矩阵A 可逆, 则E A =.

证明 E A A A A A A A =?=?=∴=--1212, .

性质3.1.5 幂等矩阵的特征值只能为0或1. 证明 设A 是幂等矩阵, 即A A =2, 再设A 的特征值为λ, 则λλ=2(由特征值的性质), 故10或=λ.

由这个性质可以知道幂等矩阵是半正定矩阵. 性质3.1.6 幂等矩阵可对角化.

证明 设A 是幂等矩阵, λm 为A 的最小多项式, 由性质3.1.5知: λλ=m 或1-λ或()1-λλ, 最小多项式是互素的一次因式的乘

幂等矩阵的性质及应用(定稿)

JIU JIANG UNIVERSITY 毕业论文(设计) 题目幂等矩阵的性质及应用 英文题目Properties and Application of Idempotent Matrix 院系理学院 专业数学与应用数学 姓名邱望华 年级A0411 指导教师王侃民 二零零八年五月

幂等矩阵在数学领域以及其他许多领域应用都非常广泛,因此对幂等矩阵进行探讨具有很重要的意义。本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。首先对幂等矩阵简单性质进行了归纳总结,接着谈到了实幂等矩阵的等价条件并推广到复矩阵以及高次幂等矩阵,然后研究了幂等变换、幂等矩阵线性组合的幂等性、幂等矩阵线性组合的可逆性、幂等矩阵秩有关的性质。 [关键词] 幂等矩阵,性质,幂等性,线性组合

The idempotent matrix is widely applied in mathematics as well as other many places, so there is very vital significance to carry on the discussion to the idempotent matrix . This paper mainly carries on the induction summary some simple nature and the important conclusion of idempotent matrix and carries on the promotion to the related nature. Firstly, this article has carried on the induction summary to its simple nature, then talkes about the equivalence condition of the solid idempotent matrix and extends to the equivalence condition of the plural idempotent matrix and the higher mode idempotent matrix . Then the article studies the idempotent transformation、the idempotency of linear combinations of two idempotent matrices、the invertibility of linear combinations of two idempotent matrices. [Key Words] the idempotent, the nature, the idempotence, linear combination

浅谈幂等矩阵的性质

万方数据

万方数据

浅谈幂等矩阵的性质 作者:侯君芳, 黄丽莉 作者单位:郑州旅游职业学院,河南郑州,450009 刊名: 科技风 英文刊名:TECHNOLOGY TREND 年,卷(期):2009,""(13) 被引用次数:0次 相似文献(6条) 1.期刊论文高灵芝幂等矩阵秩试题求解及其结论的推广-中国科教创新导刊2008,""(31) 本文从高等代数课本中的一道习题入手,从不同的角度给出这道习题的不同解法,并把其结论进行了推广. 2.期刊论文邹本强.ZOU Ben-qiang特殊矩阵的特征值性质-重庆职业技术学院学报2006,15(5) 在高等代数中矩阵是研究问题很重要的工具,在讨论矩阵的性质时给出了矩阵特征值的定义,但对矩阵特征值的性质研究很少,对特殊矩阵的特征值性质的研究更少,而特殊矩阵的特征值对研究特殊矩阵有很重要的意义.我们在研究矩阵及学习有关数学知识时,经常要讨论一些特殊矩阵的性质.为此,本文围绕幂等矩阵、反幂等矩阵、对合矩阵、反对合矩阵、幂零矩阵、正交矩阵、对角矩阵、可逆矩阵等特殊矩阵给出了其主要性质并加以证明,为广大读者学习矩阵时提供参考. 3.期刊论文孙莉.陈传良.王品超分块矩阵的理论应用-曲阜师范大学学报(自然科学版)2002,28(1) 分块矩阵的理论在高等代数中有着广泛的应用,用这一理论解决问题简明而清晰,该文是本理论的具体应用. 4.期刊论文杨忠鹏.陈梅香.林国钦.Yang Zhongpeng.Chen Meixiang.Lin Guoqin关于三幂等矩阵的秩特征的研究-数学研究2008,41(3) 本文对已有的关于三幂等矩阵秩的等式作了进一步研究,指出其中有些可以作为判定三幂等矩阵的充要条件,即三幂等矩阵的秩特征等式.本文还证明了有无穷多种三幂等矩阵的秩特征等式形式. 5.期刊论文杨忠鹏.陈梅香.YANG Zhong-peng.CHEN Mei-xiang关于矩阵秩等式研究的注记-莆田学院学报2008,15(5) 最近一些文献应用自反广义逆和广义Schur补得到了一些重要的矩阵秩的恒等式.对这些结果,给出了只用分块初等变换的简单证法;作为应用对 k(k=2,3,4)幂等矩阵的秩等式作进一步讨论,还给出了打洞技巧在求秩上应用的例子. 6.期刊论文林志兴.杨忠鹏.LIN Zhi-xing.YANG Zhong-peng与给定矩阵A的可交换子环C(A)的一些探讨-莆田学院学报2010,17(2) 收集整理现在常用的高等代数与线性代数材料中与给定矩阵A可交换的矩阵所构成的全矩阵空间pn×n的子空间C(A)的习题.指出C(A)的交换性及用 A的多项式表示问题同C(A)的维数与n有密切关系,得到n(n≥3)阶幂等矩阵A或对合矩阵A的C(A)都是不可交换的结论. 本文链接:https://www.360docs.net/doc/7813614217.html,/Periodical_kjf200913005.aspx 授权使用:洛阳工学院(河南科技大学)(wflskd),授权号:d7e0c32f-0155-4388-9ee0-9dde00edfb00 下载时间:2010年8月26日

