时间序列分析法原理及步骤(精)

合集下载

统计学时间序列分析

统计学时间序列分析

统计学时间序列分析时间序列是经济学、金融学和其他社会科学领域中的一个重要分析对象。

通过对时间序列数据的分析,我们可以揭示数据之间的关系、趋势和周期性,从而为决策提供有力的支持和预测。

统计学时间序列分析是一种应用数学方法的工具,用于对时间序列数据进行建模和预测。

一、时间序列的基本概念时间序列是按时间顺序排列的一系列观测值的集合。

在时间序列分析中,我们关注数据之间的内在关系,而忽略其他因素的影响。

时间序列数据通常具有以下特征:1. 趋势性:时间序列数据的长期变化趋势。

2. 季节性:时间序列数据在一年内固定时间段内的重复模式。

3. 循环性:时间序列数据中存在的多重周期性波动。

4. 随机性:时间序列数据中的不规则、无法预测的波动。

二、时间序列分析的方法在进行时间序列分析时,我们可以采用以下方法来揭示数据的内在规律:1. 描述性统计分析:通过计算数据的均值、方差、相关系数等指标,对数据的整体特征进行描述。

2. 图表分析:通过绘制折线图、柱状图等图表,展示时间序列数据的变化趋势和周期性。

3. 分解模型:将时间序列数据分解为趋势项、季节性项和残差项,以揭示数据的内在结构。

4. 平滑法:通过移动平均法、指数平滑法等方法,消除时间序列数据的随机波动,从而揭示趋势和季节性成分。

5. 自回归移动平均模型(ARIMA):ARIMA模型是一种常用的时间序列分析方法,可以对数据进行预测和建模。

它综合考虑了自回归、移动平均和差分的影响因素。

三、时间序列分析的应用领域时间序列分析广泛应用于经济学、金融学、市场调研等领域,具体应用包括:1. 经济预测:通过对经济数据进行时间序列分析,可以预测未来的经济发展趋势,为政府决策提供参考。

2. 股票市场分析:时间序列分析可以帮助分析师预测股票市场的走势,制定投资策略。

3. 需求预测:通过对销售数据进行时间序列分析,可以预测产品的需求量,为企业的生产和供应链管理提供指导。

4. 天气预测:通过对气象数据进行时间序列分析,可以预测未来的天气状况,为农业、旅游等行业提供参考。

时间序列预测的方法与分析

时间序列预测的方法与分析

时间序列预测的方法与分析时间序列预测是一种用于分析和预测时间相关数据的方法。

它通过分析过去的时间序列数据,来预测未来的数据趋势。

时间序列预测方法可以分为传统统计方法和机器学习方法。

下面将分别介绍这两种方法以及它们的分析步骤。

1. 传统统计方法传统统计方法主要基于时间序列数据的统计特征和模型假设进行分析和预测。

常用的传统统计方法包括移动平均法、指数平滑法和ARIMA模型。

(1) 移动平均法:移动平均法通过计算不同时间段内的平均值来预测未来的趋势。

该方法适用于数据变动缓慢、无明显趋势和周期性的情况。

(2) 指数平滑法:指数平滑法通过对历史数据进行加权平均,使得近期数据具有更大的权重,从而降低对过时数据的影响。

该方法适用于数据变动较快、有明显趋势和周期性的情况。

(3) ARIMA模型:ARIMA模型是一种常用的时间序列预测模型,它结合了自回归(AR)、差分(I)和滑动平均(MA)的概念。

ARIMA模型可以用于处理非平稳时间序列数据,将其转化为平稳序列数据,并通过建立ARIMA模型来预测未来趋势。

2. 机器学习方法机器学习方法通过训练模型来学习时间序列数据的特征和规律,并根据学习结果进行预测。

常用的机器学习方法包括回归分析、支持向量机(SVM)和神经网络。

(1) 回归分析:回归分析通过拟合历史数据,找到数据之间的相关性,并建立回归模型进行预测。

常用的回归算法包括线性回归、多项式回归和岭回归等。

(2) 支持向量机(SVM):SVM是一种常用的非线性回归方法,它通过将数据映射到高维空间,找到最佳分割平面来进行预测。

SVM可以处理非线性时间序列数据,并具有较好的泛化能力。

(3) 神经网络:神经网络是一种模仿人脑神经元组织结构和工作原理的计算模型,它通过训练大量的样本数据,学习到数据的非线性特征,并进行预测。

常用的神经网络包括前馈神经网络、循环神经网络和长短期记忆网络等。

对于时间序列预测分析,首先需要收集并整理时间序列数据,包括数据的观测时间点和对应的数值。

时序预测中的时间序列分解方法介绍(十)

时序预测中的时间序列分解方法介绍(十)

