2020佛山二模理数答案

合集下载

2020年广东省佛山市高考数学二模试卷(一)(有答案解析)

2020年广东省佛山市高考数学二模试卷(一)(有答案解析)

2020年广东省佛山市高考数学二模试卷(一)一、选择题(本大题共12小题,共60.0分)1.若集合A={x|−5<x<2},B={x||x|<3},则A∩B=()A. {x|−3<x<2}B. {x|−5<x<2}C. {x|−3<x<3}D. {x|−5<x<3}2.复数z=(2+i)(1−i),其中i为虚数单位,则z的实部是()A. −1B. 1C. 2D. 33.若向量m⃗⃗⃗ =(0,−2),n⃗=(√3,1),则与2m⃗⃗⃗ +n⃗共线的向量可以是()A. (√3,−1)B. (−1,√3)C. (−√3,−1)D. (−1,−√3)4.设变量x,y满足约束条件{3x+y−6≥0x−y−2≤0y−3≤0,则目标函数z=y−2x的最大值为()A. −7B. −4C. 1D. 25.将函数的图象向右平移π12单位后,所得图象对应的函数解析式为()A. B.C. D.6.已知等差数列{a n},a4=9,a8=−a9,则a1=()A. 21B. 19C. 17D. 157.已知cosα=√210,α∈(−π,0),则cos(α−π4)=()A. −35B. −45C. 35D. 458.若函数f(x)={x2+x,x≥0x2−ax,x<0(a∈R)为偶函数,则下列结论正确的是()A. f(a)>f(2a)>f(0)B. f(a)>f(0)>f(2a)C. f(2a)>f(a)>f(0)D. f(2a)>f(0)>f(a)9.如图是1990年−2017年我国劳动年龄(15−64岁)人口数量及其占总人口比重情况:根据图表信息,下列统计结论不正确的是()A. 2000年我国劳动年龄人口数量及其占总人口比重的年增幅均为最大B. 2010年后我国人口数量开始呈现负增长态势C. 2013年我国劳动年龄人口数量达到峰值D. 我国劳动年龄人口占总人口比重极差超过6%10.已知正四面体P−ABC的棱长为2,D为PA的中点,E,F分别是线段AB,PC(含端点)边上的动点,则DE+DF的最小值为()A. √2B. √3C. 2D. 2√211.已知a>0,b>0,则“a>b”是“e a+2a=e b+3b”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件12.已知F为双曲线C:x2a2−y2b2=1(a>b>0)的右焦点,AB是双曲线C的一条渐近线上关于原点对称的两点,AF⊥BF,且AF的中点在双曲线C上,则C的离心率为()A. √5−1B. 2√2−1C. √3+1D. √5+1二、填空题(本大题共4小题,共20.0分)13.直线y=ax是曲线的切线,则实数a=________.14.设数列{a n}的前n项和为S n,且满足a1+2a2+⋯+2n−1a n=n,则S5=______.15.已知抛物线x2=2py(p>0)的焦点为F,准线为l,点P(4,y0)在抛物线上,K为l与y轴的交点,且|PK|=√2|PF|,则y0=______.16.已知矩形ABCD,AB=1,BC=√3,将△ADC沿对角线AC进行翻折,得到四棱锥D−ABC,则在翻折的过程中有下列结论:①四棱锥D−ABC的体积最大值为14;②四棱锥D−ABC的外接球体积不变;③异面直线AB与CD所成角的最大值为90°.其中正确的是______(填写所有正确结论的编号)三、解答题(本大题共7小题,共82.0分)17.已知a,b,c分别为△ABC内角A,B,C的对边,cosC=c+2b2a.(Ⅰ)求A;(Ⅱ)已知点D在BC边上,DC=2BD=2,AC=√3,求AD.18.如图,四棱锥E−ABCD中,四边形ABCD是边长为2的菱形,∠DAE=∠BAE=45°,∠DAB=60°.(Ⅰ)证明:平面ADE⊥平面ABE:(Ⅱ)若DE=√10,求四棱锥E−ABCD的体积.19.移动支付极大地方便了我们的生活,也为整个杜会节约了大量的资源与时间成本.2018年国家高速公路网力推移动支付车辆高速通行费.推广移动支付之前,只有两种支付方式:现金支付或ETC支付,其中使用现金支付车辆比例的为60%,使用ETC支付车辆比例约为40%,推广移动支付之后,越来越多的车主选择非现金支付,如表是推广移动支付后,随机抽取的某时间段内所有经由某高速公路收费站驶出高速的车辆的通行费支付方式分布及其他相关数据:并以此作为样本来估计所有在此高速路上行驶的车辆行费支付方式的分布.已知需要取卡的车辆进入高速平均每车耗时为10秒,不需要取卡的车辆进入高速平均每车耗时为4秒.(Ⅰ)若此高速公路的日均车流量为9080辆,估计推广移动支付后比推广移动支付前日均可少发卡多少张?(Ⅱ)在此高速公路上,推广移动支付后平均每辆车进出高速收费站总耗时能否比推广移动支付前大约减少一半?说明理由.20.已知F为椭圆C:x2a2+y2b2=1(a>b>0)的左焦点,过原点O的动直线l与C交于A、B两点.当A的坐标为(1,2√55)时,|OB|=|BF|.(Ⅰ)求椭圆C的标准方程;(Ⅱ)延长BF交椭圆C于Q,求△QAB的面积的最大值.21.已知函数f(x)=a−sinxx,0<x<π.(1)若x=x0时,f(x)取得极小值f(x0),求实数a及f(x0)的取值范围;(2)当a=π,0<m<π时,证明:f(x)+mlnx>0.22.在平面直角坐标系xOy中,曲线C的参数方程为{x=1+costy=√3+sint(t为参数).(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求曲线C的极坐标方程;(Ⅱ)若射线θ=α与C有两个不同的交点M、N,求证|OM|+|ON|的取值范围.23.设函数f(x)=|2x+a|+|x−1|,其中a∈R.(Ⅰ)当a=3时,求不等式f(x)<6的解集;(Ⅱ)若f(x)+f(−x)≥5,求a的取值范围.-------- 答案与解析 --------1.答案:A解析:解:B ={x||x|<3}={x|−3<x <3}, 则A ∩B ={x|−3<x <2}, 故选:A .求出集合的等价条件,结合集合交集的定义进行求解即可.本题主要考查集合的基本运算,结合集合交集的定义是解决本题的关键. 2.答案:D解析:解:∴z =(2+i)(1−i)=2−2i +i +1=3−i , ∴z 的实部是3. 故选:D .直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题. 3.答案:B解析:【分析】可求出2m ⃗⃗⃗ +n ⃗ =−√3(−1,√3),从而得出向量2m⃗⃗⃗ +n ⃗ 与(−1,√3)共线. 考查向量坐标的加法和数乘运算,共线向量基本定理. 【解答】 解:2m ⃗⃗⃗ +n ⃗ =(√3,−3)=−√3(−1,√3); ∴2m ⃗⃗⃗ +n ⃗ 与(−1,√3)共线. 故选:B . 4.答案:C解析:【分析】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案. 【解答】解:由变量x ,y 满足约束条件{3x +y −6≥0x −y −2≤0y −3≤0作出可行域如图,联立{y =33x +y −6=0,解得B(1,3),化目标函数z =y −2x 为直线方程的斜截式:y =2x +z .当直线y =2x +z 过B 时,直线在y 轴上的截距最大,z 有最大值为3−2×1=1. 故选:C . 5.答案:D解析:【分析】本题主要考查函数y =Asin(ωx +φ)的图象变换规律,属于基础题. 由题意利用函数y =Asin(ωx +φ)的图象变换规律,得出结论. 【解答】解:将函数y =√2sin(2x +π4)的图象向右平移π12单位后,所得图象对应的函数解析式y =√2sin(2x −π6+π4)=√2sin(2x +π12),故选:D . 6.答案:D解析:【分析】本题考查等差数列的首项的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.利用等差数列通项公式列出方程组,能求出首项a 1. 【解答】解:∵等差数列{a n },a 4=9,a 8=−a 9,∴{a 1+3d =9a 1+7d =−a 1−8d, 解得a 1=15,d =−2. 故选:D . 7.答案:A解析:解:∵cosα=√210,α∈(−π,0),∴sinα=−√1−cos 2α=−7√210, ∴cos(α−π4)=cosαcos π4+sinαsin π4=√210×√22+(−7√210)×√22=−35.故选:A .由已知求得sinα,然后展开两角差的余弦求cos(α−π4).本题考查三角函数的化简求值,考查同角三角函数基本关系式与两角差的余弦,是基础题.8.答案:C解析:【分析】本题考查分段函数的奇偶性与单调性,属于基础题.先根据偶函数的定义求出a 的值,然后根据单调性比较大小. 【解答】解:因为f(x)是偶函数,所以f(−1)=f(1), 即1+a =2,所以a =1,易知当x ≥0时,f(x)是增函数, 又知2a >a >0,所以f(2a)>f(a)>f(0),故选C.9.答案:B解析:【分析】本题考查了读图识图的能力,属于基础题.【解答】A选项,2000年我国劳动年龄人口数量增幅约为6000万,是图中最大的,2000年我国劳动年龄人口数量占总人口比重的增幅约为3%,也是最多的.故A对.B选项,2010年到2011年我国劳动年龄人口数量有所增加,故B错.C选项,从图上看,2013年的长方形是最高的,即2013年我国劳动年龄人口数量达到峰值,C对,D选项,我国劳动年龄人口占总人口比重最大为2011年,约为74%,最小为1992年,约为67%,故极差超过6%.D对.故选:B.10.答案:B解析:【分析】本题考查空间中的距离的计算,属中档题.过D作DG⊥AB垂足为G,过D作DH⊥PC,垂足为H,根据DE≥DG,DF≥DH可得.【解答】解:过D作DG⊥AB垂足为G,过D作DH⊥PC,垂足为H,∴DE≥DG=12×√32AB=12×√32×2=√32,DF≥DH=12×√32PC=12×√32×2=√32,故DE+DF≥√32+√32=√3.故选:B.11.答案:B解析:解:若e a+2a=e b+3b,则e a+2a−(e b+2b)=b>0,∴e a+2a>e b+2b,由f(x)=e x+2x在x>0时单调递增,∴a>b.反之不一定成立:“a>b”不一定得出“e a+2a=e b+3b”,例如取a=100,b=1.则“e a+2a=e100+200>e+3=e b+3b”.∴a>b”是“e a+2a=e b+3b”的必要不充分条件.故选:B.若e a+2a=e b+3b,则e a+2a−(e b+2b)=b>0,可得a>b.反之不一定成立:例如取a=100,b=1.即可得出.本题考查了函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.12.答案:A解析:解:双曲线的渐近线方程bx+ay=0,AF⊥BF,AB是双曲线C的一条渐近线上关于原点对称的两点,∴F(c,0),AO=OB=c,∴A(−a,b),∴AF的中点坐标(c−a2,b2 ),∴(c−a)24a2−b24b2=1,∴(c−a)2a2=5,∴e+1=±√5,∴e=√5−1,e=−√5−1(舍去),故选:A.求出双曲线的渐近线方程,推出A的坐标,然后求解AF的中点,代入双曲线方程求解即可.本题考查双曲线的简单性质的应用,考查计算能力.13.