矩阵论复习

合集下载

研究生矩阵论总复习重点公式

研究生矩阵论总复习重点公式
x x0 x x1 2 x x1 x x0 2 H 3 ( x ) y0 [1 2 ]( ) y1[1 2 ]( ) x 1 x0 x0 x1 x 0 x1 x1 x0 x x1 2 x x0 2 m0 ( x x0 )( ) m1 ( x x1 )( ) x0 x1 x1 x0
第四章
一、 幂法
1. 定义: 计算主特征值及其对应的特征向量的方法。
yk Axk 1 2. 实用计算公式 mk max yk x y /m k k k
当 k 充分大时,有
( k 1, 2, )
1 mk v1 xk ( yk )
其中 mk 是 yk 绝对值最大的第一个分量.
三、向量与矩阵的范数
1. 常用的向量范数
x 1 x1 x2 xn
2 2 2 x 2 x1 x2 xn
x max xi
1 i n
2. 常用的矩阵范数
4. A max | i ( A) | 谱半径
(矩阵的列范数)
(矩阵的行范数) (矩阵的谱范数)
2. 迭代法的收敛条件 f ( xk ) ( k 0,1, ) 四、牛顿切线法 xk 1 xk f ( xk ) 五、 割线法 f ( xk ) xk 1 xk ( xk xk 1 ) ( k 1, 2, ) f ( xk ) f ( xk 1 )
1 (4) 2 2 R3 ( x ) f ( x ) H 3 ( x ) f ( )( x x0 ) ( x x1 ) 4!
第七章
m 1 m xi i 0 m n xi i 0
一、多项式拟合的正规方程组

矩阵论复习题

矩阵论复习题

矩阵论复习题矩阵论复习题矩阵论作为线性代数的重要分支,涉及到矩阵的性质、运算以及应用等方面。

在学习矩阵论的过程中,复习题是提高理解和巩固知识的重要工具。

本文将通过一些典型的矩阵论复习题,帮助读者回顾和加深对矩阵论的理解。

1. 矩阵的乘法性质与运算规则(1) 证明矩阵的乘法不满足交换律,即AB≠BA。

(2) 若矩阵A是m×n阶矩阵,矩阵B是n×p阶矩阵,证明矩阵乘法满足结合律,即(AB)C=A(BC)。

(3) 证明单位矩阵是矩阵乘法的单位元,即对于任意矩阵A,有AI=IA=A。

2. 矩阵的逆与行列式(1) 若矩阵A可逆,证明其逆矩阵唯一。

(2) 若矩阵A可逆,证明其逆矩阵也可逆,且逆矩阵的逆等于A。

(3) 若矩阵A可逆,证明其转置矩阵也可逆,且转置矩阵的逆等于A的逆的转置。

(4) 证明若矩阵A可逆,则其行列式不为零,即|A|≠0。

3. 矩阵的特征值与特征向量(1) 若矩阵A的特征值为λ,证明矩阵A-λI的行列式为零,即|A-λI|=0。

(2) 若矩阵A的特征向量为v,证明对于任意非零实数k,kv也是矩阵A的特征向量。

(3) 若矩阵A的特征向量v1和v2对应于不同的特征值λ1和λ2,证明v1和v2线性无关。

(4) 若矩阵A的特征向量v对应于特征值λ,证明对于任意正整数n,(A^n)v对应于特征值λ^n。

4. 矩阵的相似与对角化(1) 若矩阵A与矩阵B相似,证明矩阵B与矩阵A相似。

(2) 若矩阵A与矩阵B相似,矩阵B可对角化,证明矩阵A也可对角化。

(3) 若矩阵A可对角化,证明A的特征向量组成的矩阵P可逆,且A=PDP^-1,其中D为对角矩阵。

通过复习以上的矩阵论题目,可以加深对矩阵的性质、运算规则、逆与行列式、特征值与特征向量以及相似与对角化的理解。

同时,通过解题的过程,还可以提高解决问题的能力和运用矩阵论知识的技巧。

希望读者能够充分利用这些复习题,巩固所学的矩阵论知识,为进一步深入学习打下坚实的基础。

矩阵论、数值分析复习

矩阵论、数值分析复习

⒎掌握线性多步法的构造原理,能构造线性多步格 式。 P142.
例5.10
⒏会利用差分格式的预测——校正技术,能利用外 推技术获得预测——改进——校正——改进方 案。 9. 例.
P144.
六 、线性代数方程组的解法
A. 直接法、 ⒈ 方法: ① Gauss顺序消去法; ② 列主元Gauss消去法; ③ 直接三角分解法(不选主元); ④ 平方根法和改进的平方根法; ⑤ 追赶法。
(1)待定系数(利用代精);
{求积节点给定 ; 求积节点、系数均未给 定 .
教P86,例4.2
(2)插值型求积公式;
b A = ∫ l ( x)dx k ak
n x x j l ( x) = ∏ x x k j=1 k j 例:P91例4.4 j≠k
P90
(3)Newton-Cotes公式; { (节点等距),几种低阶, 梯形
3 插值的分类: (1)不含导数插值条件(Lagrange型插值); Lagrange插值公式、Newton插值公式。 (2)含导数插值条件(Hermite插值); 构造法、 带重节点的Newton插值法。 4 余项表达式、截断误差估计、总的误差界。 5 各阶差分、差商的定义、基本性质。 6 三次样条插值。 7例.
系数特点 稳定、收敛
(2)利用正交多项式构造Gauss求积公式;
例:P103 例4.11 例:P105例4.12
(3)利用Gauss型求积公式构造奇异积分的 数值方法。
5、例。
例:P107 例4.14
五、常微分方程数值解
⒈将方程离散化的三种方法。 ⒉掌握Euler法和改进的Euler法、隐式Euler法和梯 形法的基本公式和构造。 ⒊领会R-K方法的基本思想,会进行二阶R-K方法 p131-133 的推导。 ⒋会求差分格式的局部截断误差及方法的阶。 ⒌能利用单步法收敛定理判断方法的收敛性。 ⒍能给出一般单步法的绝对稳定性区域(区间)。

矩阵论复习题

矩阵论复习题

矩阵论复习题矩阵论是数学的一个重要分支,在许多领域都有着广泛的应用,如工程、物理、计算机科学等。

以下是一些矩阵论的复习题,希望能帮助大家巩固所学知识。

一、矩阵的基本运算1、已知矩阵 A = 1 2; 3 4,B = 5 6; 7 8,求 A + B,A B,A B。

2、计算矩阵 C = 2 -1; 3 0 的逆矩阵。

3、设矩阵 D = 1 0 0; 0 2 0; 0 0 3,求 D 的行列式。

二、矩阵的秩1、求矩阵 E = 1 2 3; 2 4 6; 3 6 9 的秩。

2、已知矩阵 F 的秩为 2,且 F = a b c; d e f; g h i,其中 a = 1,b= 2,c = 3,d = 2,e = 4,f = 6,求 g,h,i 满足的条件。

三、线性方程组1、求解线性方程组:x + 2y z = 1,2x y + 3z = 2,3x + y 2z= 3。

2、讨论线性方程组:x + y + z = 1,2x + 2y + 2z = 2,3x +3y + 3z = 3 的解的情况。

四、向量空间1、证明向量组 a1 = 1 2 3,a2 = 2 4 6,a3 = 3 6 9 线性相关。

2、已知向量空间 V ={(x, y, z) | x + y + z = 0},求 V 的一组基和维数。

五、特征值与特征向量1、求矩阵 G = 2 1; 1 2 的特征值和特征向量。

2、已知矩阵 H 的特征值为 1,2,3,对应的特征向量分别为 p1 =1 0,p2 = 0 1,p3 = 1 1,求矩阵 H。

六、相似矩阵1、判定矩阵 I = 1 2; 0 3 和矩阵 J = 3 0; 0 1 是否相似。

2、若矩阵 K 和矩阵 L 相似,且矩阵 K 的特征值为 2,3,矩阵 L 的特征值为 4,5,求矩阵 K 和矩阵 L 之间的相似变换矩阵。

七、矩阵的分解1、对矩阵 M = 4 2; 2 1 进行 LU 分解。

2、把矩阵 N = 1 2 3; 2 4 6; 3 6 9 分解为 QR 分解。

研究生矩阵论复习提纲(全)

研究生矩阵论复习提纲(全)