时序预测中的时间序列分解方法介绍时间序列分析是一种用于分析一系列按时间顺序排列的数据的方法。

这种数据可以是每日的气温、每月的销售额、每年的人口增长率等。

时间序列分析的目的是通过对过去的数据进行分析,预测未来的发展趋势。

在时间序列分析中,一种常用的方法是时间序列分解,通过将时间序列分解成趋势、季节性和残差三个部分,来更好地理解和预测数据的变化规律。

一、时间序列分解方法的基本原理时间序列分解方法的基本原理是将时间序列数据分解成趋势、季节性和残差三个部分。

趋势表示数据长期变化的趋势,季节性表示数据周期性变化的趋势,而残差则代表了除趋势和季节性之外的随机波动。

通过分解时间序列,可以更好地理解数据的变化规律,从而进行更准确的预测。

二、时间序列分解方法的应用时间序列分解方法在实际应用中有着广泛的应用。

比如在经济领域,可以用时间序列分解方法来预测股票价格、GDP增长率等指标;在气象领域,可以用时间序列分解方法来预测未来的气温变化趋势;在销售预测中,也可以利用时间序列分解方法来预测商品销量的变化趋势。

三、时间序列分解方法的具体步骤时间序列分解方法的具体步骤包括以下几个步骤:1. 数据准备:首先需要收集并整理好时间序列数据,确保数据的完整性和准确性。

2. 趋势分解:通过移动平均法或者指数平滑法等方法,将时间序列数据中的趋势部分分离出来。

3. 季节性分解:通过季节性指数或者周期性波动等方法,将时间序列数据中的季节性部分分离出来。

4. 残差分解:将时间序列数据中的趋势和季节性部分去除后,剩下的部分即为残差部分。

通过以上几个步骤,就可以将时间序列数据分解成趋势、季节性和残差三个部分,从而更好地理解和预测数据的变化规律。

四、时间序列分解方法的局限性时间序列分解方法虽然在很多领域有着广泛的应用,但是也存在一些局限性。

比如在数据缺失或异常值较多的情况下,时间序列分解方法可能会失效;在数据呈现非线性趋势或非周期性变化的情况下,时间序列分解方法也可能不适用。

时间序列法的具体方法

时间序列法的具体方法

时间序列法的具体方法
1. 数据收集,首先,我们需要收集时间序列数据,这些数据可以是一段时间内的观测值,比如销售额、股票价格、气温等。

2. 数据预处理,在进行时间序列分析之前,我们需要对数据进行预处理,包括去除异常值、填补缺失值、平稳化处理等,以确保数据的准确性和可靠性。

3. 时间序列图形化,接下来,我们可以通过绘制时间序列图来观察数据的趋势、季节性和周期性变化,以便更好地理解数据的特点。

4. 模型选择,根据时间序列数据的特点,我们可以选择合适的时间序列模型,比如ARIMA模型、指数平滑模型等,来描述数据的变化规律。

5. 参数估计,对于所选择的模型,我们需要对模型的参数进行估计,以便建立准确的模型。

6. 模型诊断,在建立模型之后,我们需要对模型进行诊断,检
验模型的拟合度和预测能力,以确保模型的有效性。

7. 模型预测,最后,我们可以利用建立的时间序列模型对未来的数据进行预测,从而为决策提供参考。

通过以上具体方法,时间序列法可以帮助我们更好地理解时间序列数据的规律,并进行有效的预测和决策。

时间序列公式指数平滑法ARIMA模型

时间序列公式指数平滑法ARIMA模型

时间序列公式指数平滑法ARIMA模型时间序列分析是指对一系列按时间顺序排列的数据进行统计分析和预测的方法。

其中,指数平滑法和ARIMA模型是时间序列分析中应用广泛的两种方法。

本文将介绍这两种方法的原理、应用及其比较。

一、指数平滑法指数平滑法是一种简单且有效的时间序列预测方法,适用于数据变动较为平稳的序列。

其基本原理是通过对历史数据进行加权平均,得到未来一段时间的预测值。

1. 简单指数平滑法简单指数平滑法是最基本的指数平滑法。

其公式如下:St = αYt + (1-α)St-1其中,St为预测值,Yt为实际观测值,St-1为前一个周期的预测值,α是平滑系数,取值范围为0到1。

2. 加权指数平滑法加权指数平滑法在简单指数平滑法的基础上,对不同时期的数据进行加权,以减小较早期数据的权重。

其公式如下:St = αYt + (1-α)(α^(t-1))Yt-1 + (1-α)(α^(t-2))Yt-2 + ...其中,α为平滑系数,t为时间周期。