答案:1解析:【分析】本小题主要考查直线的方程、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.欲求a的值,只须求出切线的斜率的值即可,故先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=1+lnx,,设切点为(m,1+lnm),得切线的斜率为1m,所以曲线在点(m,1+lnm)处的切线方程为:y−lnm−1=1m(x−m),它过原点,∴−lnm=0,∴m=1,∴a=1m=1.故答案为:1.14.答案:3116解析:解:a1+2a2+⋯+2n−1a n=n,可得n=1时,a1=1,n≥2时,a1+2a2+⋯+2n−2a n−1=n−1,又a1+2a2+⋯+2n−1a n=n,相减可得2n−1a n=1,即a n=(12)n−1,上式对n=1也成立,可得数列{a n}首项为1,公比为12的等比数列,可得S5=1−1251−12=3116.故答案为:3116.由题意可得数列的首项,将n换为n−1,相减可得数列的通项公式,再由求和公式计算可得所求和.本题考查数列的通项公式的求法,考查等比数列的定义和求和公式的运用,考查化简运算能力,属于基础题.15.答案:2解析:解:过P作准线l的垂线,垂足为M,则|PM|=|PF|,在Rt△PKM中,∵|PK|=√2|PF|=√2|PM|,∴PM=KM=4,∴y0=4−p2,把P(4,4−p2)代入抛物线方程x2=2py,解得p=4.∴y0=4−2=2.故答案为:2.过P作准线l的垂线,垂足为M,则PK|=√2|PM|,于是y0=4−p2,代入抛物线方程计算p的值即可求出y0.本题考查了抛物线的简单性质,属于基础题.16.答案:①②③解析:解:矩形ABCD,AB=1,BC=√3,可得AC=2,在翻折的过程中,当面ACD⊥面ACB时,D到底面的距离最大,且为直角三角形ACD斜边AC边上的高为√32,可得四棱锥D−ABC的体积最大值为13⋅12⋅1⋅√3⋅√32=14,故①正确;取AC的中点O,连接OB,OD,可得OA=OB=OC=OD,即O为四棱锥D−ABC的外接球的球心,且半径为1,体积为43π,故②正确;若AB⊥CD,又AB⊥BC,可得AB⊥平面BCD,即有AB⊥BD,由AB=1,AD=√3,BD=√2成立,故③正确.故答案为:①②③.考虑在翻折的过程中,当面ACD⊥面ACB时,D到底面的距离最大,进而得到棱锥体积最大,可判断①;取AC的中点O,可得O为棱锥的外接球的球心,计算可判断②;假设AB⊥CD,由线面垂直的判断和性质,可判断③.本题考查空间线面和线线的位置关系的判断,以及棱锥的体积计算,考查运算能力和推理能力,属于基础题.17.答案:解:(Ⅰ)∵cosC=c+2b2a =a2+b2−c22ab,∴整理可得:b2+c2−a2=−bc,∴cosA=b2+c2−a22bc =−bc2bc=−12,∵A∈(0,π),∴A=2π3,(Ⅱ)∵A=2π3,DC=2BD=2,b=AC=√3,可得:a=BC=3,∴由余弦定理a2=b2+c2−2bccosA,可得:9=3+c2−2×√3×c×(−12),可得:c2+√3c−6=0,∴解得:c=√3(负值舍去),∴cosC=a2+b2−c22ab =9+3−32×3×√3=√32,∴△ADC中,由余弦定理可得:AD=√AC2+CD2−2AC⋅CD⋅cosC=√3+4−2×√3×2×√32=1.解析:(Ⅰ)由余弦定理化简已知可得b2+c2−a2=−bc,可求cosA=−12,结合范围A∈(0,π),可求A的值.(Ⅱ)由已知可求BC=3,由余弦定理解得c的值,可求cos C的值,△ADC中,由余弦定理可得AD的值.本题主要考查了余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.18.答案:(I)证明:过D做DO⊥AE,垂足为O,连接OB,∵AD=2,∠DAE=45°,∴OD=OA=√2,在△AOB中,由余弦定理可得OB2=OA2+AB2−2OA⋅AB⋅cos∠OAB=2+4−2×√2×√22=2,∴OB=√2,∵AB=AD=2,∠DAB=60°,∴△ABD是等边三角形,∴BD=2.∴OD2+OB2=BD2,∴OB⊥OD,又OD⊥AE,AE∩OB=O,∴OD⊥平面ABE,又OD⊂ADE,∴平面ADE⊥平面ABE.(II)∵DE=√10,∴OE=√DE2−OD2=2√2,∴AE=3√2.∴V E−ABCD=2V E−ABD=2V D−ABE=2×13×12×3√2×√2×√2=2√2.解析:(I)过D做DO⊥AE,垂足为O,连接OB,利用勾股定理证明OB⊥OD,结合OD⊥AE得出OD⊥平面ABE,故而平面ADE⊥平面ABE;(II)先计算EO ,再根据V E−ABCD =2V E−ABD =2V D−ABE 计算体积.本题考查了面面垂直的判定,棱锥的体积计算,属于中档题.19.答案:解:(I)移动支付推出前,需在入口处停车取卡的车辆大约为9080×60%=5448辆,移动支付后,需在入口处停车取卡的车辆大约为9080×135+240135+240+750+375=2270辆, 估计推广移动支付后比推广移动支付前日均可少发卡5448−2270=3178张. (II)移动支付推出前,平均每辆车进出高速收费站大约耗时(10+30)×60%+(4+4)×40%=27.2秒, 移动支付推出后,平均每辆车进出高速收费站大约耗时(10+30)×1351500+(10+15)×2401500+(4+4)×750+3751500=3.6+4+6=13.6秒,所以推广移动支付后平均每辆车进出高速收费站总耗时比推广移动支付前大约减少一半.解析:(I)分别计算移动支付推广前后的发卡量即可得出结论;(II)分别计算移动支付推广前后的车辆总耗时的平均数得出结论.本题考查了数据统计与整理,考查加权平均数的计算与样本估计总体的统计思想,属于基础题.20.答案:解:(Ⅰ)由A(1,2√55),得B(−1,−2√55), 而|OB|=|BF|,∴F(−2,0),即c =2.由{1a 2+45b 2=1a 2=b 2+4,解得a 2=5,b 2=1. ∴椭圆C 的标准方程为x 25+y 2=1;(Ⅱ)当直线BF 斜率不存在时,BF :x =−2,此时B(−2,−√55),|BQ|=2√55,A(2,√55), S QAB =12×2√55×2=2√55; 当BF 所在直线斜率存在时,设BF :y =k(x +2)(k ≠0).联立{y =k(x +2)x 25+y 2=1,得(1+5k 2)x 2+20k 2x +20k 2−5=0. 设B(x 1,y 1),Q(x 2,y 2),则x 1+x 2=−20k 21+5k 2,x 1x 2=20k 2−51+5k 2. 则|BQ|=√1+k 2√(x 1+x 2)2−4x 1x 2 =√1+k 2⋅√(−20k 21+5k 2)2−80k 2−201+5k 2=√1+k 2⋅4√5√1+k 21+5k 2. O 到BQ 的距离d =|2k|√1+k 2,则A 到BQ 的距离为4|k|√1+k 2. ∴S △QAB =12⋅√1+k 2⋅4√5√1+k 21+5k 2⋅√1+k 2=8√5√k 4+k 21+5k 2.令1+5k 2=t(t >1),则S △QAB =8√5⋅√−425(1t )2+325t +125. 当1t =38时,(S △QAB )max =2√5.综上,△QAB 的面积的最大值为2√5.解析:(Ⅰ)由已知求得c =2,再由{1a 2+45b 2=1a 2=b 2+4,解得a 2=5,b 2=1.则椭圆C 的标准方程可求;(Ⅱ)当直线BF 斜率不存在时,BF :x =−2,求出三角形QAB 的面积;当BF 所在直线斜率存在时,设BF :y =k(x +2)(k ≠0).联立直线方程与椭圆方程,利用弦长公式求|BQ|,再由点到直线距离公式求O 到BQ 的距离,得到A 到BQ 的距离,代入三角形面积公式,换元后利用配方法求最值.本题考查椭圆标准方程的求法,考查数学转化思想方法,考查直线与椭圆位置关系的应用,考查计算能力,是中档题.21.答案:解:(1)由函数f(x)=a−sinx x ,0<x <π, 得,∵当x =x 0时,f(x)取得极小值f(x 0),,∴a =sinx 0−x 0cosx 0,∴f(x 0)=−x 0cosx 0x 0=−cosx 0,∵0<x <π,∴cosx 0∈(−1,1),∴f(x 0)∈(−1,1),即f(x 0)的取值范围为(−1,1);(2)挡a =π时,f(x)=π−sinx x (0<x <π), 要证f(x)+mlnx =π−sinxx +mlnx >0成立,即证mlnx >sinx −π成立,令g(x)=mlnx ,ℎ(x)=sinx −π,则,ℎ(x)=sinx −π∈(−π,1−π], 令,则x =1e ,∴当0<x <1e 时,,此时g(x)递减, 当1e <x <π时,0'/>,此时g(x)递增, ∴g(x)min =g(1e )=−m e ,显然∀m ∈(0,π),−me >1−π,∴0<m <π,g(x)>ℎ(x),即当a =π,0<m <π时,f(x)+mlnx >0.解析:本题考查了利用导致研究函数的极值,考查了运算求解能力和化归与转化思想,属较难题.(1)根据x =x 0时,f(x)取得极小值f(x 0),可得,解方程得a =sinx 0−x 0cosx 0,将a 代入f(x)进一步求出f(x 0)的范围;(2)证明f(x)+mlnx >0成立,即证明mlnx >sinx −π成立,构造函数g(x)=mlnx ,ℎ(x)=sinx −π,根据g(x)和ℎ(x)的图象和最值可证该不等式成立.22.答案:解:(Ⅰ)曲线C 的直角坐标方程为(x −1)2+(y −√3)2=1,即x 2+y 2−2x −2√3y +3=0,又x 2+y 2=ρ2,x =ρcosθ,y =ρ=sinθ,所以曲线C 的极坐标方程为ρ2−2(cosθ+√3sinθ)ρ+3=0.(Ⅱ)联立射线θ=α与曲线C ,得ρ2−2(cosα+√3sinα)ρ+3=0,设M(ρ1,α),N(ρ2,α), |OM|+|ON|=ρ1+ρ2=2(cosα+√3sinα)=4sin(α+π6), 又圆心C(1,√3)的极坐标为(2,π3),所以α的取值范围是π6<α<π2,所以π3<α+π6<2π3,√32<sin(α+π6)≤1,2√3<4sin(α+π6)≤4, 所以|OM|+|ON|的取值范围为(2√3,4].解析:(Ⅰ)先消去参数得曲线C 的直角坐标方程再利用互化公式可得曲线C 的极坐标方程;(Ⅱ)利用极径的几何意义以及三角函数的性质可得.本题考查了简单曲线的极坐标方程,属中档题.23.答案:解:(Ⅰ)当a =3时,f(x)=|2x +3|+|x −1|<6即{x ≥13x +2<6或{−32≤x <1x +4<6或{x <−32−3x −2<6, 解得−83<x <43,综上所述,不等式f(x)<6的解集为(−83,43).(Ⅱ)f(x)+f(−x)=|2x +a|+|x −1|+|−2x +a|+|−x −1|=(|2x +a|+|2x −a|)+(|x −1|+|x +1|)≥|2a|+2,所以|2a|+2≥5解得a ≤−32或a ≥32,即a 的取值范围是(−∞,−32]∪[32,+∞).解析:(Ⅰ)分段去绝对值解不等式,最后可得解;(Ⅱ)利用绝对值不等式的性质求出左边的最小值,再解关于a 的不等式可得. 本题考查了绝对值不等式的解法,属中档题.。