1矩阵的基本知识正规矩阵:实对称阵,实反对称阵,实正交矩阵,hermite 矩阵,反hermite 矩阵,酉矩阵2.1矩阵的特征值与特征向量2.2矩阵的相似对角化2.3矩阵的Jordan 标准型1、不变因子、初等因子、行列式因子的定义2、Jordan 标准型的求法:初等变换法、行列式因子法3、相似变换矩阵的求法:J=P-1AP→AP=PJ,k i j 的形式、二项式系数4、相似对角化的条件:r 重根需对应r 特征向量,否则不能对角化2.4hamilton-cayley 定理()()()0,det =-=A A I n ϕλλϕ则,用此公式简化矩阵运算2.5矩阵的酉相似1、smit 正交化,shur 分解2、酉矩阵的定义,正规矩阵的定义,酉相似定义,酉相似对角化及充要条件3、酉对角化步骤4、正定hermite 的性质A=GG H3.1矩阵的三个基本分解1、满秩分解:只能是行变换A=FG2、方阵的Jordan 分解、shur 分解3.2矩阵的三角分解1、三角分解的定义及可逆矩阵的三角分解条件,不可逆矩阵也是可以三角分解的2、Doolittle、crout、LDR 分解的形式、正定hermite 矩阵的cholesky 分解3.3矩阵的QR 分解1、householder 变换(1)取记住复数向量的模为sqrt(x hx)αe1Hx 则,2uu 1H 令(3)αe1x αe1x u 取2x α1H=-=--==)()(2、利用householder 变换求矩阵的QR 分解Q=H1H2H3...Hn-13、矩阵奇异值分解的一般步骤4.1向量范数和矩阵范数的定义∑==ni ix x 115.0122⎪⎭⎫ ⎝⎛=∑=ni i x x pni p i px x11⎪⎭⎫⎝⎛=∑=ix xmax =∞∑∑===ni nj ijm a A 111()AA a A H n i n j ij Ftr 5.0112=⎪⎪⎭⎫ ⎝⎛=∑∑==ijm a n A max ⋅=∞∑=≤≤=ni ij nj a A 111max 最大列模和∑=≤≤∞=nj ij ni a A 11max 最大行模和H AA A ==12σA 的最大奇异值谱半径与范数的关系:()AA ≤ρ4.2矩阵级数,矩阵幂级数,收敛性()1-∞=-=∑A I A k k,当级数∑∞=0k kA收敛时即()1<A ρ4.3矩阵函数:几个常用的矩阵函数∑∞==0!k kAk A e ()()120!121sin +∞=∑+-=k k kAk A ()()kk k Ak A 20!21cos ∑∞=-=()()()10111ln +∞=∑+-=+k K kAk A 矩阵函数值的计算方法:1、Hamilton-cayley 定理或零化多项式进行求解2、Jordan 分解:()100-∞=∞=⎪⎭⎫⎝⎛==∑∑P J a P A a A f k k k k kk ()()()100-∞=∞=⎪⎭⎫⎝⎛==∑∑P Jt a P At a At f K k k k kk 3、待定系数法矩阵函数()A f 的特征值对应()i f λ5、矩阵的特征值界的估计∞≤m A λ()∞+≤m HA A 5.0ReλHA A -≤5.0Im λ矩阵特征值的分布区域:圆盘定理,行和列盖尔圆特征值的隔离()~1ii ii R R a z αα-+≤-()x R max 1=λ,()x R n min =λ6、广义逆矩阵P l l l I Q X r ⎥⎦⎤⎢⎣⎡=222112{1}广义逆的求法⎥⎦⎤⎢⎣⎡0nm I I A 初等变换→⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛0000Q P I r。