3. 双重指数平滑法双重指数平滑法适用于具有趋势的时间序列数据。

其基本思想是通过指数平滑法预测趋势的影响,进而得到未来的预测值。

二、ARIMA模型ARIMA模型是一种基于时间序列预测的自回归(AR)和滑动平均(MA)模型。

ARIMA模型是一种更为复杂和全面的方法,可以应对更多类型的时间序列数据。

ARIMA模型包括三个参数:AR(p)、I(d)和MA(q),分别表示自回归项、差分项和滑动平均项。

ARIMA模型的一般形式如下:ARIMA(p,d,q):Yt = c + ϕ1Yt-1 + ϕ2Yt-2 + ... + ϕpYt-p + θ1et-1 +θ2et-2 + ... + θqet-q + et其中,Yt为观测值,c为常数,ϕ为自回归系数,θ为滑动平均系数,et为白噪声误差项。

ARIMA模型的建立包括模型识别、估计参数、检验和预测四个步骤。

在实际应用中,还可以通过模型诊断来进一步改进和优化ARIMA模型。

统计学原理第5章:时间序列分析

统计学原理第5章:时间序列分析

a a

n 118729 129034 132616 132410 124000 5
127357.8
②时点序列
若是连续时点序列: 计算方法与时期序列一样; 若是间断时点序列: 则必须先假设两个条件,分别是 假设上期期末水平等于本期期初水平; 假设现象在间隔期内数量变化是均匀的。 间隔期相等的时点序列 采用一般首尾折半法计算。 例如:数列 a i , i 0,1,2, n 有 n 1 个数据,计算 期内的平均水平 a n a n 1 a 0 a1 a1 a 2
(3)联系
环比发展速度的乘积等于相应的定基发展速度,
n n i 0 i 1 i 1
相邻两期的定基发展速度之商等于后期的环比发展速度
i i 1 i 0 0 i 1
(二)增减速度
1、定义:增长量与基期水平之比 2、反映内容:现象的增长程度 3、公式:增长速度
0.55
二、时间序列的速度分析指标
(一)发展速度 (二)增长速度 (三)平均发展水平
(四)平均增长速度
(一)发展速度
1、定义:现象两个不同发展水平的比值 2、反映内容:反映社会经济现象发展变化快慢相对程度 3、公式:v 报告期水平 100%
基期水平
(1)定基发展速度
是时间数列中报告期期发展水平与固定基期发展水平对比所 得到的相对数,说明某种社会经济现象在较长时期内总的发 展方向和速度,故亦称为总速度。 (2)环比发展速度 是时间数列中报告期发展水平与前期发展水平之比,说明某 种社会经济现象的逐期发展方向和速度。
c

a
b
均为时期或时点数列,一个时期数列一个时点数列,注意平均的时间长度 ,比如计算季度的月平均数,时点数据需要四个月的数据,而时期数据则 只需要三个月的数据。

时间序列的分解分析

时间序列的分解分析

时间序列的分解分析时间序列分解分析是一种对时间序列数据进行分析和预测的方法,能够揭示时间序列数据中的趋势、季节性和不规则成分。

本文将介绍时间序列分解分析的基本原理、方法和应用,并结合实例进行详细阐述。

一、时间序列分解分析的基本原理时间序列是指按照时间顺序排列的一系列观测数据。

时间序列分解分析是将时间序列数据分解为趋势、季节性和不规则成分,以便更好地了解和预测数据的变化规律。

时间序列分解分析的基本原理是将时间序列数据表示为多个相互独立的成分之和,即y(t) = T(t) + S(t) + I(t)其中,y(t)表示时间序列数据,在某一时间点t的取值;T(t)表示趋势成分,描述数据随时间的长期变化趋势;S(t)表示季节性成分,描述数据在一定周期内的周期性变化;I(t)表示不规则成分,描述数据中的随机波动。

二、时间序列分解分析的方法1. 加法模型和乘法模型时间序列分解分析可以采用加法模型或乘法模型。

加法模型适用于季节性变化相对稳定、幅度相对固定的数据;乘法模型适用于季节性变化幅度随时间变化的数据。

加法模型可以表示为y(t) = T(t) + S(t) + I(t)乘法模型可以表示为y(t) = T(t) × S(t) × I(t)2. 移动平均和中心移动平均时间序列分解分析中常用的方法是移动平均和中心移动平均。