2020年广东省高考数学二模试卷(理科)(含答案解析)

2020年广东省高考数学二模试卷(理科)(含答案解析)

2020年广东省高考数学二模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合,,则A. B.C. D.2.已知复数为虚数单位,,若,则的取值范围为A. B. C. D.3.周髀算经是我国古老的天文学和数学著作,其书中记载:一年有二十四个节气,每个节气晷长损益相同晷是按照日影测定时刻的仪器,晷长即为所测影子的长度,夏至、小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降是连续的九个节气,其晷长依次成等差数列,经记录测算,这九个节气的所有晷长之和为尺,夏至、大暑、处暑三个节气晷长之和为尺,则立秋的晷长为A. 尺B. 尺C. 尺D. 尺4.在中,已知,,且AB边上的高为,则A. B. C. D.5.一个底面半径为2的圆锥,其内部有一个底面半径为1的内接圆柱,若其内接圆柱的体积为,则该圆锥的体积为A. B. C. D.6.已知函数是定义在R上的奇函数,且在上单调递减,,则不等式的解集为A. B.C. D.7.已知双曲线的右焦点为F,过点F分别作双曲线的两条渐近线的垂线,垂足分别为A,若,则该双曲线的离心率为A. B. 2 C. D.8.已知四边形ABCD中,,,,,E在CB的延长线上,且,则A. 1B. 2C.D.9.的展开式中,的系数为A. 120B. 480C. 240D. 32010.把函数的图象向右平移个单位长度,再把所得的函数图象上所有点的横坐标缩短到原来的纵坐标不变得到函数的图象,关于的说法有:函数的图象关于点对称;函数的图象的一条对称轴是;函数在上的最上的最小值为;函数上单调递增,则以上说法正确的个数是A. 4个B. 3个C. 2个D. 1个11.如图,在矩形ABCD中,已知,E是AB的中点,将沿直线DE翻折成,连接C.若当三棱锥的体积取得最大值时,三棱锥外接球的体积为,则A. 2B.C.D. 412.已知函数,若函数有唯一零点,则a的取值范围为A. B.C. D. ,二、填空题(本大题共4小题,共20.0分)13.若x,y满足约束条件,则的最大值是______.14.已知,则______.15.从正方体的6个面的对角线中,任取2条组成1对,则所成角是的有______对.16.如图,直线l过抛物线的焦点F且交抛物线于A,B两点,直线l与圆交于C,D两点,若,设直线l的斜率为k,则______.三、解答题(本大题共7小题,共82.0分)17.已知数列和满足,且,,设.求数列的通项公式;若是等比数列,且,求数列的前n项和.18.为了提高生产效益,某企业引进了一批新的生产设备,为了解设备生产产品的质量情况,分别从新、旧设备所生产的产品中,各随机抽取100件产品进行质量检测,所有产品质量指标值均在以内,规定质量指标值大于30的产品为优质品,质量指标值在的产品为合格品.旧设备所生产的产品质量指标值如频率分布直方图所示,新设备所生产的产品质量指标值如频数分布表所示.质量指标频数2820302515合计100请分别估计新、旧设备所生产的产品的优质品率.优质品率是衡量一台设备性能高低的重要指标,优质品率越高说明设备的性能越高.根据已知图表数据填写下面列联表单位:件,并判断是否有的把握认为“产品质量高与新设备有关”.非优质品优质品合计新设备产品旧设备产品合计附:其,中.用频率代替概率,从新设备所生产的产品中随机抽取3件产品,其中优质品数为X件,求X 的分布列及数学期望.19.如图,四棱锥中,四边形ABCD是菱形,,,E是BC上一点,且,设.证明:平面ABCD;若,,求二面角的余弦值.20.已知椭圆C:的焦点为,,P是椭圆C上一点.若椭圆C的离心率为,且,的面积为.求椭圆C的方程;已知O是坐标原点,向量过点的直线l与椭圆C交于M,N两点.若点满足,,求的最小值.21.已知函数,其中e为自然对数的底数.若函数的极小值为,求a的值;若,证明:当时,成立.22.在直角坐标系xOy中,曲线C的方程为,以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.求直线l的直角坐标方程;已知P是曲线C上的一动点,过点P作直线交直线于点A,且直线与直线l的夹角为,若的最大值为6,求a的值.23.已知函数.解不等式:;若a,b,c均为正数,且,证明:.-------- 答案与解析 --------1.答案:C解析:解:集合,,故选:C.求出集合A,B,由此能求出.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.答案:A解析:解:因为复数,所以,由于,即,则的取值范围为,故选:A.根据复数的基本运算法则进行化简,再求复数模的范围即可.本题主要考查复数的乘法运算及模长的计算,比较基础.3.答案:D解析:解:夏至、小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降是连续的九个节气,其晷长依次成等差数列,经记录测算,这九个节气的所有晷长之和为尺,夏至、大暑、处暑三个节气晷长之和为尺,,,即.解得,.立秋的晷长.故选:D.由夏至、小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降是连续的九个节气,其晷长依次成等差数列,经记录测算,这九个节气的所有晷长之和为尺,夏至、大暑、处暑三个节气晷长之和为尺,可得:,,即解出利用通项公式即可得出.本题考查了等差数列的通项公式求和公式,考查了推理能力与计算能力,属于基础题.4.答案:B解析:解:如图,在中,,,且AB边上的高CD为,,,由余弦定理可得,由正弦定理,可得.故选:B.由已知可求AD,利用勾股定理可求AC,由余弦定理可得BC,进而根据正弦定理可得sin C的值.本题主要考查了勾股定理,余弦定理,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.5.答案:D解析:解:作出该几何体的轴截面图如图,,,设内接圆柱的高为h,由,得.∽,,即,得,该圆锥的体积为.故选:D.由题意画出图形,由圆柱的体积求得圆柱的高,再由相似三角形对应边成比例求得圆锥的高,则圆锥体积可求.本题主要考查了圆锥的内接圆柱的体积,考查数形结合的解题思想方法,是基础题.6.答案:B解析:解:根据题意,函数是定义在R上的奇函数,且在上单调递减,则在上递减,又由,则,则函数的草图如图:若,则有,解可得,即不等式的解集为;故选:B.根据题意,由函数的奇偶性与单调性分析可得函数的大致图象,据此分析可得关于x的取值范围,即可得答案.本题考查函数的奇偶性与单调性的综合应用,注意作出函数的简图,分析不等式的解集.7.答案:D解析:解:如图,由,得,即,,即.则.故选:D.由题意画出图形,可得渐近线的倾斜角,得到,则离心率可求.本题考查双曲线的简单性质,考查数形结合的解题思想方法,考查双曲线离心率的求法,是基础题.8.答案:A解析:解:在中,由余弦定理有,,,易知,又,,故,.故选:A.先由余弦定理求得,再根据题设条件求得,而展开,利用数量积公式化简求解即可.本题考查平面向量数量积的综合运用,涉及了余弦定理的运用,考查运算求解能力,属于中档题.9.答案:C解析:解:把的展开式看成6个因式的乘积形式,从中任意选1个因式,这个因式取x,再取3个因式,这3个因式都取y,剩余2个因式取2,相乘即得含的项;故含项的系数为:.故选:C.把的展开式看成6个因式的乘积形式,从中任意选1个因式,这个因式取x,再取3个因式,这3个因式都取y,剩余2个因式取2,相乘即得含的项,求出项的系数.本题考查了排列组合与二项式定理的应用问题,是综合性题目.10.答案:C解析:解:把函数的图象向右平移个单位长度,得,再把所得的函数图象上所有点的横坐标缩短到原来的纵坐标不变得到函数的图象,则,函数的图象不关于点对称,故错误;,函数的图象的一条对称轴是,故正确;当时,,则,即函数在上的最上的最小值为,故正确;当时,,可知函数在上不单调,故错误.正确命题的个数为2.故选:C.通过平移变换与伸缩变换求得函数的解析式.由判断错误;由求得最小值判断正确;由x的范围求得函数值域判断正确;由x的范围可知函数在上不单调判断错误.本题考查命题的真假判断与应用,考查型函数的图象与性质,是中档题.11.答案:B解析:解:在矩形ABCD中,已知,E是AB的中点,所以:为等腰直角三角形;斜边DE上的高为:;要想三棱锥的体积最大;需高最大,则当面BCDE时体积最大,此时三棱锥的高等于:;取DC的中点H,过H作下底面的垂线;此时三棱锥的外接球球心在OH上;三棱锥外接球的体积为;所以球半径;如图:;;即:;;联立可得;故选:B.要想体积最大,需高最大,当面BCDE时体积最大,根据对应球的体积即可求解结论.本题考查的知识要点:几何体的体积公式的应用,主要考查学生的运算能力和转换能力及思维能力及空间想象能力的应用,属于中档题型.12.答案:D解析:解:因为.令,则,所以当时,,即在R上单调递增,又,所以,,当,,所以在上为增函数,在上为减函数,又,所以当,,当,对恒成立,即当时,,且当且仅当,,故当时,有唯一的零点;排除A,当时,,令,可得,有无数解,所以,不成立,排除BC,故选:D.求导,构造辅助函数,则,当时,可知在R上单调递增,,即可判断在上为增函数,在上为减函数,由,即可证明,当时,有唯一的零点;然后验证时,函数的零点的个数,判断选项即可.本题考查函数的导数的应用,函数的极值的求法,考查转化思想以及含量,分类讨论思想的应用,是中档题.13.答案:6解析:解:由x,y满足约束条件,作出可行域如图,联立,解得,化目标函数为直线方程的斜截式:.由图可知,当直线过A时,直线在y轴上的截距最大,Z有最大值为;故答案为:6.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数的答案.本题考查简单的线性规划,考查了数形结合的解题思想方法,是基础题.14.答案:解析:解:,则.故答案为:由已知结合诱导公式及二倍角公式进行化简即可求解.本题主要考查了诱导公式及二倍角公式在三角化简求值中的应用,属于基础试题.15.答案:48解析:解:根据题意,如图,在正方体中,与平面中一条对角线成的直线有,,,,,,,,共8条直线,则包含在内的符合题意的对角线有8对;又由正方体6个面,每个面有2条对角线,共有12条对角线,则共有对面对角线所成角为,而其中有一半是重复的;则从正方体六个面的对角线中任取两条作为一对,其中所成的角为的共有48对.故答案为:48根据题意,由正方体几何结构分析可得:每一条对角线和另外的8条构成8对直线所成角为,进而可得共有对对角线所成角为,并且容易看出有一半是重复的,据此分析可得答案.本题考查排列、组合的应用,涉及正方体的几何结构,属于基础题.16.答案:解析:解:由题意圆的圆心为抛物线的焦点F,再由题意可得直线AB的斜率不为0,设直线AB的方程为:,,设,,联立直线与抛物线的方程:,整理可得,,所以,由抛物线的性质可得:弦长,由题意可得为的直径2,所以,而,所以可得:,因为,所以,代入直线AB中可得,即,将A点坐标代入抛物线的方程,整理可得,解得,因为,所以,故答案为:.由题意设直线AB的方程与抛物线联立求出两根之和,进而求出弦长的值,再由圆的方程可得圆心为抛物线的焦点可得为圆的直径,求出的值,再由题意可得的值,由题意可得A的横坐标,代入直线的方程,可得A的纵坐标,代入抛物线的方程中可得斜率的平方的值.本题考查抛物线的性质及求点的坐标,属于中档题.17.答案:解:依题意,由,可得,两边同时乘以,可得,即,,数列是以1为首项,2为公差的等差数列,,.由题意,设等比数列的公比为q,则,故,.由知,,且,则,所以:,,得:,,,所以.解析:直接利用递推关系式的应用求出数列的通项公式.利用乘公比错位相减法的应用求出结果.本题考查的知识要点:数列的通项公式的求法及应用,乘公比错位相减法的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.18.答案:解:估计新设备所生产的产品的优质品率为,估计旧设备所生产的产品的优质品率为.补充完整的列联表如下所示,非优质品优质品合计新设备产品 30 70 100旧设备产品 45 55 100合计 75 125 200,有的把握认为“产品质量高与新设备有关”.由知,新设备所生产的优质品率为,而X的所有可能取值为0,1,2,3,,,,.的分布列为:X 0 1 2 3P数学期望.解析:由频数分布表可知,将的频数相加,再除以100,即为新设备的优质品率;由频率分布直方图可知,将的频率组距相加,再乘以组距即为旧设备的优质品率;先填写列联表,再根据的公式计算其观测值,并与附表中的数据进行对比即可作出判断;由知,新设备所生产的优质品率为,而X的所有可能取值为0,1,2,3,然后根据二项分布求概率的方式逐一求出每个X的取值所对应的概率即可得分布列,进而求得数学期望.本题考查频率分布直方图、频数分布表、独立性检验、二项分布、离散型随机变量的分布列和数学期望等知识点,考查学生对数据的分析与处理能力,属于基础题.19.答案:证明:四边形ABCD是菱形,是AC的中点,,,,平面PAC,平面PAC,.,O是AC的中点,.平面ABCD,平面ABCD,,平面ABCD;解:由知,平面ABCD,.以O为坐标原点,分别以OA,OB,OP所在直线为x,y,z轴建立空间直角坐标系.设四边形ABCD的边长为4,.四边形ABCD是菱形,,与都是等边三角形..0,,0,,0,,,,,.,,即,得.,.设平面PAE的法向量为,由,取,得;设平面PEC的一个法向量为,由,取,得.设二面角的平面角为,则.二面角的余弦值为.解析:由已知可得,,由直线与平面垂直的判定可得平面PAC,得到再由进一步得到平面ABCD;由知,平面ABCD,以O为坐标原点,分别以OA,OB,OP所在直线为x,y,z轴建立空间直角坐标系.设四边形ABCD的边长为4,由列式求解a,可得所用点的坐标,再求出平面PAE与平面PEC的一个法向量,由两法向量所成角的余弦值可得二面角的余弦值.本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.20.答案:解:依据题意得,所以,所以,因为,故设,代入椭圆方程得,所以的面积为:.联立,解得,,所以椭圆C的方程为:.由题意可知直线l的斜率显然存在,故设直线l的方程为:,联立,消去y并整理得,所以,设,,所以,,因为,所以,当时,,当时,,,因为,所以,所以,所以,当且仅当时取等号,且满足,所以,综上.解析:根据题意可得方程组联立,解得b,a,进而得出椭圆C的方程.设直线l的方程为:,设,,联立直线l与椭圆的方程,得关于x的一元二次方程,结合韦达定理得,,因为,得,当时,,当时,,,因为,所以,代入化简得化简,利用基本不等式可得出答案.本题考查椭圆的标准方程,直线与椭圆的相交问题,向量问题,属于中档题.21.答案:解:函数的定义域是R,,时,对恒成立,在R递减,函数无极值,时,令,解得:,令,解得:,在递减,在递增,时,取极小值,,即,令,则,,,在递增,,;,,,令,,令,,,令,解得:,令,解得:,故在递增,在递增,时,取极小值,又,,存在使得,在递增,在递减,在递增,,,时,,即,令,,则对于恒成立,在递增,,即当时,,时,,,故时,成立.解析:求出函数的导数,通过讨论a的范围,求出函数的单调区间,得到,令,根据函数的单调性求出a的值即可;令,求出,令,,求出,从而证明结论.本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,不等式的证明,是一道综合题.22.答案:解:由,得,即.,,直线l的直角坐标方程为,即;依题意可知曲线C的参数方程为为参数.设,则点P到直线l的距离为:.,当时,.又过点P作直线交直线于点A,且直线与直线l的夹角为,,即.的最大值为,即.,解得.解析:把展开两角差的余弦,结合,可得直线l的直角坐标方程;依题意可知曲线C的参数方程为为参数设,写出点P到直线l的距离,利用三角函数求其最大值,可得的最大值,结合已知列式求解a.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,训练了利用三角函数求最值,是中档题.23.答案:解:函数.当时,,解得,故.当时,,恒成立.当时,,解得,故,所以不等式的解集为.证明:由知:,所以:,所以,所以,所以当且仅当时,等号成立.故:.解析:直接利用分段函数的解析式和零点讨论法的应用求出结果.直接利用基本不等式的应用求出结果.本题考查的知识要点:分段函数的性质的应用,基本不等式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.。