矩阵论复习题

矩阵论复习题

第二章 内积空间一、基本要求1、掌握欧氏空间和酉空间的定义与性质,掌握Hermite 矩阵的定义,理解欧氏(酉)空间中度量的概念.2、掌握线性无关组的Schmidt 正交化与对角化方法,理解标准正交基的性质.3、理解Hermite 二次型的定义.4、掌握在一组基下的度量矩阵的概念,标准正交基下度量矩阵的性质及两组标准正交基下的度量矩阵的关系.5、了解欧氏子空间的定义.6、掌握正交矩阵与酉矩阵的定义与性质,理解正交(酉)变换与正交(酉)矩阵的关系.7、掌握对称矩阵与Hermite 矩阵的定义与性质,理解对称(Hermite)变换与对称(Hermite)矩阵的关系.8、掌握矩阵可对角化的条件,会求一个正交(酉)矩阵把实对称(Hermite)矩阵化为对角形矩阵,会求一组标准正交基使线性变换在该基下对应的矩阵是对角形矩阵.二、基本内容1、内积空间设数域F 上的线性空间)(F V n ,若)(F V n 中任意两个向量βα,都有一个确定的数与之对应,记为),(βα,且满足下列三个条件(1) 对称性:),(),(αββα=,其中),(αβ表示对数),(αβ取共轭; (2) 线性性:),(),(),(22112211βαβαβααk k k k +=+; (3) 正定性:0),(≥αα,当且仅当0=α时,0),(=αα,则称),(βα为向量α与β的内积.当R F =时,称)(R V n 为 欧氏空间;当C F =时,称)(C V n 为酉空间.注意:在n R 中,),(),(βαβαk k =;在n C 中,),(),(βαβαk k =. 通常的几个内积:(1) nR 中,αββαβαT T ni i i y x ===∑=1),(nC 中,βαβαH i ni i y x ==∑=1),(.其中T n T n y y y x x x ),,,(,),,,(2121 ==βα.(2) nm R⨯中,n m ij n m ij b B a A ⨯⨯==)(,)(,ij m i nj ij Hb a B A tr B A ∑∑====11)(),(.(3) 在实多项式空间][x P n 及],[b a 上连续函数空间],[b a C 中,函数)(),(x g x f 的内积为⎰=ba dx x g x f x g x f )()())(),((2、向量的长度、夹角、正交性定义 ),(ααα=,称为α的长度,长度为1的向量称为单位向量,ααα=0是α的单位向量.长度有三个性质:(1) 非负性:0≥α,且00),(=⇔=ααα; (2) 齐次性:k k k ,αα=表示数k 的绝对值; (3) 三角不等式:βαβα+≤+.定理(Cauchy-Schwarz 不等式)βαβα≤),(.α与β的夹角θ定义为βαβαθ),(arccos=.当0),(=βα时,称α与β正交,记βα⊥.若非零向量组s ααα,,,21 两两正交,即0),(ji j i ≠=αα,称s ααα,,,21 是一个正交组;又若s i i ,,2,1,1 ==α,则称s ααα,,,21 为标准正交组,即⎩⎨⎧≠==.,0,,1),(j i j i j i αα 定理(勾股定理) 0),(222=⇔+=+βαβαβα,即βα⊥.3、标准正交基标准正交基指欧氏(酉)空间中由两两正交的单位向量构成的基.构造方法:对欧氏(酉)空间的一个基进行Schmidt 正交化可得正交基,再对正交基进行单位化可得标准正交基.把线性无关向量s ααα,,,21 正交化为s βββ,,,21 正交向量组: 设.,,3,2,),(),(,1111s k i k i i i i k k k=-==∑-=ββββααβαβ再把i β单位化:s i i ii ,,2,1,1==ββε,则s εεε,,,21 为标准正交组.在标准正交组n εεε,,,21 下,向量可表为:=+++=n n x x x εεεα 2211n n εεαεεαεεα),(),(),(2211+++ ,坐标),(i i x εα=表示α在i ε上的投影长度. 4、基的度量矩阵度量矩阵是以欧氏(酉)空间的基中第i 个元素与第j 个元素的内积为i 行j 列元素构成的方阵.设欧氏(酉)空间V 的一个基为n x x x ,,,21 ,令),,2,1,)(,(n j i x x a j i ij ==,则该基的度量矩阵为n n ij a A ⨯=)(.基的度量矩阵是实对称(Hermite)正定矩阵,它的阶数等于欧氏(酉)空间的维数,正交基的度量矩阵是对角矩阵,标准正交基的度量矩阵是单位矩阵.设酉空间V 的一个基为n x x x ,,,21 ,该基的度量矩阵为A ,V y x ∈,在该基下的坐标(列向量)分别为α与β,那么x 与y 的内积βαA y x T =),(.当V 为欧氏空间时,βαA y x T =),(.当此基为标准正交基,酉空间V 的x 与y 的内积βαT y x =),(,欧氏空间V 的x 与y 的内积βαT y x =),(.设欧氏空间n V 的两个基分别为(Ⅰ)n x x x ,,,21 和(Ⅱ)n y y y ,,,21 ,且由基(Ⅰ)改变为基(Ⅱ)的过渡矩阵为C ,基(Ⅰ)的度量矩阵为A ,基(Ⅱ)的度量矩阵为B ,则有:(1) AC C B T =.(2) 基(Ⅰ)是标准正交基的充要条件是I A =.(3) 若基(Ⅰ)与基(Ⅱ)都是标准正交基,则C 是正交矩阵.(4) 若基(Ⅰ)(或(Ⅱ))是标准正交基,C 是正交矩阵,则基(Ⅱ)(或基(Ⅰ))是标准正交基.5、正交变换与对称变换(ⅰ) 关于正交变换,下面四种说法等价:1) T 是欧氏空间n V 的正交变换,即对于任意的n V x ∈,有),(),(x x Tx Tx =;2) 对于任意的n V y x ∈,,有),(),(y x Ty Tx =; 3) T 在n V 的标准正交基下的矩阵为正交矩阵; 4) T 将n V 的标准正交基变换为标准正交基. (ⅱ) 关于对称变换,下面两种说法等价:1) T 是欧氏空间n V 的对称变换,即对于任意的n V y x ∈,,有),(),(Ty x y Tx =; 2) T 在n V 的标准正交基下的矩阵为对称矩阵.(ⅲ) 若T 是欧氏空间n V 的对称变换,则T 在n V 的某个标准正交基下的矩阵为对角矩阵.(ⅳ) 在欧氏空间n V 中,若正交变换T 的特征值都是实数,则T 是对称变换. 6、相似矩阵(1) n n C A ⨯∈相似于上(下)三角矩阵. (2) n n C A ⨯∈相似于Jordan 标准形矩阵. (3) n n C A ⨯∈酉相似于上三角矩阵.(4) 设n n C A ⨯∈,则H H AA A A =的充要条件是存在酉矩阵P ,使得Λ=AP P H (对角矩阵).(5) 设n n C A ⨯∈的特征值都是实数,则T T AA A A =的充要条件是存在正交矩阵Q ,使得Λ=AQ Q T .(6) 实对称矩阵正交相似于对角矩阵.三、典型例题例1、在n R 中,设),,,(),,,,(2121n n ηηηβζζζα ==,分别定义实数),(βα如下:(1) 21212)(),(i ni i ηζβα∑==;(2) ))((),(11∑∑===nj j n i i ηζβα;判断它们是否为n R 中α与β的内积.解 (1) 设R k ∈,由==∑=21122))((),(ni i i k k ηζβα),()(21212βαηζk k ini i=∑=知,当0<k 且0),(≠βα时,),(),(βαβαk k ≠.故该实数不是n R 中α与β的内积.(2) 取0)0,,0,1,1(≠-= α,有0),(,01==∑=ααζni i故该实数不是n R 中α与β的内积.例2、n R 中,向量组n ααα ,,21线性无关的充要条件是0),(),(),(),(),(),(),(),(),(212221212111≠n n n n n n αααααααααααααααααα .证 方法一 设),,(21n A ααα =,则⇔≠====⨯⨯0),(2A A A A A T T nn jT i nn j i ααααn A ααα,,,021 ⇔≠线性无关.方法二 设02211=+++n n x x x ααα ,则n i x x x i n n ,,2,1,0),(2211 ==+++αααα,即⎪⎪⎩⎪⎪⎨⎧=++=++=++,0),(),(,0),(),(,0),(),(1121211111n n n n nn n n x x x x x x αααααααααααα 齐次方程组仅有零解的充要条件是系数矩阵的行列式0),(≠j i αα,即n ααα,,,21 线性无关.例3、设欧氏空间3][t P 中的内积为⎰-=11)()(),(dt t g t f g f(1) 求基2,,1t t 的度量矩阵.(2) 采用矩阵乘法形式计算21)(t t t f +-=与2541)(t t t g --=的内积. 解 (1) 设基2,,1t t 的度量矩阵为33)(⨯=ij a A ,根据内积定义计算)(j i a ij ≤2)1,1(1111===⎰-dt a ,0),1(1112===⎰-tdt t a ,32),1(112213===⎰-dt t t a ,32),(11222===⎰-dt t t t a ,0),(113223===⎰-dt t t t a ,52),(1142233===⎰-dt t t t a .由度量矩阵的对称性可得)(j i a a ji ij >=,于是有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=520203203202A . (2) )(t f 和)(t g 在基2,,1t t 下的坐标分别为T T )5,4,1(,)1,1,1(--=-=βα,那么054120320320202)1,1,1(),(=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==βαA g f T . 例4、欧氏空间3][t P 中的多项式)(t f 和)(t g 的内积为⎰-=11)()(),(dt t g t f g f ,取t t f =)(1,记子空间))((1t f L W =.(1) 求T W 的一个正交基;(2) 将T W 分解为两个正交的非零子空间的和.解 (1) 设T W t k t k k t g ∈++=2210)(,则有0),(1=g f ,即0)()()(112210111=++=⎰⎰--dt t k t k k t dt t g t f ,也就是01=k .于是可得},,)()({20220R k k t k k t g t g W T ∈+==.取T W 的一个基为2,1t ,并进行正交化可得,31),(),()(,1)(211112221-=-==t g g g g t t t g t g那么,)(),(21t g t g 是T W 的正交基.(2) 令))(()),((2211t g L V t g L V ==,则1V 与2V 正交,且21V V W T +=. 例5、已知欧氏空间2V 的基21,x x 的度量矩阵为⎥⎦⎤⎢⎣⎡=5445A , 采用合同变换方法求2V 的一个标准正交基(用已知基表示).解 因为A 对称正定,所以存在正交矩阵Q ,使得Λ=AQ Q T (对角矩阵),计算得,111121,9001⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=ΛQ ,131323121⎥⎦⎤⎢⎣⎡-=Λ=-Q C 则有E AC C T =.于是,由C x x y y ),(),(2121=可得2V 的一个标准正交基为)(231),(21212211x x y x x y +=-=.例6、在欧氏空间中,定义α与β的距离为:βαβα-=),(d ,试问:保持距离不变的变换是否为正交变换?答 不一定,例如2R 中向量的平移变换:)1,1(),(,),(2++=∈=∀y x y x T R y x α,)1,1()(),1,1()(,),(),,(2221112222111++=++=∈==y x T y x T R y x y x αααα, ),()()()()())(),((21212212212121ααααααααd y y x x T T T T d =-=-+-=-=. 虽然保持距离不变,但平移变换不是线性变换,更不是正交变换.