《矩阵的秩的等式及不等式的证明》

摘要 矩阵的秩是矩阵的一个重要特征,它具有许多的重要性质.本文总结归纳出了有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,即从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.本文主要解决以下几个问题:用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;用线性空间的方法证明矩阵秩的等式和不等式问题;用向量组秩的理论证明矩阵秩的等式和不等式问题;用矩阵分块法证明秩的等式和不等式问题.

目录 第一章绪论 (1) 第二章预备知识 (2) 第三章用矩阵的秩的理论证明秩的等式和不等式 (3) 第四章用线性空间的理论证明秩的等式和不等式 (6) 第五章用向量组秩的理论证明秩的等式和不等式 (10) 第六章用矩阵分块法证明秩的等式和不等式 (15) 第七章小结 (23) 参考文献 (24) 致谢 (25)

第一章绪论 矩阵的秩是矩阵的一个重要特征,是矩阵理论中研究的一个重要内容,它具有许多的重要性质.研究矩阵的秩对于解决矩阵的很多问题具有重要意义.矩阵的秩的等式及不等式的证明对于学习矩阵也是重点和难点,初学者在做这方面的题目往往不知如何下手.笔者归纳了矩阵的秩的常见等式和不等式以及与之相关的一些结论,并从向量组、线性方程组、矩阵分块、矩阵初等变换等角度探索了多种证明方法,它有助于学习者加深对秩的理解和知识的运用,也方便教师教学. 目前对矩阵秩的研究已经比较成熟了,但是由于秩是矩阵论里的一个基本而重要的概念,它仍然有着重要的研究价值,有关它的论文时见报端.很多国内外的有关数学书籍杂志对矩阵的秩都有讲述,如苏育才、姜翠波、张跃辉在《矩阵论》(科学出版社、2006年5月出版)中较完整地给出了矩阵秩的理论.北京大学数学系前代数小组编写的《高等代数》(高等教育出版社,2003年7月出版)也介绍了秩的一些性质.但是对秩的等式及不等式的介绍都比较分散,不全面也没有系统化,不方便初学者全面掌握秩的性质.因此有必要对矩阵的秩的等式和不等式进行一个归总,便于学习和掌握. 本文通过查阅文献资料,总结归纳出有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.主要内容有:(1)用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;(2)用线性空间的方法证明矩阵秩的等式和不等式问题;(3)用向量组秩的理论证明矩阵秩的等式和不等式问题;(4)用矩阵分块法证明秩的等式和不等式问题.

关于某矩阵秩地证明

关于矩阵秩的证明 -----09数应鄢丽萍 中文摘要 在高等代数中,矩阵的秩是一个重要的概念。它是矩阵的一个数量特征,而且在初等变换下保持不变。关于矩阵秩的问题,通常转化为矩阵是否可逆,线性方程组的解的情况等来解决。 所谓矩阵的行秩就是指矩阵的行向量组的秩,矩阵的列秩就是矩阵的列向量组的秩,由于矩阵的行秩与列秩相等,故统称为矩阵的秩。向量组的秩就是向量组中极大线性无关组所含向量的个数。 关键词:初等变换向量组的秩极大线性无关组

约定用E 表示单位向量,A T 表示矩阵A 的转置,r(A)表示矩阵A 的秩。在涉及矩阵的秩时,以下几个简单的性质: (1) r(A)=r(A T ); (2) r(kA)=? ??=≠0 00 )(k k A r (3) 设A,B 分别为n ×m 与m ×s 矩阵,则 r(AB)≤min{r(A),r(B),n,m,s} (4) r(A)=n,当且仅当A ≠0 (5) r ???? ??B O O A =r(A)+r(B)≤r ??? ? ??B O C A (6) r(A-B)≤r(A)+r(B) 矩阵可以进行加法,数乘,乘法等运算,运算后的新矩阵的秩与原矩阵的秩有一定关系。