广东佛山高三教学质量检测(二模)数学理试题 含答案

广东佛山高三教学质量检测(二模)数学理试题 含答案

2019~2020学年佛山市普通高中高三教学质量检测(二)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟. 注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x 2>2 x },B ={x |1≤x ≤3},则A ∪B =( )A 、{x |0≤x <1}B 、{x |x <0或x ≥1}C 、{x |2<x ≤3}D 、{x |x ≤1或x >3}2.复数z 满足(z +2)(1+i)=3+i ,则|z |=()A 、1B 、2C 、3D 、23.(1-x )10的二项展开式中,x 的系数与x 4的系数之差为( )A 、-220B 、-90C 、90D 、04.设变量x ,y 满足约束条件,则目标函数z =x +6y 的最大值为() A 、3 B 、4 C 、18 D 、405.设函数()f x =(sin x +cos x )2+cos2x ,则下列结论错误的是()A 、()f x 的最小正周期为πB 、y =()f x 的图像关于直线x =8π对称 C 、()f x 的最大值为2+1 D 、()f x 的一个零点为x =78π 6.已知,则() A 、a <b <c B 、a <c <b C 、c <a <b D 、b <a <c7.已知点A (3,-2)在抛物线C :x 2=2py (p >0)的准线上,过点A 的直线与抛物线在第一象限相切于点B ,记抛物线的焦点为F ,则|BF |=()A 、6B 、8C 、10D 、128.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为()A、35B、79C、715D、31459.2019年,全国各地区坚持稳中求进工作总基调,经济运行总体平稳,发展水平迈上新台阶,发展质量稳步上升,人民生活福祉持续增进,全年最终消费支出对国内生产总值增长的贡献率为57.8%.下图为2019年居民消费价格月度涨跌幅度:下列结论中不正确的是()A、2019年第三季度的居民消费价格一直都在增长B、2018年7月份的居民消费价格比同年8月份要低一些C、2019年全年居民消费价格比2018年涨了2.5%以上D、2019年3月份的居民消费价格全年最低10.已知P为双曲线C:22221(00)x ya ba b-=>>,上一点,O为坐标原点,F1,F2为曲线C左右焦点.若|OP|=|OF2|,且满足tan∠PF2F1=3,则双曲线的离心率为()A、5B、2C、10D、311.已知A,B,C是球O的球面上的三点,∠AOB=∠AOC=60º,若三棱锥O-ABC体积的最大值为1,则球O的表面积为()A、4πB、9πC、16πD、20π12.双纽线最早于1694年被瑞士数学家雅各布·伯努利用来描述他所发现的曲线.在平面直角坐标系xOy中,把到定点F1(-a,0),F2(a,0)距离之积等于a2(a>0)的点的轨迹称为双纽线C.已知点P (x0,y0)是双纽线C上一点,下列说法中正确的有()①双纽线C关于原点O中心对称;②;③双纽线C上满足|PF1|=|PF2|的点P有两个;④|PO|2a.A、①②B、①②④C、②③④D、①③第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.13.设命题,则⌝p 为 . 14.已知函数,若f (a )=-3,则f (-a )= .15.在面积为1的平行四边形ABCD 中,∠DAB =6π,则AB BC u u u r u u u r g =________; 点P 是直线AD 上的动点,则的最小值为________.16.数学兴趣小组为了测量校园外一座“不可到达”建筑物的高度,采用“两次测角法”,并自制了测量工具:将一个量角器放在复印机上放大4倍复印,在中心处绑上一个铅锤,用于测量楼顶仰角(如图);推动自行车来测距(轮子滚动一周为1.753米).该小组在操场上选定A 点,此时测量视线和铅锤线之间的夹角在量角器上度数为37º;推动自行车直线后退,轮子滚动了10圈达到B 点,此时测量视线和铅锤线之间的夹角在量角器上度数为53ο.测量者站立时的“眼高”为1.55m ,根据以上数据可计算得该建筑物的高度约为 米.(精确到0.1)参考数据:三、解答题:本大题共7小题,共70分,解答须写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知等比数列{a n }的前n 项和为S n (S n ≠0),满足S 1,S 2,-S 3成等差数列,且a 1a 2=a 3.(1)求数列{a n }的通项公式;(2)设,求数列{b n }的前n 项和T n .18.(本小题满分12分)如图,在四棱锥PABCD-中,底面ABCD是矩形,PA=PD=3,PB=PC=6,∠APB=∠CPD=90ο,点M,N分别是棱BC,PD的中点.(1)求证:MN//平面PAB;(2)若平面PAB⊥平面PCD,求直线MN与平面PCD所成角的正弦值.19.(本小题满分12分)已知椭圆C:22221(0)x ya ba b+=>>的离心率为22,且过点(2,1).(1)求椭圆C的方程;(2)过坐标原点的直线与椭圆交于MN,两点,过点M作圆x2+y2=2的一条切线,交椭圆于另一点P,连接PN,证明:|PM||=PN|.20.(本小题满分12分)2020年是我国全面建成小康社会和“十三五”规划收官之年,也是佛山在经济总量超万亿元新起点上开启发展新征程的重要历史节点.作为制造业城市,佛山一直坚持把创新摆在制造业发展全局的前置位置和核心位置,聚焦打造成为面向全球的国家制造业创新中心,走“世界科技+佛山智造+全球市场”的创新发展之路.在推动制造业高质量发展的大环境下,佛山市某工厂统筹各类资源,进行了积极的改革探索.下表是该工厂每月生产的一种核心产品的产量x(5≤≤x20)(件)与相应的生产总成本y(万元)的四组对照数据.x57911y200298431609模型①:;模型②:.其中模型①的残差(实际值-预报值)图如图所示:(1)根据残差分析,判断哪一个更适宜作为y 关于x 的回归方程?并说明理由;(2)市场前景风云变幻,研究人员统计历年的销售数据得到每件产品的销售价格q (万元)是一个与产量x 相关的随机变量,分布列为:结合你对(1)的判断,当产量x 为何值时,月利润的预报期望值最大?最大值是多少(精确到0.1)?21.(本小题满分12分) 已知函数()-f x x a =-sin x (x ≥a ).(1)若()f x ≥0恒成立,求a 的取值范围;(2)若a <-14,证明:()f x 在(0,2π)有唯一的极值点x 0, 且.请考生在第22,23题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号.22.(本小题满分10分)[选修44-:坐标系与参数方程选讲]在平面直角坐标系xOy 中,曲线C 1的参数方程为为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4cos θ.(1)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(2)设点M 的极坐标为(4,0),射线θ=α(0<α<2π)与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,若∠AMB =4π,求tan α的值.23.(本小题满分10分)[选修45-:不等式选讲]已知函数,a∈R.(1)若f(0)>8,求实数a的取值范围;(2)证明:对∀x∈R,恒成立.。

佛山市达标名校2020年高考二月数学模拟试卷含解析

佛山市达标名校2020年高考二月数学模拟试卷含解析

佛山市达标名校2020年高考二月数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数()f x 在R 上都存在导函数()f x ',对于任意的实数都有2()e ()xf x f x -=,当0x <时,()()0f x f x '+>,若e (21)(1)a f a f a +≥+,则实数a 的取值范围是( )A .20,3⎡⎤⎢⎥⎣⎦B .2,03⎡⎤-⎢⎥⎣⎦C .[0,)+∞D .(,0]-∞2.已知函数()2ln 2,03,02x x x x f x x x x ->⎧⎪=⎨+≤⎪⎩的图像上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图像上,则实数k 的取值范围是( )A .1,12⎛⎫⎪⎝⎭B .13,24⎛⎫ ⎪⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,22⎛⎫ ⎪⎝⎭3.设复数z 满足()117i z i +=-,则z 在复平面内的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.据国家统计局发布的数据,2019年11月全国CPI (居民消费价格指数),同比上涨4.5%,CPI 上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI 上涨3.27个百分点.下图是2019年11月CPI 一篮子商品权重,根据该图,下列结论错误的是( )A .CPI 一篮子商品中所占权重最大的是居住B .CPI 一篮子商品中吃穿住所占权重超过50%C .猪肉在CPI 一篮子商品中所占权重约为2.5%D .猪肉与其他畜肉在CPI 一篮子商品中所占权重约为0.18%5.已知纯虚数z 满足()122i z ai -=+,其中i 为虚数单位,则实数a 等于( ) A .1-B .1C .2-D .26.设a ,b 都是不等于1的正数,则“22a b log log <”是“222a b >>”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件7.函数()()sin f x x θ=+在[]0,π上为增函数,则θ的值可以是( ) A .0B .2π C .πD .32π 8.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为20cm ,高度为100cm ,现往里面装直径为10cm 的球,在能盖住盖子的情况下,最多能装( )(附:2 1.414,3 1.732,5 2.236≈≈≈) A .22个B .24个C .26个D .28个9.已知集合1|2A x x ⎧⎫=<-⎨⎬⎩⎭,{|10}B x x =-<<则AB =( )A .{|0}x x <B .1|2x xC .1|12x x ⎧⎫-<<-⎨⎬⎩⎭D .{|1}x x >-10.方程2(1)sin 10x x π-+=在区间[]2,4-内的所有解之和等于( ) A .4B .6C .8D .1011.已知函数()x f x e b =+的一条切线为(1)y a x =+,则ab 的最小值为( ) A .12e-B .14e-C .1e-D .2e-12.已知i 为虚数单位,若复数z 满足5i 12iz =-+,则z =( ) A .1i +B .1i -+C .12i -D .12i +二、填空题:本题共4小题,每小题5分,共20分。

2020年广东省佛山市高考数学二模试卷(理科) (含答案解析)

2020年广东省佛山市高考数学二模试卷(理科) (含答案解析)

2020年广东省佛山市高考数学二模试卷(理科)一、选择题(本大题共12小题,共60.0分)1. 若集合A ={x|0≤x ≤2},B ={x|x 2>1},则A ∪B =( )A. {x|0≤x ≤1}B. {x|x >0或x <−1}C. {x|1<x ≤2}D. {x|x ≥0或x <−1}2. 若复数z 满足z ⋅(1+i)=−2i ,则|z|=( )A. √2B. √3C. 2D. √5 3. (√x 3−2x )8二项展开式中的常数项为( ) A. 56 B. −56 C. 112 D. −1124. 若实数x,y 满足约束条件{x −3y +4≥03x −y −4≤0x +y ≥0,则z =3x +2y 的最大值是 ( )A. −1B. 1C. 10D. 125. 已知函数f(x)=2sinx(sinx +cosx),下列说法中错误的是( )A. f(x)是周期函数B. f(x)有最大值和最小值C. f(x)在(π8,π4)上是增函数D. f(x)的图象关于直线x =π8对称 6. 设a =log 36,b =log 510,c =log 714,则( )A. c >b >aB. b >c >aC. a >c >bD. a >b >c7. 抛物线C :x 2=2py(p >0)的焦点F 与双曲线2y 2−2x 2=1的一个焦点重合,过点F 的直线交C 于点A 、B ,点A 处的切线与x 、y 轴分别交于点M 、N ,若△OMN 的面积为12,则|AF|的长为( ) A. 2 B. 3 C. 4 D. 58. 盒中装有形状,大小完全相同的5个小球,其中红色球3个,黄色球2个,若从中随机取出2个球,则所取出的2个球颜色不同的概率等于A. 310B. 25C. 12D. 35 9. 如图1为某省2018年1∼4月快递业务量统计图,图2是该省2018年1∼4月快递业务收入统计图,下列对统计图理解错误的是( )A. 2018年1∼4月的业务量,3月最高,2月最低,差值接近2000万件B. 2018年1∼4月的业务量同比增长率超过50%,在3月最高C. 从两图来看,2018年1∼4月中的同一个月快递业务量与收入的同比增长率并不完全一致D. 从1∼4月来看,该省在2018年快递业务收入同比增长率逐月增长10.已知O为坐标原点,F1,F2是双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点,双曲线C上一点P满足PF1⊥PF2,且|PF1||PF2|=2a2,则双曲线C的离心率为()A. √2B. √3C. 2D. √511.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O−ABC体积的最大值为36,则球O的表面积为()A. 36πB. 64πC. 144πD. 256π12.平面内到两个定点的距离之比为常数k(k≠1)的点的轨迹是阿波罗尼斯圆.已知曲线C是平面内到两个定点F1(−1,0)和F2(1,0)的距离之比等于常数a(a>1)的阿波罗尼斯圆,则下列结论中正确的是()A. 曲线C关于x轴对称B. 曲线C关于y轴对称C. 曲线C关于坐标原点对称D. 曲线C经过坐标原点二、填空题(本大题共4小题,共20.0分)13.写出命题“∃x>0,x2−1≤0”的否定:________14.已知函数f(x)=lg(√x2+1+x)+a,且f(ln3)+f(ln13)=1,则a=_________.15.在面积为2的平行四边形ABCD中,点P在直线DA上,则PC⃗⃗⃗⃗⃗ ⋅PB⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ 2的最小值为________.16.沿着山边一条平直的公路测量山顶一建筑物的高度,如图所示,已知A处测量建筑物顶部的仰角为60°,B处测量建筑物顶部的仰角为30°,已知图中PA⊥AB,AB=440√63米,山的高度是190米,则建筑物的高度为______ 米.三、解答题(本大题共7小题,共82.0分)17.已知正项等比数列{a n}满足a1=1,且3,a3,5a2成等差数列,数列{b n}满足a1b1+a2b2+⋯+a nb n=(n+1)3n−1.(1)求数列{a n}和{b n}的通项公式;(2)若c n=1,求数列{c n}的前n项和T n.b n b n+118.在四棱锥SABCD中,SA⊥平面ABCD,底面ABCD是菱形.(1)求证:平面SAC⊥平面SBD;NS,求证:SC//平面BMN.(2)若点M是棱AD的中点,点N在棱SA上,且AN=1219.已知椭圆C:x2a2+y2b2=1(a>b>0)过点A(2,0),且离心率为√32.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线y=kx+√3与椭圆C交于M,N两点,若直线x=3上存在点P,使得四边形PAMN 是平行四边形,求k的值.20.某公司生产一种产品,从流水线上随机抽取100件产品,统计其质量指数并绘制频率分布直方图(如图1),产品的质量指数在[50,70)的为三等品,在[70,90)的为二等品,在[90,110]的为一等品,该产品的三、二、一等品的销售利润分别为每件1.5,3.5,5.5(单位:元).以这100件产品的质量指数位于各区间的频率代替产品的质量指数位于该区间的概率.(1)求每件产品的平均销售利润;(2)该公司为了解年营销费用x(单位:万元)对年销售量y(单位:万件)的影响,对近5年的年营销费用x i 和年销售量y i (i =1,2,3,4,5)数据做了初步处理,得到的散点图(如图2)及一些统计量的值. ∑5i=1 u i ∑5i=1 v i ∑5i=1 (u i −u )(v i −v ) ∑5i=1 (u i −u )2 16.30 24.87 0.411.64 表中u i =lnx i ,v i =lny i ,u =15∑5i=1 u i ,v =15∑5i=1 v i . 根据散点图判断,可以作为年销售量y(万件)关于年营销费用x(万元)的回归方程. (i)建立y 关于x 的回归方程;(ii)用所求的回归方程估计该公司应投入多少营销费,才能使得该产品一年的收益达到最大?(收益=销售利润−营销费用,取e 4.159=64).参考公式:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线的斜率和截距的最小二乘估计分别为β̂=i −u )(i −v )n i=1∑(u −u )2n α̂=v −β̂u .21.已知函数f(x)=e x−1x+a.(1)判断f(x)极值点的个数;(2)若x>0时,e x>f(x)恒成立,求实数a的取值范围.22.在直角坐标系xOy中,曲线C的参数方程为{x=2cosα,y=2+2sinα(α为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线M的极坐标方程为ρ2sin2θ=32(0<θ<π2).(1)求曲线C的极坐标方程;(2)已知β为锐角,直线l:θ=β(ρ∈R)与曲线C的交点为A(异于极点),l与曲线M的交点为B,若|OA|⋅|OB|=16√2,求l的直角坐标方程.23.已知函数f(x)=2|x−2|+3|x+3|.(1)解不等式:f(x)>15;(2)若函数f(x)的最小值为m,正实数a,b满足4a+25b=m,证明:1a +1b≥4910.-------- 答案与解析 --------1.答案:D解析:本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,考查函数与方程思想,属于基础题.先分别求出集合A ,B ,由此能求出A ∪B .解:∵集合A ={x|0≤x ≤2},B ={x|x 2>1}={x|x >1或x <−1},∴A ∪B ={x|x ≥0或x <−1}.故选:D .2.答案:A解析:解:由z(1+i)=−2i ,得z =−2i 1+i =−2i(1−i)(1+i)(1−i)=−1−i ,∴|z|=√2.故选A .把已知等式变形,再由复数代数形式的乘除运算化简,然后代入复数模的计算公式求解. 本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题. 3.答案:C解析:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得常数项. 解:(√x 3−2x )8二项展开式的通项公式为T r+1=C 8r ⋅x 8−r 3⋅(−2)r ⋅x −r =(−2)r ⋅C 8r ⋅x 8−4r 3,令8−4r 3=0,求得r =2,。