例7、设n ααα,,,21 与n βββ,,,21 是n 维欧氏空间两个线性无关的向量组,证明存在正交变换T ,使n i T i i ,,2,1,)( ==βα的充要条件是n j i j i j i ,,2,1,),,(),( ==ββαα.证 必要性 因为T 是正交变换:),())(),((j i j i T T αααα=,又已知i i T βα=)(,故有),(),(j i j i ββαα=.充分性 定义变换T ,使得n i T i i ,,2,1,)( ==βα,则T 是线性变换,且是唯一的.下证T 是正交变换.已知),(),(j i j i ββαα=,则有),(),(j i j i T T αααα=,设n V ∈∀βα,,∑∑====nj j j ni i i y x 11,αβαα,则),(),(),(1111j i j ni nj i nj j j ni i i y x y x ααααβα∑∑∑∑======,))(),(())(,)(())(),((1111j i j n i nj i n j j j n i i i T T y x T y T x T T ααααβα∑∑∑∑======),(11j i j n i nj i y x αα∑∑===.即n V ∈∀βα,,),())(),((βαβα=T T ,故T 是正交变换.例8、设321,,ααα是欧氏空间3V 的一组标准正交基,求出3V 的一个正交变换T ,使得⎪⎩⎪⎨⎧+-=-+=).22(31)(),22(31)(32123211ααααααααT T 解 设3322113)(ααααx x x T ++=,使得)(),(),(321αααT T T 是标准正交的,因)(),(21ααT T 已标准正交,则只要满足1)(,0))(),((,0))(),((32313===αααααT T T T T ,即⎪⎩⎪⎨⎧=++=+-=-+.1,022,022232221321321x x x x x x x x x 解得32,32,1321==-=x x x ,即)22(31)(3213αααα++-=T ,得)(),(),(321αααT T T 是标准正交基.因T 把标准正交基变为标准正交基,故T 是正交变换.另法 设)(3αT 的坐标为T x x x ),,(321,由A x x x T T T ),,(2313132232),,())(),(),((321321321321ααααααααα=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=. T 是正交变换⇔A 为正交阵.由E A A T =,解得32,31321==-=x x x ,则)22(31)(3213αααα++-=T .例9、设0x 是欧氏空间V 中的单位元素,定义变换00),(2)(x x x x x T -= )(V x ∈(1) 验证T 是线性变换;(2) 验证T 既是正交变换,又是对称变换;(3) 验证0x 是T 的一个特征向量,并求其对应的特征值. 证 (1) 设V y x ∈,,R l k ∈,,则有00),(2)()(x x ly kx ly kx ly kx T +-+=+=]),(2[]),(2[0000x x y y l x x x x k -+-=))(())((y T l x T k +, 故T 是线性变换.(2) 因为),(),(),(4),)(,(4),())(),((002000x x x x x x x x x x x x x T x T =+-=所以T 是正交变换.设V y ∈,则00),(2)(x x y y y T -=,于是有).),((),)(,(2),())(,(),,)(,(2),()),((0000y x T x x x y y x y T x y x x x y x y x T =-=-=故T 也是对称变换.(3) 直接计算可得.)1(2),(2)(00000000x x x x x x x x T -=-=-=故0x 是T 的对应于特征值1-=λ的特征向量.例10、证明欧氏空间n V 的线性变换T 为反对称变换,即),()),(,()),((n V y x y T x y x T ∈-=的充要条件是T 在n V 的标准正交基下的矩阵为反对称矩阵.证 设n V 的一个标准正交基为n x x x ,,,21 ,线性变换T 在该基下的矩阵为n n ij a A ⨯=)(,即A x x x x x x T n n ),,(),,,(2121 =.则有.))(,(,)(,)),((,)(22112211ij j i n nj j j j ji j i n ni i i i a x T x x a x a x a x T a x x T x a x a x a x T =+++==+++=必要性 设T 是反对称变换,则有))(,()),((j i j i x T x x x T -=,即ij ji a a -=,),,2,1,(n j i =,故A A T -=.充分性 设A A T -=,则对任意的n V y x ∈,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n A x x x T x x x ξξξξ 1111),,()(,),,(,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n A x x y T x x y ηηηη 1111),,()(,),,(. 因为n x x x ,,,21 是标准正交基,所以=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⋅=n T n A y x T ηηξξ 11),,()),(()).(,(),,(11y T x A n n -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⋅-ηηξξ 故T 是反对称变换.例11、设欧氏空间n V 的正交变换T 的特征值都是实数,证明存在n V 的标准正交基,使得T 在该基下的矩阵为对角矩阵.分析 正交矩阵是实的正规矩阵,当它的特征值都是实数时,它能够正交相似于对角矩阵.证 设n V 的一个标准正交基为n x x x ,,,21 ,正交变换T 在该基下的矩阵为A ,那么A 是正交矩阵,也是实的正规矩阵.因为T 的特征值都是实数,所以A 的特征值都是实数.于是存在正交矩阵Q ,使得Λ==defn Tdiag AQ Q ),,,(21λλλ ,其中),,2,1(n i i =λ是A 的特征值.令Q x x x y y y n n ),,,(),,,(2121 =,则n y y y ,,,21 是n V 的标准正交基,且T 在该基下的矩阵为Λ==-AQ Q AQ Q T 1【评注】 本例结果表明,特征值都是实数的正交变换是对称变换. 例12、设T 是欧氏空间V 的正交变换,构造子空间},),({},,)({21V x x T x y y V V x x x T x V ∈-==∈==证明⊥=21V V .证 先证⊥⊂21V V .任取10V x ∈,则有00)(x x T =.对于任意的2V y ∈,有))(,(),())(,(),(0000x T x x x x T x x y x -=-=0),(),())(),((),(0000=-=-=x x x x x T x T x x 所以,20⊥∈V x 故.21⊥⊂V V再证12V V ⊂⊥,任取⊥∈20V x ,那么200))((V x T x ∈-,从而有0))(,(000=-x T x x ,.0))(,(2),())(,(2),())(),(())(,(2),())(),((0000000000000000000=-=+-=+-=--x T x x x x x T x x x x T x T x T x x x x T x x T x所以0)(00=-x T x ,即00)(x x T =,也就是10V x ∈,故12V V ⊂⊥.例13、设n m C A ⨯∈,酉空间m C 中的向量内积为通常的,证明)()]([H A N A R =⊥.分析 设m C 中的向量T m ),,,(21ξξξα =与向量T m ),,,(21ηηηβ =的内积为βαηξηξηξβαT m m =+++= 2211),(,则0=βαT 的充要条件是0=βαH ,或者0=αβH .证 划分),,,(21n a a a A =,则有),,,()(21n a a a L A R =,},),({)]([11m j n n C C k a k a k A R ∈∈++⊥=⊥βββ},,,2,1,{m j C n j a ∈=⊥=βββ},,,2,1,0{mH jC n j a ∈===βββ )(},0{H m H A N C A =∈==βββ.例14、设n m C B A ⨯∈,,酉空间m C 中的内积为通常的,证明:)(A R 与)(B R 正交的充要条件是0=B A H .证 划分),,,(21n a a a A =,),,,(21n b b b B =,则有),,,()(21n a a a L A R =,),,,()(21n b b b L B R =根据例15结果可得,)(A R 与)(B R 正交的充要条件是)()]([)(H A N A R B R =⊂⊥,即)()(H j A N B R b ⊂∈ ),,2,1(n j =,或者0=j H b A ),,2,1(n j =,也就是0=B A H .例15、在4R 中,求一单位向量与)1,1,1,1(),1,1,1,1(---及)3,1,1,2(均正交. 解 设),,,(4321ξξξξ=x 和已知向量正交,即⎪⎩⎪⎨⎧=+++=+--=+-+.032,0,0432143214321ξξξξξξξξξξξξ 该齐次线性方程组的一个非零解为)3,1,0,4(-=x ,单位化可得)263,261,0,264(1-==x x y ,即y 为所求的单位向量. 例16、设A 为n 维欧氏空间V 的一个线性变换,试证:A 为正交变换的充分必要条件是βαβα-=-)()(A A .证 必要性))()(),()(()()(βαβαβαA A A A A A --=-),(),(),(),(βββααβαα+--= βαβαβα-=--=),(.充分性 取0=β,于是有αα=)(A ,即A 保持V 中的向量长度不变,所以A 为正交变换.例17、对于矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=542452222A ,求正交(酉)矩阵P ,使AP P AP P T =-1为对角矩阵.解 可求得)10()1()det(2--=-λλλA I ,于是A 的特征值为10,1321===λλλ.对应121==λλ的特征向量为T T x x )1,0,2(,)0,1,2(21=-=.正交化可得T T y y )1,54,52(,)0,1,2(21=-=;再单位化可得T T p p )535,534,532(,)0,51,52(21=-=.对应103=λ的特征向量为T x )1,1,21(3--=,单位化可得T p )32,32,31(3--=,故正交矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=32535032534513153252P 使⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1011AP P T . 例18、设A 是n 阶实对称矩阵,且A A =2(即A 是幂等矩阵),证明存在正交矩阵Q 使得)0,,0,1,,1(1 diag AQ Q =-.证 设A 的属于特征值λ的特征向量为x ,即x Ax λ=,则有x x A 22λ=.因为A A =2且0≠x ,所以02=-λλ,即0=λ或1.再由A 实对称知,存在正交矩阵Q 使得)0,,0,1,,1(1 diag AQ Q =-.例19、设21,V V 是欧氏空间V 的两个子空间,证明.)(,)(21212121⊥⊥⊥⊥⊥⊥+==+V V V V V V V V证 先证第一式.设⊥+∈)(21V V x ,即)(21V V x +⊥.于是1V x ⊥且2V x ⊥,或者⊥∈1V x 且⊥∈2V x ,即⊥⊥∈21V V x .