定理1:设A,B 为n ×n 阶矩阵,则r(A+B)≤r(A)+r(B) 证: 由初等变换可得 ???? ??B O O A →???? ??B A O A →???? ??+B B A O A 即???? ??E E O E ???? ??B O O A ???? ??E E O E =??? ? ??+B B A O A 由性质5可得 r ???? ??B O O A =r ??? ? ??+B B A O A 则有r(A)+r(B)≥r(A+B) 定理2(sylverster 公式)设A 为s ×n 阶矩阵,B 为n × m 阶矩阵,则有r(A)+r(B)-n ≤r(AB) 证:由初等变换可得 ???? ??O A B E n →???? ??-AB O B E n →???? ??-AB O O E n 即? ??? ??-s n E A O E ??? ? ??O A B E n ? ??? ? ?-m n E O B E =???? ??-AB O O E n 则r ???? ??O A B E n =r ??? ? ??-AB O O E n 即r(A)+r(B)-n ≤r(AB)

正投影及其性质

29.1 投影 第2课时正投影 【学习目标】 (一)知识技能: 1.进一步了解投影的有关概念。 2.能根据正投影的性质画出简单平面图形的正投影。 (二)数学思考:在探究物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念。 (三)解决问题:通过对物体投影的学习,使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。 (四)情感态度:通过学习,培养学生积极主动参与数学活动的意识,增强学好数学的信心。 【学习重点】 能根据正投影的性质画出简单平面图形的正投影。 【学习难点】 归纳正投影的性质,正确画出简单平面图形的正投影。 【学习准备】手电筒、三角尺、作图工具等。 【学习过程】 【知识回顾】 正投影的概念:投影线于投影面产生的投影叫正投影。 【自主探究】 活动1 出示探究1 如图29.1—7中,把一根直的细铁丝(记为线段AB)放在三个不同位置: (1)铁丝平行于投影面; (2)铁丝倾斜于投影面: (3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点)。 三种情形下铁丝的正投影各是什么形状? (1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB A1B1; (2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB A2B2; (3)当线段AB垂直于投影面P时,它的正投影是。 设计意图:用细铁丝表示一条线段,通过实验观察,分析它的正投影简单直观,易于发现结论。 活动2 如图,把一块正方形硬纸板P(记为正方形ABCD)放在三个不同位置: (1)纸板平行于投影面; (2)纸板倾斜于投影面; (3)纸板垂直于投影面。 三种情形下纸板的正投影各是什么形状?

4、证明:和是幂等矩阵当且仅当是幂等矩阵。

幂等矩阵 1、如果A 是幂等阵, 证明:A ,),2,1( =k A T 和A E -都是幂等阵。 证:A E A A E A E -=+-=-222)(。 证毕 2、设A 是幂等阵,问:A -是否幂等矩阵? 答:当0≠A ,A A A A -≠==-22)(。 3、问:幂等矩阵是否是对称阵? 答:一般不是。 设T ab A =,满足1=T ba ,其中? ??? ? ??=n a a a 1,????? ??=n b b b 1, 发现A 是幂等矩阵; 而? ? ??? ???? ???=n n n n n n b a b a b a b a b a b a b a b a b a A 2 1 2221 21211 1一般不是对称阵。 4、证明:A 和B 是幂等矩阵当且仅当?? ? ???=B A Z 00是幂等矩阵。 证:?? ? ? ??=2220 0B A Z 。 A 和B 是幂等矩阵当且仅当A A =2且B B =2 当且仅当Z Z =2 当且仅当Z 是幂等矩阵。 证毕 5、以下命题成立吗?

方阵A 是幂等矩阵当且仅当其特征值为0或1。 答:方阵A 是幂等矩阵,则其特征值为0或1。 反之一般不成立。 例如??????????=000110111A ,但A A ≠???? ??????=0001102212 。 6、设A 是特征值为0或1的方阵, 证明:A 幂等矩阵当且仅当A 可对角化。 证: 必要性。 因为A 与若当形矩阵J 相似,所以J AT T =-1 ,且?? ????=01 00J J J , 其中r r J ?? ? ?? ?? ??????=11111 ,()() r n r n J -?-????????????=01100 。 发现J J =2 ,即J 是幂等矩阵。 于是i J 是幂等矩阵,1,0=i ,进而i J 是对角矩阵,1,0=i 。 所以J 是对角矩阵。 即A 可对角化。 充分性。 因为A 可对角化,所以D AT T =-1 ,其中D 是主对角元是0或1的对角矩阵。 有D D =2 , 所以A TDT TDT TDT TDT A ====----11 1 2 12 )(。 证毕 7、问:n 阶幂等矩阵按相似关系来分类,可以分成几类? 答:记r 是幂等矩阵特征值1的个数,n r ≤≤0,所以有1+n 类。 8、设A 是n 阶幂等矩阵,

矩阵的秩及其应用

山西师范大学本科毕业论文(设计) 矩阵的秩及其应用 姓名杨敏娜 院系数学与计算机科学学院专业数学与应用数学 班级11510102 学号1151010240 指导教师王栋 答辩日期 成绩