2020年广东省二模理科数学试题及答案

2020年广东省二模理科数学试题及答案


估计旧设备所生产的产品的优质品率为 补充完整的 列联表如下所示,
非优质品
新设备产品
30
旧设备产品
45
合计
75
优质品 70 55 125

合计 100 100 200

有 的把握认为“产品质量高与新设备有关”. 由 知,新设备所生产的优质品率为 ,而 X 的所有可能取值为 0,1,2,3,




的分布列为:
本题考查排列、组合的应用,涉及正方体的几何结构,属于基础题.
16.答案:
第 6 页,共 13 页
解析:解:由题意圆
的圆心为抛物线的焦点 F,
再由题意可得直线 AB 的斜率不为 0,设直线 AB 的方程为:




,联立直线与抛物线的方程:

整理可得

,所以

由抛物线的性质可得:弦长

由题意可得 为
正确命题的个数为 2. 故选:C.
通过平移变换与伸缩变换求得函数 的解析式.由
判断 错误;由
求得最
小值判断 正确;由 x 的范围求得函数值域判断 调判断 错误. 本题考查命题的真假判断与应用,考查
11.答案:B
正确;由 x 的范围可知函数 在 上不单 型函数的图象与性质,是中档题.
解析:解:在矩形 ABCD 中,已知



由 知,
,且



所以:


得:


所以
, .
解析: 直接利用递推关系式的应用求出数列的通项公式. 利用乘公比错位相减法的应用求出结果.