故)()(2121⊥⊥⊥⊂+V V V V .又设⊥⊥∈21V V x ,即⊥∈1V x 且⊥∈2V x .于是1V x ⊥且2V x ⊥,或者)(21V V x +⊥,即⊥+∈)(21V V x .故⊥⊥⊥+⊂)()(2121V V V V .因此第一式成立.对⊥1V 与⊥2V 应用第一式,有212121)()()(V V V V V V ==+⊥⊥⊥⊥⊥⊥⊥,故⊥⊥⊥+=2121)(V V V V ,即第二式成立.例20、(1) 设A 为酉矩阵且是Hermite 矩阵,则A 的特征值为1或1-. (2) 若A 是正规矩阵,且A 的特征值1=λ,则A 是酉矩阵.证 (1) 因A 为酉矩阵,则A 的所有特征值λ具有1=λ;又A 是Hermite 矩阵,则A 的特征值皆为实数,故A 的特征值为1或1-.(2) 因A 是正规矩阵,且A 的特征值1=λ,则有酉矩阵U ,使得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n H H n H U A U AU U λλλλ 11,, .11221E AU A U n H H =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= λλ故有E A A H =,即A 是酉矩阵.例21、A 为n 阶正规矩阵,),,2,1(n i i =λ是A 的特征值,证明A A H 与HAA 的特征值为n i i ,,2,1,2=λ.证 由A 正规,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n H H n H U A U AU U λλλλ 11,,U AA U AU A U HH n H H =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=221λλ ,故A A H 与H AA 的特征值皆为22221,,,n λλλ .例22、设A 为n 阶正规矩阵,证明 (1) 若对于正数m ,有0=m A ,则0=A . (2) 若A A =2,则A A H =. (3) 若23A A =,则A A =2.证 (1) 若0=m A ,则A 的特征值皆为零,又A 是正规矩阵,A 可酉对角化,即有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000 AU U H , 故有0=A .(2) A A =2,则A 的特征值为1或0,假定r A r =)(;A 可酉对角化为:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=000,000)(,000r HH Hr H H rH E U A U E AU U E AU U , 可得A A H =.(3) 23A A =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=22121)(,n H n H AU U AU U λλλλ , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=33132212,n H n H U A U U A U λλλλ ,由23A A =,得0,23==i i i λλλ或1=i λ,不妨设⎪⎪⎭⎫ ⎝⎛=000rH E AU U ,也有⎪⎪⎭⎫⎝⎛=0002r H E U A U , 故有A A =2.例23、A 为n 阶Hermite 矩阵,设A 的n 个特征值为n λλλ≤≤≤ 21,证明1m in ,m ax λλ==∈∈XX AXX XX AX X H H C X n H H C X n n . 证 对于Hermite 二次型AX X f H =,必有酉变换UY X =,使化为标准形2222211n n UYX Hy y y AX X λλλ+++== ,又2222122n H y y y Y X X X+++=== ,则n nn n H H y y y y y y X X AX X λλ=++++++≤2222122221)( . 设n X 为A 对应于n λ的特征向量,即n n n X AX λ=,则n nHn nH n n n H n n H n X X X X X X AX X λλ==, 故有n H H C X XX AX X n λ=∈max . 同理有1min λ=∈XX AX X H H C X n . 例24、A 是正规矩阵,证明(1) A 的特征向量也是H A 的特征向量. (2) n C X ∈∀,AX 与X A H 的长度相等. 证 (1) A 为正规矩阵,则有酉矩阵,使得⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n H H n HU A U AU U λλλλλλ2121,, 其中],,,[21n U ααα =,n ααα,,,21 为A 的特征向量,由上两式可见i i i A αλα=,i i i H A αλα=,故A 与H A 有相同的特征向量.(2) 由H H AA A A =,X AA X X A X A XA H H H H H H ==)()(22)()(AX AX AX AX A X H H H ===. 证得AX X A H =.例25、B A ,为n 阶实对称矩阵,B 为正定矩阵,证明存在同一可逆矩阵P ,使Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==n T H u u AP P I BP P 1,. 证 B 为正定矩阵,必有可逆矩阵Q ,使.E BQ Q T =因A 为对称矩阵,则AQ Q T 也是对称矩阵,所以存在正交矩阵C ,使得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n T T u u AQC Q C 1, 令QC P =,就有Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n T u u AP P 1. 又E C C EC C BQC Q C T T T T ===,即有E BP P T =,故存在同一可逆矩阵P ,使Λ==AP P E BP P T T ,.例26、(1) 设n n C A ⨯∈,则n n U A ⨯∈的充要条件是A 的n 个列(或者行)向量是标准的正交向量组.(2) r n r U U ⨯∈1的充要条件是E U U H =11. 证 (1) 必要性 设⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==H n H H Hn A A αααααα 2121],,,[.由于E A A H =,所以有E n H n H n H n n H H H n H H H nH n H H =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡αααααααααααααααααααααααα 2122212121112121],,,[, 于是可得⎪⎩⎪⎨⎧==≠=ji ji j Hi j Hi ,1,0αααα 这表明矩阵A 的n 个列向量是一个标准的正交向量组.同样可以证明A 的n 个行向量是一个标准的正交向量组.充分性 设矩阵A 的n 个列向量n ααα,,,21 是一个标准的正交向量组,那么有⎪⎩⎪⎨⎧==≠=ji ji j Hi j H i ,1,0αααα 从而可知E n H n H n H n n H H H n H H H nH n H H =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡αααααααααααααααααααααααα 2122212121112121],,,[, 此即E A A H =,进一步也有E AA H =,这表明A 为一个酉矩阵.类似地可以证明行的情况.(2) 必要性 设矩阵1U 的r 个列向量r ααα,,,21 是一个标准的正交向量组,那么有⎪⎩⎪⎨⎧==≠=j i ji jHi j Hi ,1,0αααα 由此可得r r H r H r H r r H H H r H H H r H r H H H E U U =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=αααααααααααααααααααααααα 212221************],,,[. 充分性 设.],,,,[211211⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==H r H H Hr U U αααααα 由于r H E U U =11,所以有rr H r H r H r r H H H r H H H r H r H H E =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡αααααααααααααααααααααααα 2122212121112121],,,[.于是可得⎪⎩⎪⎨⎧==≠=j i ji jHi j Hi ,1,0αααα 这表明矩阵1U 的r 个列向量r ααα,,,21 是一个标准的正交向量组.例27、已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=502613803A , 试求酉矩阵U ,使得AU U H 是上三角矩阵.解 首先求出其特征多项式3)1(+=-λλA E .当1-=λ时,求出属于特征值1--1的一个单位特征向量T ]61,61,62[1-=η.解与1η内积为零的方程02321=++-x x x ,求得一个单位解向量T]33,33,33[2=η.解与21,ηη内积为零的方程⎩⎨⎧=++=++-002321321x x x x x x 又求得一个单位解向量T]22,22,0[3-=η. 于是取⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡--=223361223361033621U , 经过计算可得⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=6265036540337227111AU U H . 记⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=626536541A , 可得21)1(+=-λλA E .对于1-=λ时,求得一个单位特征向量T]515,510[1-=γ, 再求得一个与1γ正交的向量2γT]510,515[2=γ. 令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=5105155155101V , 经计算可得⎥⎥⎦⎤⎢⎢⎣⎡---=1066251111V A V H. 令⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=510515051551000012U , 记⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡---==5523030610630615515306221U U U , 则⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=1006625102015715301AU U H . 例28、设B A ,均为n 阶正规矩阵,试证A 与B 相似的充要条件是A 与B 酉相似.证 必要性 由于A 与B 均为正规矩阵,所以分别存在正规矩阵21,U U ,使得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n HAU U λλλ2111 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n H BU U μμμ2122 其中),,2,1(0n i i =>λ为A 的特征值,),,2,1(0n i i =>μ为B 的特征值.