矩阵的秩及其应用 内容摘要 矩阵在高等代数的研究中占有极其重要的地位,矩阵的秩更是研究矩阵的一个重要纽带。通过对矩阵的秩的分析,对判断向量组的线性相关性,求其次线性方程组的基础解系,求解非其次线性方程组等等都有一定的意义和作用。 论文第一部分介绍矩阵的概念,一般性质及秩的求法,这对之后介绍秩的应用有重要的铺垫作用。第二部分再利用这些性质及定理解决向量组和线性方程组的有关问题。第三部分研究矩阵的秩在解析几何应用中,着重用于判断空间两直线的位置关系。在与特征值间的关系主要是计算一些复杂矩阵的值。最后将矩阵的秩推广到特征值和其他与向量组有关的向量空间的应用。 本文主要对矩阵的秩相关定义定理进行总结和证明,并将其运用到一些具体事例中。 【关键词】矩阵的秩向量组线性方程组特征值解析几何

The Rank of Matrix and the Application of the Rank of Matrix Abstract The matrix plays a very important role in the research on advanced algebra. The rank of matrix is an important link of matrix. The analysis of the rank of matrix determines the linear relation of vector group. And there are certain significance and role to solve some linear equations and non linear equations. First, the article introduces the concept of matrix, general nature and method for the rank of matrix, it plays an important role for the application of the rank. Second, use the properties and theorems of vector group to solve the problem of linear equations. Third, analysis the rank of matrix in geometry application, it focuses on the judgment of space position relationship of two lines. In the characteristics of value, it mainly calculates some complex matrix. Finally, the application of the rank of matrix is extended to Eigen value and other related vectors in vector space. This paper mainly summarizes the matrix rank and its related theorem, and applies it to some specific examples. 【Key Words】rank of matrix vector group linear equations characteristic value Analytic geometry

幂等矩阵的质

幂等矩阵的质

目录 中文摘要 (1) 英文摘要 (1) 1 引言 (1) 2 幂等矩阵的概念 (3) 3 幂等矩阵的性质 (4) 3. 1 幂等矩阵的主要性质 (4) 3. 2 幂等矩阵的等价性命题 (7) 3. 3 幂等矩阵的线性组合的相关性质 (11) 4 幂等矩阵与其他矩阵的关系 (14) 4. 1 幂等矩阵与对合矩阵 (14) 4. 1. 1 对合矩阵 (14) 4. 1. 2 幂等矩阵与对合矩阵的关系 (15) 4. 2 幂等矩阵与投影矩阵 (16) 4. 2. 1 投影矩阵 (16) 4. 2. 2 幂等矩阵与投影矩阵的关系 (17) 结束语 (19) 参考文献 (20) 致谢 (21) 英文原文 (22) 英文译文 (29)

数学与应用数学专业2009级王素云 摘要:本文对幂等矩阵的一些性质进行归纳总结及推广, 并将幂等矩阵与其他特殊矩阵进行了比较. 给出幂等矩阵的概念. 讨论幂等矩阵的主要性质, 并将其进行推广. 然后研究了幂等矩阵的等价性命题, 以及幂等矩阵的线性组合的相关性质. 再结合对合矩阵和投影矩阵更深入的研究幂等矩阵的性质, 分别讨论了幂等矩阵与对合矩阵, 幂等矩阵与投影矩阵的关系. 关键字: 幂等矩阵; 性质; 对合矩阵; 投影矩阵; 广义逆矩阵 PROPERTIES OF IDEMPOTENT MATRIX Suyun Wang, Grade 2009, Mathematics and Applied Mathematics Abstract In this paper, some properties of the idempotent matrix are summarized and extended, and idempotent matrices are compared with other special matrix. The concept of idempotent matrices are given. The main properties of the idempotent matrix are discussed and promoted . Then, the equivalent propositions of idempotent matrix and the nature of the linear combinations of idempotent matrices are studied. The involution matrix and the projection matrix are used to discuss the nature of the idempotent matrices much deeper. The relationship between the idempotent matrix and involution matrix, the idempotent matrix and the projection matrix are discussed. Key Words the idempotent; the nature; involution matrix; the projection matrix; generalized inverse matrix