【理科数学答案】2019-2020学年佛山市普通高中高三教学质量检测(二)理科数学 试题答案

【理科数学答案】2019-2020学年佛山市普通高中高三教学质量检测(二)理科数学 试题答案

2019~2020学年佛山市普通高中高三教学质量检测(二)理科数学参考答案123456789101112B ADCDAC ADC CB1302001(0,),12x x e x ∃∈+∞+≤144153,31531.617(1)(2)nn a =-(2)111(2)1n n T +=---+18(1)取PA 中点E ,连接,BE EN ,则EN 为PAD △的中位线,12EN AD ,又因为12BM AD ,所以EN BM ,所以四边形BENM 是平行四边形,所以//MN BE ,又因为MN ⊄平面PAB ,BE ⊂平面PAB ,所以//MN 平面PAB .(2)6919(1)22163x y +=(2)设直线MP 的方程为y kx m =+,代入椭圆方程,证明12120OM OP x x y y ⋅=+=20(1)模型①更适宜作为y 关于x 的回归方程(2)即产量为11件时,月利润的预报期望值最大,最大值是774.8万元21(1){|22,}Z a k a k k πππ-∈≤≤(2)证明过程略22(1)曲线1C 是以(0,2)为圆心,半径为2的圆,极坐标方程为4sin ρθ=(2)1tan 2α=23(1)(,0)(6,)-∞+∞ (2)证明过程略1.答案:B解析:2{|2}{|0A x x x x x =>=<或2},{|13}x B x x >=≤≤,所以A B = {|0x x <或1}x ≥.2.答案:A 解析:3i (3i)(1i)42i222i,11i (1i)(1i)2z z ++--=-=-=-=-∴=++-.3.答案:D 解析:10(1)x -的二项展开式中,含x 的项为2221010()C x C x -=,含4x 的项为88841010()C x C x -=,因为281010C C =,所以x 的系数与4x 的系数之差为04.答案:C解析:作出可行域如图中阴影部分所示,由6z x y =+得1166y x z =-+,表示斜率为16-,纵截距为16z 的直线,作出直线16y x =-并平移,使其经过可行域内的点,当直线过点(0,3)A 时,纵截距最大,此时z 取得最大值,最大值为18.5.答案:D解析:2()(sin cos )cos 21sin 2cos 2214f x x x x x x x π⎛⎫=++=++=++ ⎪⎝⎭,所以函数()f x 的最小正周期22T ππ==,A 正确;当8x π=时,242x ππ+=,选项B 正确;()f x 1+,选项C 正确;当78x π=时,()1f x =,故选项D 错误,所以选D .6.答案:A解析:3log 2(0,1)∈ ,所以2333333log (log 2)log 10,(log 2)(0,1),2log 2log 41a b c =<==∈==>,所以a b c <<.7.答案:C 解析:由题可知2,42pp -=-∴=,抛物线方程为28x y =,设2(4,2)(0)B t t t >,由28x y =可得4xy '=,所以切线斜率k t =,又22243t k t +=-,所以22243t t t +=-,整理得22320t t --=,(21)(2)0t t ∴+-=,2t ∴=,(8,8)B ∴,8210BF ∴=+=.8.答案:A解析:若从盒中取出一个红色球(概率为25),则第二次取球时盒中有6个红色球,3个黄色球,取出黄色球的概率为39;若从盒中取出一个黄色球(概率为35),则第二次取球时盒中有2个红色球,7个黄色球,取出黄色球的概率为79;由全概率公式,可知第二次取球时取出黄色球的概率23372735959455P =⨯+⨯==.9.答案:D解析:设2019年3月份的居民消费价格为a ,则6月份的居民消费价格为2(10.001)(10.001)(10.001)a a a +-=-<,所以2019年6月份的居民消费价格全年最低,故D 不正确.10.答案:C解析:因为2OP OF =,所以点P 在以O 为圆心,2OF 为半径的圆上,所以1290F PF ∠=︒,所以1212tan 3PF PF F PF ∠==,不妨设21PF =,则13PF =,1210F F =,所以121222,210a PF PF c F F =-===,离心率21022c c e a a ===.11.答案:C解析:AOB △和AOC △都是边长为R 的等边三角形,显然当平面AOB ⊥平面AOC 时,三棱锥O ABC -的体积取得最大值,最大值为23133113428R R R ⎛⎫⨯⨯== ⎪ ⎪⎝⎭,所以2R =,所以球O 的表面积2416S R ππ==.12.答案:B解析:在曲线C 上任取一点(,)P x y ,则根据题意可得2PA PB a ⋅=,即224PA PB a ⋅=,所以22224()()x a y x a y a ⎡⎤⎡⎤++⋅-+=⎣⎦⎣⎦,整理得4222422(22)20x y a x y a y +-++=(1),在(1)式中同时将x 换成x -,将y 换成y -,方程不变,所以曲线C 关于原点对称,故①正确;在(1)中,由222422422(22)4(2)4160y a y a y a a y ∆=--+=-≥,得224a y ≤,22a a y ∴-≤≤,故②正确;②解法二:12120121211sin 22PF F S F F y PF PF F PF =⋅=⋅∠△,212012sin sin 222a F PF a a y F PF a ∠∴==∠≤,022a ay ∴-≤≤,故②正确;满足12PF PF =的点P 都在y 轴上,在(1)中,令0x =,得42220y a y +=,解得0y =,即(0,0)P ,所以③错误;由22224()()x a y x a y a ⎡⎤⎡⎤++⋅-+=⎣⎦⎣⎦,得2222224()4x y a a x a ++-=,即2222224()4cos a a a ρρθ+-=,42222224cos 0a a ρρρθ+-=,2222cos 22a a ρθ=≤,2aρ≤所以④正确13.答案:02001(0,),12xx e x ∃∈+∞+≤14.答案:4解析:2(1sin )1sin 11()22222x x x x x f x x x +++==+++,设sin 1()222x x g x x=++,则()g x 为奇函数,177171()()3,(),(),()()4222222f ag a g a g a f a g a =+=-∴=--=-=-++=.15解析:设,AB a AD b ==,则1sin 1,262ABCD S ab ab ab π===∴=,则cos 6AB BC ab π⋅== 在PBC △中,由余弦定理得222222cos 2BC PB PC PB PC BPC PB PC PB PC =+-⋅∠=+-⋅ ,2222PB PC PB PC BC PB PC b PB PC ∴+-⋅=+⋅=+⋅ ,过点P 作PQ BC ⊥于点Q ,设BQ x =,则CQ b x =-,()()221()4PB PC PQ QB PQ QC PQ QB QC a x b x ⋅=+⋅+=+⋅=--,2222222221()4111344442PB PC PB PC b a x b x b a b a ∴+-⋅=+--+-+= =≥≥.16.答案:31.6解析:如图,设CD h =,因为53,37CAD CBD ∠=︒∠=︒,34tan 37,tan 5343︒≈︒≈,所以34,43AC h BC h ==,所以4371.7531017.533412AB BC AC h h h =-=-==⨯=,1217.5330.057h ∴=⨯≈米所以该建筑物的高度约为30.05 1.5531.6+=米17.解析:(1)设等比数列{}n a 的公比为q ,由123,,S S S -成等差数列,得2132S S S =-,即2111122a a q a q a q +=--,所以2320q q ++=,(1)(2)0q q ++=,解得1q =-或2q =-,又因为0n S ≠,所以1q ≠-,故2q =-,由123a a a =,得2211a q a q =,得12a q ==-,所以11(2)n n n a a q-==-.(2)111133(2)[(2)1][(2)1](1)(1)[(2)1][(2)1][(2)1][(2)1]n n n n n n n n n n n a b a a ++++--⋅--+--+===++-+⋅-+-+⋅-+111(2)1(2)1n n +=--+-+,所以12n nT b b b =+++ 12231111111(2)1(2)1(2)1(2)1(2)1(2)1n n +⎡⎤⎡⎤⎡⎤=-+-++-⎢⎥⎢⎥⎢⎥-+-+-+-+-+-+⎣⎦⎣⎦⎣⎦ 1111111(2)1(2)1(2)1n n ++=-=---+-+-+.18.解析:(1)解法一:取PA 中点E ,连接,BE EN ,则EN 为PAD △的中位线,12EN AD ,又因为12BM AD,所以EN BM ,所以四边形BENM 是平行四边形,所以//MN BE ,又因为MN ⊄平面PAB ,BE ⊂平面PAB ,所以//MN 平面PAB .解法二:取AD 中点E ,连接,ME EN ,因为E M 、分别为AD BC 、的中点,所以//ME AB ,又ME ⊄平面PAB ,AB ⊂平面PAB ,所以//ME 平面PAB ;因为EN 是PAD △的中位线,所以//EN PA ,又EN ⊄平面PAB ,PA ⊂平面PAB ,所以//EN 平面PAB ;又因为,,ME EN E ME EN =⊂ 平面EMN ,所以平面//EMN 平面PAB ,而MN ⊂平面EMN ,所以//MN 平面PAB .解法三:取PC 中点E ,连接,NE ME ,则NE 是PCD △的中位线,所以//NE CD ,又因为//CD AB ,所以//NE AB ,又NE ⊄平面PAB ,AB ⊂平面PAB ,所以//NE 平面PAB ;ME 是PBC △的中位线,所以//ME PB ,又ME ⊄平面PAB ,PB ⊂平面PAB ,所以//ME 平面PAB ;又因为,,ME EN E ME EN =⊂ 平面EMN ,所以平面//EMN 平面PAB ,而MN ⊂平面EMN ,所以//MN 平面PAB.