又A 与B 相似,于是有2211,BU U AU U H H i i ==μλ,此时B U AU U U H =--121121)(,这表明A 与B 相似.充分性 显然.例29、已知A 为实矩阵,且有T T AA A A =,证明A 必为对称矩阵. 证 由T T AA A A =可知,A 为正规矩阵,那么存在酉矩阵U ,使得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n H H n H U A U AU U λλλλ 11,, 从而有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=221n TH AU A U λλ .又A A T 为实矩阵,由上式可知其特征值也是实数,从而矩阵U 是一个正交矩阵,即1-==U U U T H ,从而有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-n AU U λλ 11, 其中n λλ,,1 一定为实数.同样也有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-n T U A U λλ 11. 由此可得A A T =,即A 为实对称矩阵.例30、设B A ,均为正规矩阵,且有BA AB =,证明: (1)B A ,至少有一个公共的特征向量;(2)B A ,可同时酉相似于上三角矩阵,即存在酉矩阵W ,使得AW W H 以及BW W H 均为上三角矩阵;(3)B A ,可同时酉相似于对角矩阵; (4)AB 与BA 均为正规矩阵.证 (1) 设λV 是矩阵A 的属于特征值λ的特征子空间,若λαV ∈,即λαα=A ,则αλαB BA =,由于BA AB =,所以有)()(αλαB B A =,这表明λαV B ∈,从而λV 是B 的不变子空间,故在λV 中存在B 的特征向量β,它也是A的特征向量.(2) 对B A ,的阶数用归纳法证明.当B A ,的阶数均为1时,结论显然成立.设单位向量1α是B A ,的一个公共特征向量,再适当选取1-n 个单位向量n αα,,2 ,使得},,,{21n ααα 为标准正交基,于是],,,[21n U ααα =为酉矩阵,且有],,,[,2111n B B b BU b B ααααα ==.进一步可得,01B B b BU U H=⎥⎦⎤⎢⎣⎡=β这里β是)1(1-⨯n 矩阵,1B 是一个1-n 阶矩阵,另外也有A A aAU U H =⎥⎦⎤⎢⎣⎡=10η,这里η是)1(1-⨯n 矩阵,1A 是一个1-n 阶矩阵.由BA AB =又有)()()()(H H H H UAU UBU UBU UAU ⋅=⋅,于是可得BA AB =,由此可推得1111A B B A =.故由归纳法假设,存在1-n 阶酉矩阵1V ,使得∆=111V B V H ,这里∆为一个上三角矩阵,记.,0011UV W V V =⎥⎦⎤⎢⎣⎡=于是有V BU U V BW W H H H )(=⎥⎦⎤⎢⎣⎡∆=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=000100011111V b V B b V H ββ, 显然BW W H 是一个上三角矩阵.容易验证W 是酉矩阵.同样可得,AW W H 也是一个上三角矩阵.(3) 由(2)可设R AW W H =,这里R 是一个上三角矩阵,那么H H H R W A W =,从而可得H H H H HH W RR W W WR WRWAA )(=⋅=,H H H H H H W R R W WRW W WR A A )(=⋅=.又A A AA H H =,所以可得R R RR H H =,从而知R 为一个对角矩阵.同样可证BW W H 也是一个对角矩阵.(4) 由(3)可设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n H n H u u BW W AW W 11,λλ, 于是有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n H ABW W μλμλ 11. 由正规矩阵结构定理可知AB 为正规矩阵,那么BA 也为正规矩阵.【评注】教材中已给出一种证明方法,但是与这里的证明方法完全不同,这里主要运用Schur 引理的证明思想.例31、已知下列正规矩阵,求酉矩阵U ,使得AU U H 为对角矩阵.(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0000110i i A (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+------+=062266234426434i i i i i i i iA (3)⎥⎦⎤⎢⎣⎡-=1111A 解 (1) 首先求出矩阵A 的特征多项式为)2(2+=-λλλA E ,所以A 的特征值为0,2,2321=-==λλλi i .对于特征值i 2,求得一个特征向量T i X ]1,,2[1-=. 对于特征值i 2-,求得一个特征向量T i X ]1,,2[2--=. 对于特征值0,求得一个特征向量T i X ]1,,0[3=.由于A 为正规矩阵,所以321,,X X X 是彼此正交的,只需分别将321,,X X X 单位化即可TTTi i i ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-=22,22,0,21,2,22,21,2,22321ααα,于是取⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡---==222121222202222],,[321i i iU ααα, 而且有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=000020002i i AU U H .(2) 首先求出矩阵A 的特征多项式为)9)(81(2-+=-λλλA E ,所以A 的特征值为9,9,9321==-=λλλi i .对于特征值i 9-,求得一个特征向量T iX ]1,1,2[1-=.对于特征值i 9,求得一个特征向量T i X ]1,21,[2-=.对于特征值9,求得一个特征向量T i X ]21,1,[3-=.由于A 为正规矩阵,所以321,,X X X 是彼此正交的,只需分别将321,,X X X 单位化即可TT T i i i ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=31,32,32,32,31,32,32,32,3321ααα.于是取⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---==31323232313232323],,[321i ii U ααα, 从而有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=900090009i i AU U H . (3) 首先求出矩阵A 的特征多项式为222+-=-λλλA E ,所以A 的特征值为i i -=+=1,121λλ.对于特征值i +1,求得一个特征向量T i X ]1,[1=. 对于特征值i -1,求得一个特征向量T i X ]1,[2-=.由于A 为正规矩阵,所以21,X X 是彼此正交的,只需分别将21,X X 单位化即可TTi i ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=22,22,22,2221αα.于是取⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-==22222222],[21i i U αα, 从而有⎥⎦⎤⎢⎣⎡-+=i i AU U H1001. 【评注】这三个题目只需按照教材介绍的正规矩阵可对角化具体过程进行即可.例32、试举例说明:可对角化矩阵不一定可酉对角化.解 设Y X ,是两个线性无关但不正交的向量,记],[Y X P =,取b a b a D ≠⎥⎦⎤⎢⎣⎡=,00 那么1-=PDP A ,就是一个可对角化矩阵,但不是可酉对角化矩阵.例33、证明(1) Hermite 矩阵的特征值为实数;(2) 反Hermite 矩阵的特征值为零或纯虚数; (3) 酉矩阵特征值的模长为1.证 (1) 设A 为一个Hermite 矩阵,λ是A 的一个特征值,X 为对应于特征值为λ的一个特征向量,即有X AX λ=,在此式两端取共轭转置可得.,HHH H H X A X X A X λλ==用X 从右端乘上式两端有X X AX X H H λ=,于是有X X X X H H λλ=.由于0≠X ,所以0≠X X H ,从而有λλ=,这表明λ是实数.(2) 设A 为一个反Hermite 矩阵,λ是A 的一个特征值,X 为对应于特征值λ的一个特征向量,即有X AX λ=,在此式两端取共轭转置可得.,HHH H H X A X X A X λλ=-=用X 从右端乘上式两端有X X AX X H H λ=-,于是有X X X X H H λλ=-.由于0≠X ,所以0≠X X H ,从而有λλ=-,这表明λ为零或纯虚数. (3) 设A 为一个酉矩阵,λ是A 的一个特征值,X 为对应于特征值λ的一个特征向量,即有X AX λ=,在此式两端取共轭转置可得H H H X A X λ=.用AX 从右端乘上式两端有X X EX X H H λλ=,于是有0)1(=-X X H λλ.由于0≠X ,所以0≠X X H ,从而有1=λλ,这表明λ的模长为1.例34、设A 与B 均为Hermite 矩阵,试证A 与B 酉相似的充要条件是A 与B 的特征值相同.证 必要性 由于相似矩阵有相同的特征值,所以A 与B 的特征值相同.充分性 A 与B 均为Hermite 矩阵,所以分别存在酉矩阵21,U U ,使得.,2122211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n H n H BU U AU U ηηηδδδ其中),,2,1(n i i =δ为A 的特征值,),,2,1(2n i =η为B 的特征值.又i i ηδ=,从而2211BU U AU U H H =,此即B U U A U U H H H =)()(2121,这表明A 与B 酉相似.例35、设A 是Hermite 矩阵,且A A =2,则存在酉矩阵U ,使得⎥⎦⎤⎢⎣⎡=000rH EAU U . 证 由于A 是Hermite 矩阵,所以存在酉矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n H AU U λλλ21, 其中),,2,1(n i i =λ为A 的特征值,又A 为幂等矩阵,于是0=i λ或1.不妨设A 的秩为r ,那么i λ中有r 个1,r n -个0.记0,12121========-++r n r r r λλλλλλ .即⎥⎦⎤⎢⎣⎡=000rH EAU U . 例36、设3R 中的向量为),,(321ξξξα=,线性变换为)32,32,22()(32132132ξξξξξξξξα+---+---=T ,求3R 的一个基,使T 在该基下的矩阵为对角矩阵.解 取3R 的简单基321,,e e e ,计算得),3,1,2()(),1,3,2()(),2,2,0()(321--=--=--=e T e T e T那么,T 在基321,,e e e 下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=312132220A . A 的特征值为2,4321-===λλλ,与之对应的线性无关的特征向量依次为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-112,201,021. 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=Λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=244,120102211P , 则有Λ=-AP P 1,由P e e e ),,(),,(321321=ααα求得3R 的另一个基为).1,1,2(2),2,0,1(2),0,2,1(23213312211=++=-=+-=-=+-=e e e e e e e ααα T 在该基下的矩阵为Λ.