矩阵秩重要知识点总结_考研必看

一. 矩阵等价 行等价:矩阵A 经若干次初等行变换变为矩阵B 列等价:矩阵A 经若干次初等列变换变为矩阵B 矩阵等价:矩阵A 经若干次初等行变换可以变为矩阵B ,矩阵B 经若干次初等行变换可以变成矩阵A ,则成矩阵A 和B 等价 矩阵等价的充要条件 1. 存在可逆矩阵P 和Q,PAQ=B 2. R(A)=R(B) 二. 向量的线性表示 Case1:向量b r 能由向量组A 线 性表示: 充要条件: 1.线性方程组A x r =b 有解 (A)=R(A,b) Case2:向量组B 能由向量组A 线性表示 充要条件: R(A)=R(A,B) 推论 ∵R(A)=R(A,B),R(B) ≤R(A,B) ∴R(B) ≤R(A) Case3:向量组A 能由向量组B 线性表示 充要条件: R(B)=R(B,A) 推论 ∵R(B)=R(A,B),R(A) ≤R(A,B) ∴R(A) ≤R(B) Case4:向量组A 和B 能相互表示,即向量组A 和向量组B 等价 充要条件: R(A)=R(B)=R(A,B)=R(B,A) Case5:n 维单位坐标向量组能由矩阵A 的列向量组线性表示 充要条件是: R(A)=R(A,E)

n=R(E)<=R(A),又R(A)>=n ,所以R(A)=n=R(A,E) 三. 线性方程组的解 1. 非齐次线性方程组 (1) R(A)=R(A,B),方程有解. (2) R(A)=R(A,B)=n ,解唯一. (3) R(A)=R(A,B)

矩阵秩的一些著名结论

引言 矩阵的秩是高等代数中一个应用及其广泛的理论,有关矩阵的秩的等式或不 等式的证明,常常和向量组的秩,线性方程组的解等密切相关,推证有难度也有技巧。熟练掌握关于矩阵秩的一些结论及其证明技巧,对有关理论的学习会有很大的裨益。矩阵A 中的最大阶不为零的子式的阶数就称为矩阵A 的秩,记为r(A).一些平凡的理论及概念读者可参阅一些权威教材,这里只对一些经典的理论做一讨论. 1. 证明: 设B A ,为两个同阶矩阵,则有r(A ﹢B)≤r(A)﹢r(B) 证 设A =(α1,α 2 ,…, αn ), B =() ββ βn ,...,,2 1 则 A +B =( α1 +β1 ,α2 +β 2 ,…, αn +βn ) 不妨设A 列向量的极大线性无关组为 α1 ,α 2 ,…, α r . (1≤r ≤n); B 列向量的极大线性无关组为β1,β2,…βs . (1≤s ≤n). 则k i i 1 =αα1 +α 2 2 k i +…+ α r ir k ; βi =β1 1 l i +β 2 2 l i +…+ β s is l ; 则 αi +β i = k i 1 α1 +α 2 2 k i +…+αr ir k +β1 1 l i +β 2 2 l i +…+ β s is l ; 即A +B 的列向量可由 α1 ,α 2 ,…, α r , β 1 , β 2 ,… β s 线性表出, 故)()()(B +A =+≤B +A r r s r r . 2. 若AB =O ,则)()(B r A r +n ≤. 证 记 ),...,,(2 1 ββ βn B =,由AB =O ,知B 的每一列都是O =AX 解, 即O =A β i ,i =1,2,…,n 又因O =AX 的基础解系所含向量个数为)(A r n -, 换言之, O =AX 的所有解所构成的向量组的秩为)(A r n -.故≤)(B r )(A r n -, 即)()(B r A r +n ≤.

矩阵秩的研究与应用毕业论文

百度文库-让每个人平等地提升自我 3 矩阵秩的研究与应用 [摘要]矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究的一个重要工具。矩阵理论是线性代数的主要组成部分,也是线性方程组的理论基础。而在矩阵的理论中,矩阵的秩是一个基本概念,也是矩阵最重要的数量特征之一,它在初等变换下是一个不变量。它反映矩阵固有特性的一个重要概念。矩阵一旦确定秩也就确定了。它是高等代数课程中的一个参考指标,其定义、性质、求法、应用等相关内容在高等代数中出现的极为频繁,作用较大。 本文首先介绍了矩阵秩的相关理论知识:即秩的几种不同定义,相关性质,以及矩阵秩的三种常见求法,并对三种求法做了一个简单的比较分析。后面着重介绍了矩阵秩的应用部分,主要是其在线性代数中的应用和解析几何上的应用。这里就不细说了,具体内容还得从文章中来了解。[1][2][3] [关键词]:矩阵的秩,定义,性质,求法,应用,高等代数。

百度文库-让每个人平等地提升自我 4 矩阵秩的研究与应用 1 前言 矩阵在高等代数理论中极其重要并且应用广泛,它是线性代数的核心,而矩阵的秩作为研究矩阵的一个重要工具,其秩的理论研究非常重要。更重要的是将它推广到实际应用中,那么我们目前在其应用方面的研究又达到了一个什么程度呢? 本文主要是对矩阵秩的应用方面的一个总结,让学者对其有个更清晰的认识,使后面的学者对矩阵的学习更轻松,更全面。矩阵方面的理论是非常重要的内容,历年来许多学者对它都有研究,而且其中的部分理论有了很广泛的应用,例如矩阵分析法在企业战略管理、营销活动、供应链管理技术、教学效率评价、射击训练效果评价等方面都起到举足轻重的作用;不仅在本文中的线性代数和解析几何中的理论上的应用,而且在其他领域上也有更实际贴切的应用。如在控制论中,矩阵的秩可用来确定线性系统是否为可控制的,或可观的;此外,矩阵的秩在教学中还有更广泛的应用,如在测量平差中的应用。 理论指导实践,所以我着重选择了矩阵秩在理论上的应用的部分来进行探讨,其意义更加广泛且深远。在前人研究的基础上,我主要是对其进行了一个归纳总结,并简单的说了些自己的感想,希望大家能够从中有所收获。