(2)解法一:设平面PAB 平面PCD l =,因为//,AB CD AB ⊄平面PCD ,CD ⊂平面PCD ,所以//AB 平面PCD ,又AB ⊂平面PAB ,平面PAB 平面PCD l =,则//AB l ,过P 作PF AB ⊥于F ,PG CD ⊥于点G ,连接FG ,过P 作PO FG ⊥于点O ,连接OM ,则,PF l PG l ⊥⊥,所以FPG ∠即为平面PAB 与平面PCD 所成二面角的平面角,因为平面PAB ⊥平面PCD ,所以90FPG ∠=︒,由,,AB PF AB PG PF PG P ⊥⊥= ,可得AB ⊥平面PFG ,所以AB PO ⊥,又PO FG ⊥,AB FG F = ,所以PO ⊥平面ABCD ,经计算得3,2,2,1AB CD PF PG FG AF DG =======,所以O 为FG 中点,以O 为原点,,,OM OG OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示空间直角坐标系,则111(0,0,1),(2,1,0),(1,1,0),(2,0,0),,,222P C D M N ⎛⎫-- ⎪⎝⎭,则511,,,(2,1,1),(3,0,0)222MN PC CD ⎛⎫=-=-=- ⎪⎝⎭,设平面PCD 的法向量(,,)n x y z = ,则2030n PC x y z n PD x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,可取(0,1,1)n = ,所以6cos ,93322MN n MN n MN n ⋅===⋅⨯.所以直线MN 与平面PCD 所成角的正弦值69.解法二:可将此四棱锥还原成如图所示的直三棱柱BCF ADE -,因为平面PAB ⊥平面PCD ,所以90AED ∠=︒,经计算可得2AE DE ==,1EP =,3AB =,以E 为坐标原点,,,EA ED EF 所在直线分别为x 轴,y 轴,z 轴建立如图所示空间直角坐标系,则2221,3,(0,0,1),(0,2,0),0,2222M P D N ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以25,0,22MN ⎛⎫=-- ⎪ ⎪⎝⎭,显然平面PCD 的一个法向量(1,0,0)n = ,所以262cos ,92MN n MN n MN n -⋅===-⋅ ,所以直线MN 与平面PCD所成角的正弦值9.解法三:取PA 中点E ,连接,BE EN ,由(1)的证明可知//MN BE ,设平面PAB 平面PCD l =,因为//,AB CD AB ⊄平面PCD ,CD ⊂平面PCD ,所以//AB 平面PCD ,又AB ⊂平面PAB ,平面PAB 平面PCD l =,则//AB l ,过P 作PF AB ⊥于F ,则PF l ⊥,又因为平面PAB ⊥平面PCD ,PF ⊂平面PAB ,所以PF ⊥平面PCD ,所以PF即为平面PCD 的法向量,在平面PAB 中,以F 为原点建立如图所示平面直角坐标系,则12(1,0),(2,0),(0,22A B P E ⎛-- ⎝⎭,52,,22BE FP ⎛=-= ⎝⎭,6cos ,9BE FP BE FP BE FP ⋅===⋅,所以直线MN 与平面PCD所成角的正弦值9.19.解析:(1)设椭圆的半焦距为c ,由椭圆的离心率22c e a ==,且222a b c =+,可得222a b =,将点(2,1)代入椭圆方程222212x y b b +=,得224112b b +=,解得23b =,从而2226a b ==,所以椭圆C 的方程为22163x y +=.(2)当直线MP 的斜率不存在时,由对称性,不妨设直线MP的方程为x =,则(M P N,则PM PN ==当直线MP 的斜率存在时,设直线MP 的方程为y kx m =+,则圆心(0,0)O 到直线MP的距离d ==所以2222m k =+,因为圆在椭圆内部,所以圆的切线与椭圆一定会有两个交点,将y kx m =+代入22260x y +-=,整理得:222(21)4260k x kmx m +++-=,设1122(,),(,)M x y P x y ,则2121222426,2121km m x x x x k k --+==++,22121212121212()()(1)()OM OP x x y y x x kx m kx m k x x km x x m ∴⋅=+=+++=++++22222222222222264428(1)(1)(1)2(1)21212121m k m k k k k m k k k k k k --+=+-+=+-++++++22222(1)(42842)021k k k k k +--++==+,OM OP ∴⊥,因为点O 为线段MN 的中点,所以PM PN =.20.解析:(1)模型②的残差数据如下表:x 57811y200298431609ˆe 2018-21-21模型②的残差图如图所示.…………………………2分(只要算出残差或残差绝对值,或直接画出残差图,即给2分)模型①更适宜作为y 关于x 的回归方程,因为:……………3分理由1:模型①这4个样本点的残差的绝对值都比模型②小.理由2:模型①这4个样本的残差点落在的带状区域比模型②的带状区域更窄.理由3:模型①这4个样本的残差点比模型②的残差点更贴近x 轴.(写出一个理由即可得分)………………………………………………………………………5分(2)设月利润为Y ,由题意知Y qx y =-,则Y 的分布列为:Y 2314017323x x x ⎛⎫--+ ⎪⎝⎭2313017323x x x ⎛⎫--+ ⎪⎝⎭2310017323x x x ⎛⎫--+ ⎪⎝⎭P0.50.40.1232323121()1401731301731001732322352310x x x x x x E Y x x x ⎛⎫⎛⎫⎛⎫=---⨯+--⨯---⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3213217332x xx =--+-.………………………………………………………………………………9分设函数322()132173,(0,),()13232x x f x x x f x x x '=--+-∈+∞=--+.……………………9分令()0f x '=,解得11x =或12x =-(舍去),当(0,11)x ∈时,()0,()f x f x '>单调递增;当(11,)x ∈+∞时,()0,()f x f x '<单调递减.则函数()f x 的最大值为4649(11)6f =,即产量为11件时,月利润的预报期望值最大,最大值是774.8万元.…………………………………………………………………………………………………………12分21.解析:(1)由()0f a ≥,得sin 0a -≥,即sin 0a ≤,解得22,Z k a k k πππ-∈≤≤……1分以下证明,当22()Z k a k k πππ-∈≤≤时,()0f x ≥sin (0)x x ≥.若1x ≥1sin x ≥;若01x <≤,x ,令()sin (0)g x x x x =-≥,可知()1cos 0g x x '=-≥,故()(0)0g x g =≥,即sin (0)x x x ≥≥sin (0)x x ≥.…………………………………………………………3分若22()Z k a k k πππ-∈≤≤,则当2a x k π≤≤时,sin 0x ≤,0sin x ≥,即()0f x ≥;当2x k π≥sin (0)x x ≥sin(2)sin x k x π-=.故当22()Z k a k k πππ-∈≤≤时,()0f x ≥.综上,所求a 的取值范围是{|22,}Z a k a k k πππ-∈≤≤.…………………………………………5分(2)()cos f x x '=,令()cos g x x =,则321()sin 4()g x x x a '=+-,………6分1,()4a g x '<-∴ 是0,2π⎛⎫ ⎪⎝⎭上的增函数,又321(0)0,10242g g a ππ⎛⎫''<=-> ⎪⎝⎭⎛⎫- ⎪⎝⎭,故存在唯一实数00,2t π⎛⎫∈ ⎪⎝⎭,使0()0g t '=,当0(0,)x t ∈时,()0,()g x g x '<单调递减,当0,2x t π⎛⎫∈ ⎪⎝⎭时,()0,()g x g x '>单调递增.………………………………………………………………………………7分又14a <-,则11,,142a ->>,11(0)10,10,03222g g g ππ⎛⎫⎪⎛⎫⎛⎫⎪∴=<==<= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎭,故存在唯一实数0,32x ππ⎛⎫∈⎪⎝⎭,使00()cos 0g x x ==.………………………………8分所以在区间0,2π⎛⎫⎪⎝⎭有唯一极小值点0x,且极小值为00()sin f x x =……………………9分又由00()cos 0g x x ==000011,()sin 2cos 2cos f x x x x =∴=-,又00000011()(sin )2cos 2cos f x x x x x x +=+->.………………………………………………10分以下只需证明00112cos 2x x π>-,即证0002cos 2x x π<<-.000000,,2cos 2sin 22222x x x x x ππππ⎛⎫⎛⎫⎛⎫∈∴=-<-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,……………………………………11分则0000000111()(sin )2cos 2cos 2f x x x x x x x π+=+->>-,所以0001()2f x x x π>--………12分22.解析:(1)曲线1C 是以(0,2)为圆心,半径为2的圆,其直角坐标方程为22(2)4x y +-=,即224x y y +=,又由222,sin x y y ρρθ+==,可得曲线1C 的极坐标方程为4sin ρθ=.(2)将θα=代入4sin ρθ=,得4sin A ρα=,将θα=代入4cos ρθ=,得4cos B ρα=,又因为4AMB π∠=,2ABM π∠=,所以ABM △是等腰直角三角形,所以4cos 4sin BM AB OB OA αα==-=-,所以4cos 4sin tan 1tan 4cos BM OB ααααα-===-,解得1tan 2α=.23.解析:(1)由(0)8f >,得156a a -+->,当1a <时,156a a -+->,解得0a <,所以0a <;当15a ≤≤时,156a a -+->,无解;当5a >时,156a a -+->,解得6a >,所以6a >.综上可知,实数a 的取值范围是(,0)(6,)-∞+∞ .(2)11()512cos 110f x a x a a a--+⇔+-++≥≥,111111(1)12a a a a a a a a-++-++=+=+ ≥≥,而2cos 2x -≥,所以12cos 11220x a a +-++-+=≥恒成立,所以对R x ∀∈,1()51f x a a--+≥恒成立.。