四、教材习题同步解析1、设V 是实数域R 上的n 维线性空间,12,,,n εεε是V 的一组基,对于V 中向量n n x x x εεεα+++= 2211,n n y y y εεεβ+++= 2211,定义内积为n n y nx y x y x +++= 22112),(βα,证明V 在此内积下构成一个内积空间.证 设R k V z z z n n ∈∈+++=,2211εεεγ ,则有n n x ny x y x y +++== 22112),(),(αββα;111222(,)()2()()n n n x y z x y z nx y z αβγ+=++++++11221122(2)(2)n n n n x y x y nx y x z x z nx z =+++++++(,)(,)αβαγ=+;1122(,)2(,)n n k kx y kx y nkx y k αβαβ=+++=.当0=α时,0),(=αα;当0≠α时,至少有一个00≠i x ,从而0),(200>=i x i αα,因此,该实数是V 上的内积,V 构成一个内积空间.2、设V 是实数域R 上的n 维线性空间,n εεε,,21 是V 的一组基,A 是一个n 阶正定实对称矩阵.定义V 的内积如下:对于V 中向量βα,,如果它们在基12,,,n εεε下的坐标分别为y x ,,则Ay x T =),(βα,证明V 是一个内积空间.证 设V ∈γ,在基12,,,n εεε下的坐标为z ,R k ∈,则有),()(),(αββα=====Ax y x A y Ay x Ay x T T T T T T ; ),(),()(),(γαβαγβα+=+=+=+Az x Ay x z y A x T T T ; ),()(),(βαβαk Ay kx Ay kx k T T ===;因为A 为n 阶正定实对称矩阵,所以Ax x T =),(αα为正定二次型.0≠α时,0),(>αα;0=α时,0),(=αα,所以V 是一个内积空间.3、在实内积空间4R (内积为实向量的普通内积)中,已知⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1111,1111,0011321βββ,试求出与321,,βββ都正交的单位向量.解 设T x x x x ),,,(4321=α满足,3,2,1,0),(==i i βα有⎪⎩⎪⎨⎧=-+-=--+=+0004321432121x x x x x x x x x x ,可取T)1,1,1,1(--=α,故单位向量为 T ⎪⎭⎫ ⎝⎛--21,21,21,21或T⎪⎭⎫⎝⎛--21,21,21,21. 4、设内积空间3C 中向量βα,的内积为αββαH =),(判断下述向量βα,是否正交:1)T T i i i i )2,1,1(,),,1(-+=--=βα; 2)T T i i i i i )3,1,,1(,)2,,1(-=+-=βα.解 1)01)2,1,1(),(=⎪⎪⎪⎭⎫⎝⎛--+-=i i i i βα,故正交.2)04721)3,,1(),(≠+=⎪⎪⎪⎭⎫ ⎝⎛+-+-=i i i i i i βα,故不正交.5、设12,,,n ααα是n 维内积空间V 的一组基,如果V 中向量β使.,2,1,0),(n i i ==αβ证明 0=β.证 令n n x x x αααβ+++= 2211,有0),(),(),(11===∑∑==ni i i ni i i x x αβαβββ,由内积定义,有0=β.6、设V 是实数域R 上的内积空间,321,,εεε是V 的一组标准正交基.证明)22(31),22(31),22(31321332123211εεεηεεεηεεεη--=+-=-+=也是V 的一组标准正交基.证 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=323231323132313232),,(),,(321321εεεηηη,记矩阵 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=323231323132313232A ,因为,E A A T =所以A 为正交矩阵,又因为321,,εεε为标准正交基,所以321,,ηηη也是标准正交基.7、设54321,,,,εεεεε是5维内积空间V 的一组标准正交基.32132125112,,εεεαεεαεεα++=-=+=.求子空间),,(321αααL 的一组标准正交基.解 设0332211=++αααk k k ,则0)()2(51332321321=+++-+++εεεεk k k k k k k ,因为5321,,,εεεε线性无关,则0321===k k k ,所以321,,ααα线性无关,所以他们是),,(321αααL 的一组基.将321,,ααα正交化,单位化,即得),,(321αααL 的一组标准正交基.记)0,0,1,1,2(),0,0,0,1,1(),1,0,0,0,1(321=-==x x x ,则正交化,11x y =; ⎪⎭⎫ ⎝⎛--=-=21,0,0,1,21),(),(1111222y y y y x x y ;()1,0,1,1,1),(),(),(),(13222231111333-=-=--=y x y y y y x y y y y x x y ;单位化)1,0,0,0,1(222211==y z ;)1,0,0,2,1(663622--==y z ; )1,0,1,1,1(213-=z 所以标准正交基)(21),2(66),(22532135212511εεεεγεεεγεεγ-++=--=+=. 8、已知线性空间4][x R 对于内积⎰-=11)()())(),((dx x g x f x g x f构成一个内积空间.从基32,,,1x x x 出发,经正交单位化求一组标准正交基.解 因为32),(,0)1,(,211)1,1(1121111=====⋅=⎰⎰⎰---dx x x x xdx x dx , 52),(,32)1,(,0),(2222===x x x x x ,…… 正交化,令11=β;x x x =⋅-=1)1,1()1,(2β; 31),(),(1)1,1()1,(22223-=⋅-⋅-=x x x x x x x x β;x x 5334-=β;再单位化x x x x x x 41434145;4104103;26),(;22)1,1(34232211-=-=====ηηβηβη9、对于实数域R 上的线性空间n m R ⨯,规定内积如下:对于n m R ⨯中任意元素][],[ij ij b B a A ==,则=),(B A 迹∑∑===n i mj ji ji Tb a A B 11)(.证明n m R ⨯对此内积构成欧氏空间.证 ∑∑∑∑=======n i m j m j ni ji ji ji ji A B a b b a B A 1111),(),(;对任意的R k ∈,n m ij R a C ⨯∈=][,有=+),(C B A 迹=+))((A C B T 迹()T T B A C A +=迹)(A B T +迹()T C A =(,)A B (,)A C +;=),(B kA 迹=))((kA B T 迹)(A kB T =k 迹)(A B T =),(B A k ;0),(112≥=∑∑==n i mj ji a A A ,当且仅当0=ji a (即0=A )时,0),(=A A ,所以nm R ⨯对此内积构成欧氏空间.10、设欧氏空间4R (内积为普通实数组向量的点积)的一组基为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1111,0111,0011,00014321αααα,求在这组基下的度量矩阵A .解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛==4321332122211111)),((j i A αα.11、在线性空间4R 上定义一种内积成为欧氏空间.已知在基T T T T e e e e )1,0,0,0(,)0,1,0,0(,)0,0,1,0(,)0,0,0,1(4321====下的度量矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=3101121001211012A . 1) 求在基T T T T )1,1,0,1(,)1,2,1,0(,)0,0,2,1(,)0,0,1,1(4321==-=-=αααα下的度量矩阵B .2) 求实数a ,使向量T a )1,2,,1(-=α与向量T )0,2,1,1(-=β正交. 解 1) 因为由基4321,,,e e e e 到基4321,,,αααα的过渡矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎪⎪⎭⎫⎝⎛--=-2100110010113112;11001200012110111P P , 设向量α在4321,,,e e e e 下的坐标为x ,则α在4321,,,αααα下的坐标为x P 1-,如果在基4321,,,αααα下的度量矩阵为B ,则Ax x x BP x P T T ==--11)(),(αα,所以⎪⎪⎪⎪⎪⎭⎫⎝⎛----===--79119130010631032,)(11AP P B A BP P T T2)βα,在4321,,,e e e e 下的坐标分别为T a )1,2,,1(-和T )0,2,1,1(-,所以0)0,2,1,1()1,2,,1(),(=--=T A a βα时,有310=a . 12、设321,,εεε是欧氏空间V 的一组基,内积在这组基下的度量矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=612121211A已知V 的子空间1V 的一组基为112αεε=+,2123αεεε=+-.1) 证明21,αα是1V 的一组正交基; 2) 求1V 的正交补⊥1V 的一组基. 证 1) 因为12111213212223(,)(,)(,)(,)(,)(,)(,)ααεεεεεεεεεεεε=+-++-112(1)2(1)0=--+-+--=,故21,αα正交,所以21,αα是1V 的一组正交基.2) 只需再找到V 中向量3α使321,,ααα为V 的一组正交基,则3α即为⊥1V 的一组基.方法一:设3322113εεεαx x x ++=,利用正交条件⎩⎨⎧==0),(0),(3231αααα 即 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0)1,1,1(0)0,1,1(321321x x x A x x x A 可得一解为2,2,7321-===x x x ,即得3213227εεεα-+=.方法二:先将21,αα扩充为V 的一组基123,,ααξ,为此只需123,,αατ的坐标线性无关.例如取31ξε=即可.再将123,,ααξ正交化.因21,αα已是正交组,正交化过程只需从第三个向量做起.令(3)(3)311223k k αααξ=++,算出(3)(3)3132121122(,)(,)20,(,)(,)5k k ξαξααααα=-==-=,即得3213525257εεεα-+=.13、设4维欧氏空间V 在基4321,,,εεεε下的度量矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=1100162102100101A , 已知V 中向量323312211,,εεαεεαεεα-=+=+=,V 的子空间1123(,,)V L ααα=.1) 试求1V 的一组标准正交基; 2) 设有1V 的线性变换σ,使112()(1σαα=+,212()(1(2σααα=-++-,313()2σαα=+请判明σ是不是1V 的正交变换或对称变换?解 1) 显然321,,ααα线性相关,其极大无关组21,αα即为1V 的一组基,将。