浅谈幂等矩阵的性质

2009年7月(上 ) [摘要]幂等矩阵的种常规的正定性,虽然在几何学,物理学以及概率论等学科中都得到了重要的应用,但随着数学本身以及应用矩阵的 其他学科的发展,越来越不能满足人们的需要,现代经济数学等众多学科中的重要作用,使矩阵的次正定性研究不仅在理论上,而且在应用上都是有意义的。[关键词]幂等矩阵;高等代数;线性变换浅谈幂等矩阵的性质 侯君芳 黄丽莉 (郑州旅游职业学院,河南郑州 450009) 在高等代数的研究中,矩阵占有重要的地位,线性变换中的许多问题都是通过矩阵来解决的。幂等矩阵是一类特殊的矩阵,本篇文章探讨的就是幂等矩阵的性质,研究过程中运用的特殊符号说明如下:A T 矩阵A 的转置,A H 矩阵A 的共轭转置R (A )矩阵A 的值域,N (A )矩阵A 的核空间。 幂等矩阵 定义[1]设A ∈C n ×n ,若A 2=A 则称A 是幂等矩阵。定理1若P 是幂等矩阵,则 1)P T ,P H ,E-P T ,E-P H 是幂等矩阵。2)P (E-P)=(E-P )P=03)Px=x 的充要条件是x ∈R (P ) 证明:1)P 2=P =>(P T )2=(P 2)T =P T =>P T 为幂等矩阵P 2=P =>(P H )2=(P 2)H =P H =>P H 为幂等矩阵 (E-P )2=(E-P )(E-P )=E 2-EP-PE+P 2=E-2P+P 2=E-P 故E-P 为幂等矩阵 (E-P T )2=(E-P T )( E-P T )=E 2-EP T -P T E+(P T )2 =E-P T 故E-P T 为幂等矩阵 (E-P H )2=(E-P H )( E-P H )=E 2-EP H -P H E+(P H )2=E-P H 故E-P H 为幂等矩阵 2)P (E-P )=PE-P 2=P-P 2=0(E-P )P=EP-P 2=P-P 2=0故P (E-P )=(E-P )P=0 3)设x 满足Px=x ,则x ∈R (P )。反之,若x ∈R (P ),则必存在y ∈C n ,使得Py=x ,于是,Px=P (Py )=Py 结论的几何意义是P 的特征值为1的特征子空间就是P 的值域。定理2秩为r 的n 阶。矩阵P 是幂等矩阵的充要条件是存在C ∈C n ×n 使得 C -1PC= Er 0(1) 证明:必要性:设J 是P 的Jordan 标准形,C ∈C n ×n ,且 C -1PC=J=J 1J 2··J i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i s ,J i = λi 1λi 1··λi i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i n i ×n i J i 是Jordan 块。由于P 2=P ,则J 2i =J i (i=1,2,3…s )。欲使J i 2=J i ,必须n i =1。因此J 是对角阵。又由P 2=P 。知λi =0或1,故r=rankJ=trP 。 充分性:由 Er 02 =Er 0知P 2 =P 。推论[1]rankP=trP 证明:由上题的(1)知幂等矩阵的特征值非1即0。且r=rankP 又有式(1)知 trP=λ1+λ2+…+λN =r 其中λ1,λ2…λN 是P 的n 个特 征值 矩阵的性质通常从以下几方面来研究:矩阵的秩,矩阵的相似对角化,矩阵的特征值对于幂等矩阵我们也从这几方面入手,讨论其具有的性质。 性质1若A 为n ×n 矩阵且A 2=A ,则A 相似于一对角阵 Er 证明:取一线性空间V (n 维)及一组基ε1,ε2…εn 定义一线性变换A :V →V ,A α=A α则A (ε1,ε2,…εn )=(ε1,ε2…εn )A 。由A 2=A ,则A 2=A 。A α∈A ∩A -1(0),设α=A β,β∈V ,A α=A 2β=β=α。又A α=0,则α=0,则AV+A -1(0)为直和。所以V=A +A -1(0)。在子空间AV 中取基η1η2…ηr ,在子空间A -1(0)取基ηr+1ηr+2…ηn ,则向量组η1,η2…ηr ηr+1…ηn 就是V 的一组基。又A η1=η1,A η2=η2…A ηr =ηr 且A ηr+1=0,A ηr+2=0…A ηn =0,A (η1,η2…ηn )=(η1,η2…ηn )Er 所以А相似于Er 性质2若А为n ×n 幂等矩阵,且R ( A 2 )=R (A )则有以下结论成立 1)Ax=0与A 2x=0同解 2)对于任意自然数P ,均有R (A p )=R (A ) 证明:设R (A )=r 显然Ax=0的解均为A 2x=0的解;设有一基础解系η1,η2…ηn-r 则此基础解系也为A 2x=0的解,并且线性无关,而 R (A 2 ) =r ,所以η1,η2…ηn-r 也为A 2x=0的基础解系,那么Ax=0与A 2x=0同解 若α为A 2x=0的解,则A 2α=0= >A 3α=0,则α为A 3E=0的解,反之,若α为A 3x=0的解,则A 3α=0即A 2A α=0,说明向量A α=0为方程组A 2x=0的解,由(1)则A α为Ax=0的解,则有A 2α=0,即α也为A 2x=0的解,所以A 2x=0与A 3x=0同解。因此,照 此方法类推,则必有R ( A p ))=R (A )。性质3若A 为n 阶方程,且R (A )+(E-A )=n ,则A 2=A 证明:设V 为n 维线性空间,其基ε1,ε2...εn 定义下述线性变换A :V →V ,A (ε1,ε2...εn )=(ε1,ε2...εn )A (E-A )(ε1,ε2...εn )=(ε1,ε2...εn )(E-A ),dim (AV )=R (A ),dim [(E-A )]=R (E-A )由题设,则dimAV+dim (E-A )=n (1) A α∈V ,α=A α+(α-A α)∈AV+(E-A )V ,则V=AV+ (E-A )V 则V=AV +(E-A )V 。下证A 2=A ,其实A α∈V ,有A 2α-A α=A (A-E )α∈AV ∩(E-A )α={0}。因此A 2α=A ,则 A 2=A ,从而A 2=A 。 下面通过三个例题说明幂等矩阵的性质与应用 例1设A 为n ×n 矩阵,且R (A )=r ,证明:A 2=A 当且仅当A=CB ,其中C 为n ×r 矩阵,秩为r ,B 为r ×n 矩阵,秩也为r ,且有BC=E r 。 证明:必要性:由于A 2=A ,由性质(1)则A 必(下转第13页)6