2020届广东省佛山市禅城区普通高中高三上学期统一调研测试(二)数学(理)试题(解析版)

2020届广东省佛山市禅城区普通高中高三上学期统一调研测试(二)数学(理)试题(解析版)

绝密★启用前广东省佛山市禅城区普通高中2020届高三毕业班上学期统一调研测试(二)数学(理)试题(解析版)第Ⅰ卷一、选择题:本题共12分,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,若2(1)i z i +=-,则z 的共轭复数z 对应的点在复平面的( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】D【解析】【分析】把已知等式变形,再由复数代数形式的乘除运算化简,求出z 的坐标得答案.【详解】解:由2+i =z (1﹣i ),得z ()()()()1221311122i i i i i i i +++===+--+, ∴1322z i =-, 则z 的共轭复数z 对应的点的坐标为(1322-,),在复平面的第四象限. 故选D .【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2.设集合{}|3,x A y y x R ==∈,{|}B y y x R ==∈,则A B =( ) A. []0,2 B. ()0,∞+ C. (]0,2 D. [)0,2【答案】C【解析】【分析】根据函数值域的求解可得到集合A 和集合B ,由交集定义可得到结果.【详解】{}()|3,0,x A y y x R ==∈=+∞,{}[]24,0,2B y y x x R ==-∈= (]0,2A B ∴=本题正确选项:C【点睛】本题考查集合运算中的交集运算,属于基础题.3.函数2()3xe f x x =-的大致图象是( )A. B. C. D.【答案】A【解析】【分析】根据函数的奇偶性及取特殊值1x =,进行排除即可得答案.【详解】由题意得,函数()()()2233xx e ef x f x x x --===---,则函数()f x 为偶函数,图象关于y 轴对称,故排除C 、D,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Q
N
又点 N 是 PD 的中点,则 NQ / / AD 且 NQ 1 AD . 2
又点 M 是 BC 的中点,底面 ABCD 是矩形,
A E
O
D Fy
则 BM 1 AD 且 BM / / AD .………………………2 分
2
B
M
C
∴ NQ / / BM 且 NQ BM ,∴四边形 MNQB 是平行四边形,
4kmx 2m2
6
0

x1
x2
1
4km 2k
2
, x1x2
2m2 6 1 2k 2

2 ,即| m |
2(1 k 2 ) …7 分
∴ PM
1 k 2 x1 x2
1 k2
(x1 x2 )2 4x1x2 2
2 1 k 2 1 4k 2 1 2k 2
………………9 分
∵ PN
( x1
x
∴ MN / /BQ ,又 MN 平面 PAB , BQ 平面 PAB ,∴ MN / / 平面 PAB .………………………4 分
(2)过点 P 作 PE AB 交 AB 于点 E ,作 PF CD 交 CD 于点 F ,连接 EF .
则 PF AB ,PE PF P ,∴ AB 平面 PEF ,又 AB 平面 ABCD ,∴平面 PEF 平面 ABCD .
x2 )2
( y1
y2 )2

y1
y2
k ( x1
x2 ) 2m
k(142kkm2 ) 2m
2m 1 2k2

∴ PN
(142kkm2 )2
( 1
2m 2k
2
)2
2
m 1 4k2 1 2k2

∵| m |
2(1 k 2 ) ,∴ PN 2
2
1 k 2 1 4k2 1 2k2
| PM
|.
∵ PA PD 3 , PB PC 6 , APB CPD 90 ,
∴ AB CD 3 , PE PF 2 , BE CF 2 , AE DF 1.
∵平面 PAB 平面 PCD ,∴ EPF 90 .∴ EF 2 . 取 EF 的中点为 O ,连接 OP ,则 OP EF , OP 1. ……………………………………………8 分 以 O 为坐标原点,分别以 OM , OF, OP 所在直线为 x, y, z 轴建立空间直角坐标系 O xyz ,如图所示,则
……………………………………………………………10 分
第1页,共4页
设直线 MN
与平面 PCD 所成角为
,则 sin
| n MN |
| n || MN |
1 6, 23 3 9
2
所以直线 MN 与平面 PCD 所成角的正弦值为 6 . …………………………………………………12 分 9
19.【解析】(1)设椭圆的半焦距为
P(0,
0,1)
,C
(2,1,
0)
,D(1,1,
0)
,M
(2,
0,
0)
,N
(
1
,
1
,
1
)
,所以
PC
(2,1,
1)
,PD
(1,1,
1)

222
MN
(
5 2
,
1 2
,
1) 2
,设平面
PCD
的一个法向量为
n
(x,
y,
z)
,则由
n n
PA PD
x 2
yz0 x yz
0

可取 n (0,1,1) .
2019~2020 年佛山市普通高中高三教学质量检测(二)
数 学(理科)参考答案
一、选择题:
题号 1
2
3
4
5
6
7
8
9
10
11
12
答案 B
A
D
C
D
A
C
A
D
C
C
B
二、填空题:
13. x0
(0, ), ex0
1
1 2
x02
14. 4
15. 3 (2 分), 3 (3 分) 16. 31.6
三、解答题:
17.【解析】(1)设数列{an}的公比为 q ,依题意,得 S1 (S3 ) 2S2 , ……………………………1 分 所以 (a2 a3 ) 2(a1 a2 ) ,得 a1(q q2 ) 2a1(1 q) ,且 a1 0 , 所以 q2 3q 2 0 ,解得 q 1 或 q 2 , …………………………………………………………3 分
c
,由题设,可得
c a
2 2
,
4 a2
1 b2
1,结合 a2
b2
c2 ,
解得 a2 6,b2 3 ,所以椭圆 C 的方程为: x2 y2 1.……………………………………………4 分 63
(2)①当直线 PM 的斜率不存在时,依题意,可得直线 PM 的方程为 x 2 或 x 2 .
若直线 PM : N ( 2, 2) , P( 2, 2) ,
则| PM | 2 2 ,| PN | 2 2 ,所以| PM || PN | ;
其他情况,由对称性,同理可得| PM || PN | . ……………………………………………………6 分
综上可知 PM PN 成立. …………………………………………………………………………12 分
20.【解析】(1)模型②的残差数据如下表:
x 5 7 9 11 y 200 298 431 609
e 20 18 21 21
模型②的残点图如图所示. ………………2 分
(只要算出残差或残差绝对值,或直接画出残差图,即给 2 分)
1]
1 (2)n
1
1 (2)n1
1
,……8

所以 Tn
[
1 (2)1
1
1 (2)2
] 1
[
1 (2)2
1
1 (2)3
] 1
[
1 (2)n
1
1 (2)n1
] 1
1
1 (2)n1
1
(2)n1 (2)n1
2 1
z
………………………………………………………………………12

P
18.【解析】(1)取 PA 的中点为 Q ,连接 NQ, BQ ,
因为 Sn 0 ,所以 q 2 ,
………………………………………………4 分
又因为 a1a2 a3 ,得 a12q a1q2 ,则 a1 q ,所以 an (2)n .………………………………6 分
(2)由(1)得 bn
[(2)n
3(2)n 1][(2)n1
1]
(2)n1 (2)n [(2)n 1][(2)n1
②当直线 PM 斜率存在时,设直线 PM 的方程为 y kx m ,
∵直线 PM 与圆 x2 y2 2 ,∴圆心 O 到直线 PM 的距离为 m k2 1
设 M (x1, y1), P(x2 , y2 ) ,则 N (x1, y1) ,
y kx m
联立
x2
6
y2 3
,消元
1
y
,整理得 (1 2k 2 )x2
相关文档
最新文档