移动平均是用一组连续的数据点的平均值来代表该数据点,以平滑数据的波动;中心移动平均是将每个数据点替换为该数据点前后一段时间内数据的平均值。

通过移动平均和中心移动平均可以得到趋势成分的估计值。

3. X-11分析X-11分析是一种常用的季节性调整方法,适用于季节性变化相对稳定的时间序列数据。

X-11分析逐步消除季节性、趋势和不规则成分,得到经过季节性调整后的时间序列数据。

三、时间序列分解分析的应用时间序列分解分析是一种重要的时间序列分析方法,被广泛应用于经济学、金融学、气象学、环境科学等领域。

时间序列AR、MA模型建模分析与原理

时间序列AR、MA模型建模分析与原理

第三次试验报告一、实验目的:根据AR模型、MA模型所学知识,利用R语言对数据进行AR、MA模型分析,得出实验结果并对数据进行一些判断,选择最优模型。

二、实验要求:三、实验步骤及结果:⑴建立新的文件夹以及R-project,将所需数据移入该文件夹中。

⑵根据要求编写代码,如下所示:为例)代码及说明:(以r t2⑶实验结果及相关说明:时间序列1;1.确定模型①时序图(TS图):由图可知:该时间序列可能具有平稳性,均值在0附近。

②自相关函数图(ACF图):由图可知:很快减小为0(q=0)2.定阶③偏相关函数(PACF图)由图可知,PACF图0步结尾。

3.参数估计:4. 模型诊断:(法一)利用tsdiag(fit1) 函数进行整体检验:对模型诊断得出下面一组图,每组包含三个小图:i第一个小图为标准化残差图,是ât/σ所得。

模型图看不出明显规律。

ii第二个小图为残差ât的自相关函数图,是单个ρk是否等于0的假设检验。

(蓝线置信区间内都可认为是0)可知:模型中单个ρk都等于0假设成立。

iii第三个小图为前m个ρk同时为0的L-B假设检验。

则由模型图知:在95%置信区间下认为ât为白噪声,模型充分性得到验证。

(法二)利用Box-Ljung test 进行检验:5. 拟合优度检验:①调整后R2:Adj-R2=1 - σ̂a2/σ̂r2②信噪比: SNR=σ̂r2/σ̂a2=[1/(1- Adj-R2)]-1由结果可知:Adj-R2= 0.001428571;信噪比SNR= 0.001430615;即由Adj-R2=14.28571% 较低,说明说明信号占整体数据信息比例较小,模型拟合效果不够好。

由SNR可知,噪音约为信号700倍,模型效果非常不好。

6. 预测:时间序列2:1.确定模型①时序图(TS图):由图可知:该时间序列具有平稳性。

②自相关函数图(ACF图):由图可知:很快减小为0,并呈周期性、指数衰减,并且3步结尾。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统
一、认识时间序列变动特征
认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法
1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布
2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数
识别序列特征可利用函数 ACF :其中是的 k 阶自
协方差,且
平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。

实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。

二、选择模型形式和参数检验
1》自回归 AR(p模型
模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0
2》移动平均 MA(q模型
识别条件
平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0,
则该时间序列可能是 ARMA(p,q模型。

实际问题中,多数要用此模型。

因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。

模型阶数
实际应用中 p,q 一般不超过 2.
3》自回归综合移动平均 ARIMA(p,d,q模型
模型含义
模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。

特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2.
模型识别
平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。

若时间序列存在周期性波动, 则可按时间周期进
行差分, 目的是将随机误差有长久影响的时间序列变成仅有暂时影响的时间序列。

即差分处理后新序列符合 ARMA(p,q模型,元序列符合 ARIMA(p,d,q模型。

一个平稳的随机过程有以下要求:均数不随时间变化,方差不随时间变化, 自相关系数只与时间间隔有关, 而与所处的时间无关。

偏自相关函数(PACF 解决如下问题:
高阶的自相关是否真的非常重要?
是他的确有意义, 还是因为低阶自相关系数较大才引起高阶自相关系数也大?
如果建立一个以前值预测现在值的回归模型, 需要包括多少个以前值?
指数平滑法用序列过去值的加权均数来预测将来的值, 并且给序列中近期的数据以较大的权重, 远期的数据给以较小的权重。

理由是随着时间流逝,过去值的影响逐渐减小。

指数平滑法应用时存在以下问题:kφkr
指数平滑法只适合于影响时间的消逝呈指数下降的数据、指数平滑法的每次预测都是根据上一个数来的, 一般来说, 用序列的第一个数作为初始值。

如果数据点较多, 那么经过指数衰减后, 初始值的影响就不明显了。

但是如果数据点少,则初始值的影响会很大,甚至大于近期的数据点, 这就违背指数平滑影响呈指数衰减的假设了。

所以,如果数据点少时应该考虑初始值的问题,一般来说,数据点大于 40初始值的影响就不太明显。

需要指出的是,时间序列模型的预测一般不能太超前,对过于遥远的时间预测结果大多是不准确的。

三、利用模型进行趋势预测
四、评估预测结果并修正模型
宋方雷 2013-2-4于北华大学。

相关文档
最新文档