投影法的基本性质

一、投影法的基本性質 在一定的投影條件下,求得空間投影面上的投影的方法,稱為投影法。 投影法分為中心投影法和平行投影法 1.中心投影法 空間形體各頂點引出的投射線都通過投影中心。投射線都相交於一點投影法,稱為中心投影法,所得的投影稱為中心投影。在中心投影法中,將形體平行移動靠近或遠离投影面時,其投影就會變小或變大,且一般不能反映空間形體表面的真實形狀和大小,作圖又比較復雜,所以中心投影法在機械工程中很少采用。 2.平行投影法 將投影中心移至無限遠處時,則投射線成為互相平行。這种投射線互相平行的投影法,稱為平行投影法,所得的投影稱為平行投影。在平行投影法中,投射線相對投影面的方向稱為投影方向。當空間形體平行移動時,其投影的形狀和大小都不會改變。平行投影法按投影方向的不同又分為斜投影法各正投影法 a.斜投影法投影方向傾斜於投影面時稱為斜投影法,由此法所得的投影稱為斜投影。 b.正投影法投影方向垂直於投影面時稱為正投影法,由此法所得的投影稱為正投影。 平行投影的基本性質 (1)同類性

一般情況下,直線的投影仍是直線,平面圖形的投影仍是原圖形的類似形(多邊形的投影仍為同邊數的多邊形)。 (2)真形性 當直線或平面平行於投影面時,其投影反映原線段的實長或平面圖形的真形。(3)積聚性 當直線或平面平行於投影方向時,直線的投影積聚成點,平面的投影積聚成直線。這種性質稱為積聚性,其投影稱為積聚性的投影 (4)從屬性 若點在直線上,則點的投影仍在該直線的投影上。 (5)平行性 若兩直線平行,則其投影仍相互平行。 (6)定比性 直線上兩線段長度之比或兩平行線段長度之比,分別等於其長度之比。 二、軸測投影圖和正投影圖 1.軸測投影圖按平行投影法把空間形體連同確定其空間位置的直角坐標 系一並投影到一個適當位置的投影面上,使其投影能現時反映形體三度 的空間形狀。這種投影法稱為軸測投影法,所得的投影圖稱為軸測投影圖, 簡稱軸測圖。 這种圖有較好的直觀性,容易看懂,但形體表面的形狀在投影圖上變形,致命