矩阵论复习题综合精选全文

矩阵论复习题综合精选全文

可编辑修改精选全文完整版1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ⋅=⊕对于任意的数R k ∈,定义k 与x 的数乘为k x x k =⊗问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由.2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为),(112211y x y x y x y x +++=⊕对于任意的数R k ∈,定义k 与x 的数乘为)2)1(,(2121x k k kx kx x k -+=⊗ 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由.3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S的一组基和S dim .4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间,)}()(,0)0(|)({R P x f f x f S n ∈='=证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim .5. 设T 是2R 上的线性变换,对于基向量i 和j 有j i i T +=)( j i j T -=2)(1)确定T 在基},{j i 下的矩阵;2)若j i e -=1 j i e +=32,确定T 在基},{21e e 下的矩阵.6. 设T 是3R 上的线性变换,对于基},,{k j i 有k j k j i T -=++)( i k j T =+)( k j i k T 532)(++=1)确定T 在基},,{k j i 下的矩阵;2)求T 的零空间和像空间的维数.7.设线性空间3R 的两个基为(I):321,,x x x , (II):321,,y y y , 由基(I)到基(II)的过度矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=101010101C , 3R 上的线性变换T 满足21321)32(y y x x x T +=++12323(24)T x x x y y ++=+31321)43(y y x x x T +=++1)求T 在基(II)下的矩阵;2)求)(1y T 在基(I)下的坐标.8.在线性空间)(3R P 中321)(x x x a x f +++= 3221)(x x ax x f +++= 32321)(x x x x f +++= 讨论)(),(),(321x f x f x f 的线性相关性.9.在22R ⨯中求由基(I) 12101A ⎛⎫= ⎪⎝⎭ 20122A ⎛⎫= ⎪⎝⎭ 32112A -⎛⎫= ⎪⎝⎭ 41312A ⎛⎫= ⎪⎝⎭到基(II) 11210B ⎛⎫= ⎪-⎝⎭ 21111B -⎛⎫= ⎪⎝⎭ 32211B -⎛⎫= ⎪⎝⎭ 41101B --⎛⎫= ⎪⎝⎭的过渡矩阵.10.已知 1(1,2,1,0)α= 2(2,1,0,1)α=- 1(1,1,1,1)β=- 2(1,1,3,7)β=- 设1212(,)(,)V L L ααββ=⋂, 求线性空间V 的维数和基.11.在)(2R P 中, 对任意的)()(),(2R P x g x f ∈定义内积为⎰=10)()())(),((dx x g x f x g x f 若取)(2R P 的一组基},,1{2x x ,试用Schmidt Gram -正交化方法,求)(2R P 的一组正交基.12.(1) 设x 和y 是Eucild 空间V 的非零元,它们的夹角是θ,试证明θcos ||||||||2||||||||||||222y x y x y x ⋅-+=-12.(2) 求矩阵10002i A i +⎛⎫= ⎪⎝⎭的奇异值分解. 13.设A 为n 阶实矩阵,证明A 可表示为一对称矩阵和一反对称矩阵之和. (提示:若A A T =,称A 为对称矩阵。

矩阵论--复习(典型例题).

矩阵论--复习(典型例题).

并推导其局部截断误差主项。

y( xn1 ) y( xn h)
2 3 4 h h h (4) 5 y( xn ) hy ( xn ) y ( xn ) y ( xn ) y ( xn ) O(h ) 2 6 24
y( xn1 ) y( xn h)
1
I BGS
2 0 0 0 a 1 1 1 0 0 0 2 1 a 1 0 0 0
1
2 0 a 1 1 0 0 2 2 a 0 0 0 2 a 1 1 2 2 a
a 20.1007
dI 2 (at s )t 2 i i i 2a ti 2 ti si da i 1 i 1 i 1
n
n
n
所求运动方程为: 20.1007t s 0
二 数值积分
基本概念 数 值 积 分 N-C公式 Romberg求积公式及外推加速 Gauss求积公式
数值求积思想 代数精度 插值型求积公式 收敛及稳定性
梯形公式 辛普森公式
例2
试确定常数A,B,C及α,使求积公式:

解 令:
2
2
f ( x)dx Af ( ) Bf (0) Cf ( )
代数精确度尽可能高,并确定上述公式的代数精 确度。是否为高斯型求积公式.
f x 1
因此f(x)=0在(2, )内仅有一个根x* 将方程化为等价方程:x=2+lnx
1 f ( x ) 1 0 x ∈(2, ) x
1 g ( x ) 2 ln x | g( x ) || | 0.5 x ∈(2, 4) x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
W L(1 , 2 , s ) {k11 k22 ks s | ki P}, 则W 是V 的子空间.
(3)设 1 , 2 , s与 1, 2 , t是线性空间V 的两组向 量,则 L(1, 2 , , s ) L(1, 2 , , t ) 的充分必要条件是 1, 2 , s 与 1, 2 , t 等价.
(4)C n 可以分解成 A 的一维不变子空间的直和. (5)A的初等因子都是一次式. (6)A的最小多项式m(λ)没有重零点.
第三章 λ矩阵与矩阵的Jordan标准形
1.数字矩阵 A 与 B 相似的条件 (1)存在数字矩阵P 与Q,使得 I A P(I B)Q. (2)它们的特征矩阵λI- A和λI- B相抵. (3)它们有相同的不变因子. (4)它们有相同的行列式因子. (5)它们有相同的初等因子.
2. 矩阵的最小多项式 (1)矩阵A 的最小多项式m(λ)能整除 A 的化零多项式.
(2)矩阵A 的最小多项式能整除特征多项式 f (λ). (3) 0 是A的特征值的充要条件是 m(0 ) 0 ; (4)相似的矩阵具有相同的最小多项式. (5)矩阵A的最小多项式为其最后一个不变因子.
3.线性变换的矩阵表示
设 1, 2 , , n 是数域 P 上的线性空间V 的一组基,A 是V上的线性变换,则
A (1 ) a111 a21 2 an1 n
A
( 2 ) a121 a22 2
an2 n
A ( n ) a1n1 a2n 2 ann n
即 A (1 , 2 , , n ) (1 , 2 , , n ) A.
(m ,1)
(m ,2 )
(
m ,
m
)
(3)常见内积空间
n
在C n中 定 义 内 积 ( x, y) y H x xi yi ; i 1
在C[a, b]中定义内积 ( f , g) b f ( x)g( x)dx; a
在C mn中 定 义 内 积 ( A, B) tr(B H A)
(4) 设1, 2 , , n 是线性空间 V 的一组基, '1 , '2 , , 'n 是 V 的 n 个向量,则存在 n 阶方阵 T,使得
( '1 , '2 , , 'n ) (1, 2 , , n ) T ,
当且仅当 T 可逆时,'1 ,'2 , ,'n 也是V 的一组基.
(5)设 1, 2 , , n 是线性空间 V 的基,则向量α在这
(, ) 0;(, ) 0 0;
(2)向量内积和长度的性质 ( , ) || || ; || || ;
1,2, ,m 线性无关的充分必要条件是Gram矩阵
非奇异.
(1,1) (2,1)
G( 1 ,
2
,
,m
)
(1,2 )
(1,m )
(2,2 )
(2,m )
(4)dim(L( 1 , 2 , s )) rank (1 , 2 , s )
(5)设 V1 , V2 是线性空间V 的两个子空间,则V1 V2 和 V1 V2 是V 的子空间.
(6)如果 V1 和 V2是线性空间V 的两个有限维子空间, 则
dim(V1 ) dim(V2 ) dim(V1 V2 ) dim(V1 V2 )
(4)线性无关向量组的标准正交化
设 1,2 , , s 在内积空间V 中线性无关,则存在标准 正交向量组 1, 2 , , s , 使得 1,2, ,s 与 1, 2 , , s 等 价,其中
1 1,
1
1 1
2 2 ( 2 , 1 ) 1 ,
2
2 2
s s ( s , 1 ) 1 ( s , s1 ) s1 ,
4.线性变换的值域与核
设A 是 n 维线性空间V上的线性变换,1, 2 , , n是 V 的 一组基,A 在这组基下的矩阵是 A,则
(1)A 的核为Ker(A ) { V | A ( ) 0}; (2)A 的值域为R(A ) {A ( ) | V };
(3)R(A ) L(A (1 ), A ( 2 ), , A ( n ));
组基下的坐标 ( x1, x2 , , xn )T 是如下线性组合的系数向量:
x11 x2 2 xn n .
2.线性子空间
(1)设V是线性空间,W是V 的非空子集,则W是V 的 子空间的充分必要条件是
k P,, W k, W
(2)设 1, 2 , s 是线性空间V 的一组向量,
3.直和的判别法 (1) V1 V2 中任意向量的分解式唯一; (2) V1 V2中零向量的表法唯一; (3)V1 V2 {0}; (4) dim( V1 V2 ) dim( V1 ) dim( V2 ).
4.内积空间 (1)内积的定义
( , ) ( , );
( , ) (, ) ( , ); (k, ) k(, );
第二章 线性映射与线性变换
1.线性变换的定义
设V是数域 P 的线性空间,A 是V 到自身的一个映射,
如果
A ( ) A ( ) A ( ), , V
A (k ) kA ( ), V , k P

则称A 是V上的线性变换.
2.线性变换的性质
如果A ,B 是V上的线性变换,k P, 则A B , AB , kA 也是V上的线性变换.
s
s s
(5)标准正交基的性质
有限维内积空间V 的标准正交基一定存在.
有限维内积空间V 的任意一组标准正交向量可扩充为 V 的一组标准正交基.
设 1 , 2 , , n 是内积空间V 的一组标准正交基,且
x11 xn n , y11 yn n , 则
n
( , ) y H x xi yi i 1
(4)dim(R(A )) = rank( A ); (5)dim(R(A )) + dim(Ker(A )) = n.
5.矩阵 A 可对角化的充分必要条件
(1)A有n 个线性无关的特征向量. (2)设A的互异特征为1, 2 , , r ,则
C n V1 V2 Vr
(3) A 的每一个特征值的几何重数等于代数重数.
相关文档
最新文档