投影寻踪模型

投影寻踪方法及应用 内容摘要:本文从投影寻踪的研究背景出发,给出了投影寻踪的定义和投影指标,在此基础上得出了投影寻踪聚类模型,随后简单介绍了遗传算法。最后结合上市公司的股价进行实证分析,并给出结论和建议。 关键词:投影寻踪投影寻踪聚类模型遗传算法 一、简介 (一)产生背景 随着科技的发展,高维数据的统计分析越来越普遍,也越来越重要。多元分析方法是解决高维数据这类问题的有力工具。但传统的多元分析方法是建立在总体服从正态分布这个假定基础之上的。不过实际问题中有许多数据不满足正态假定,需要用稳健的或非参数的方法来解决。但是,当数据的维数很高时,即使用后两种方法也面临以下困难:第一个困难是随着维数增加,计算量迅速增大。第二个困难是对于高维数据,即使样本量很大,仍会存在高维空间中分布稀疏的“维数祸根”。对于核估计,近邻估计之类的非参数法很难使用。第三个困难是对低维稳健性好的统计方法,用到高维时则稳健性变差。 另一方面,传统的数据分析方法的一个共同点是采用“对数据结构或分布特征作某种假定——按照一定准则寻找最优模拟——对建立的模型进行证实”这样一条证实性数据分析思维方法〔简称CDA法)。这种方法的一个弱点是当数据的结构或特征与假定不相符时,模型的拟合和预报的精度均差,尤其对高维非正态、非线性数据分析,很难收到好的效果。其原因是证实性数据分析思维方法过于形式化、数学化,受束缚大。它难以适应千变万化的客观世界,无法真正找到数据的内在规律,远不能满足高维非正态数据分析的需要。针对上述困难,近20年来,国际统计界提出采用“直接从审视数据出发—通过计算机分析模拟数据—设计软件程序检验”这样一条探索性数据分析新方法,而PP就是实现这种新思维的一种行之有效的方法。 (二)发展简史 PP最早由Kruskal于70年初建议和试验。他把高维数据投影到低维空间,通过数值计算得到最优投影,发现数据的聚类结构和解决化石分类问题。1974年Frledman和Tukey加以改正,提出了一种把整体上的散布程度和局部凝聚程度结合起来的新指标进行聚类分析,正式提出了PP概念,并于1976年编制了计算机图像系统PRIM——9。1979年后,Friedman 等人相继提出了PP回归、PP分类和PP密度估计。在这以后Huber等人积极探索了PP的理论。1981年Donoho提出了用Shannan嫡作投影指标比wiggins用标准化峰度更好的方法,接着他又利用PP的基本思想给出了多元位置和散布的一类仿射同变估计。Diaeonis、Friedman和Jones等还讨论了与PP有关的其他理论问题。上述工作和结果在1985年Huber 的综述论文中作了概括和总结。

最新考研数学矩阵8大秩及其证明

考研数学矩阵的8大秩及其证明2009 ()1 证明:根据矩阵秩的定义直接得出。 ()2 证明:对矩阵A 任意添加列后变成矩阵(), A B ,则秩显然不小于()R A ,即: ()(), R A B R A ≥ 同理: ()(), R A B R B ≥ 因而:()(){}(), , Max R A R B R A B ≤成立。 又设 ()(), R A r R B t ==,把, A B 分别做列变换化成列阶梯形~ ~ , A B 1110 3 810 1100 1000?? ? ? ? ? ??? 如:就是列阶梯形 用~ ~~ ~ 1 1 , r r a a b b 分别表示非全零列,则有: ()~ ~~ ()1~~ ~ ~~ ()1 , 00, , , 0 0表示列变换表示列变换c r c c r A A a a A B A B B B b b ????????→= ????? ?? ???→? ????? ??????→= ???? ? 由于初等变换后互为等价矩阵,故()~~, , R A B R A B ?? = ??? 而矩阵~~, A B ?? ???只含有r t +个非全零列,所以:()()~~~~, , R A B r t R A B R A R B ???? ≤+?≤+ ? ????? 。 综合上述得:()(){}()()(), , Max R A R B R A B R A R B ≤≤+

●特别地:如B b =为列向量,则()1R b ≡()()() , 1R A R A B R A ?≤≤+。 ●如B E =,设()(), , m n m R A B R A E ?=, 则 ()()() , , m n m m m n m m R A E R E m R A E m ??≥≥=?= ()3 证明: ()()()()()()()()()()()() 2 , , , , , , A B B A B R A B B R A B R A R B R A B R A B B R A B R A B R A R B +→?+=????→+≥=+≥+?+≤+由公式知 ()4 证明:()1 设()()() ,AB C B AX C R A R A C R C =?=?=≥是的解 ()()()() () ()()()()()(){},min , T R B R B T T T T T T T B A C R B R B C R C R B R C R C R AB R A R B n ==?=≥???? ?→≥?=≤≤又, ()2 设()(), m n n s R A r R B t ??== 则A 的标准型为000r m n E ??? ???,B 的标准型为000t n s E ??? ??? 存在可逆矩阵, , , m s n n P Q P Q 使:

相关文档
最新文档