矩阵理论2017-2018学年期末考试试题

合集下载

武汉大学2017-2018学年第二学期期末考试线性代数B试题(A)

武汉大学2017-2018学年第二学期期末考试线性代数B试题(A)

武汉大学2017-2018学年第二学期期末考试线性代数B 试题(A )1、(10分)若12312,,,,αααββ都是四维列向量,且四阶行列式12311223,,m n αααβααβα==计算四阶行列式()32112αααββ+.2、(10分)已知3阶方阵101020201A ⎛⎫⎪= ⎪ ⎪-⎝⎭,3阶矩阵B 满足方程 E B A B A =--2,试求矩阵B .3、(10分)已知向量123,,e e e 不共面,试判断向量12312312332,,45e e e e e e e e e αβγ=+-=+-=-++是否共面。

4、(10分)设)(4321αααα,,,=A 为4阶方阵,其中4321αααα,,,是4维列向量,且234,ααα,线性无关,3214αααα++=.已知向量4321ααααβ+++=,试求线性方程组β=x A 的通解.5、(12分)设有向量组()T11,3,3,1α=,()T21,4,1,2α=,()T31,0,2,1α=,()T41,7,2,k α=(1)问k 为何值时,该向量组线性相关?(2)在线性相关时求出该向量组的一个极大线性无关组并将其余向量用该极大线性无关组线性表示。

6、(10分)设A 是3阶方阵,互换A 的第一、第二列,得矩阵B ;再将B 的第二列加到第三列上得矩阵C ; 然后再将矩阵C 的第一列乘以2得到矩阵D ;求满足AX D = 的可逆矩阵X .7、(10分)若矩阵22082006A a ⎛⎫⎪= ⎪ ⎪⎝⎭可以对角化,设与A 相似的对角矩阵为Λ;(1)试求常数a 的值及对角矩阵Λ,可逆矩阵P 使得1P AP -=Λ.8、(10分)已知321ααα,,与321βββ,,为所有3维实向量构成的线性空间3R 的两组基, 123ααα,,到321βββ,,的过渡矩阵为021102100P -⎛⎫⎪=- ⎪ ⎪⎝⎭且()()()1231,0,0,1,1,0,1,1,1T T T ααα===,试求:(1) 基321βββ,,;(2) 在基 321321,,,,βββααα与 下有相同坐标的全体向量.9、(8分)设n 阶方阵A 的伴随矩阵为,A *证明:若,A O =则A O *=;10、(10分)设实二次型2221231232313(,,)()()()f x x x x x x x x x ax =-+++++其中a 为参数。

北理工2018-2019学年第一学期《矩阵理论及其应用》期末考试题

北理工2018-2019学年第一学期《矩阵理论及其应用》期末考试题

北京理工大学2018-2019学年第一学期
《矩阵理论及其应用》期末考试试题
1. 给出正规矩阵和Hermite 矩阵的定义,并给出这两类矩阵的包含关系(10分);
2. A 是n ×n 维矩阵,给出e A ,sin (A ),cos⁡(A)的级数表达式(10分);
3. 列举任意3种矩阵分解方法,并给出数学定义(10分);
4. 对于任意m ×n 维复数矩阵A ,定义||A||=∑∑|a ij |n j=1m i=1,
证明||A||是矩阵范数(10分);
5. 证明伪逆矩阵A +唯一(10分);
6. 设A 是一个半正定H-阵且A ≠0,B 是一个正定的H-阵,证明|A +B|>|B|(10分);
7. A 为正规矩阵,证明与A 酉相似的矩阵也是正规矩阵(10分);
8. ||A ||<1,证明(E+A )非奇异(10分);
9. 证明ρ(A)≤||A||,其中ρ(A)为矩阵A 的谱半径,||A||为任意范数(10分);
10. 已知V 1,V 2是线性空间V 的两个子空间,证明dim (V 1)+dim (V 2)=dim (V 1+V 2)+dim⁡(V 1∩V 2)(10分).。

矩阵论复习题 带答案1

矩阵论复习题 带答案1

矩阵论复习题1设A 、B 均为n 阶正规矩阵,试证A 与B 酉相似的充分必要条件是A 与B 的特征值相同。

证明: 充分性:A 与B 的特征值相同,A 、B 均为n 阶正规矩阵,则有11,A P IP B Q IQ --== 故11111,,A P QIQ P R Q P R P Q -----==令= A 与B 酉相似 必要性:A,B 为n 阶正规矩阵,存在初等变换R,1A RBR -=11,,,I E PQ A P IP B Q EQ --==为对角矩阵,存在初等变换111,I PAP E QRAR Q ---== ,因为I,E 为对角矩阵,故I=E 。

因此A 与B 的特征值相同。

#2 作出下列矩阵的奇异值分解10(1)A 0111⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦011(2)A 200-⎡⎤=⎢⎥⎣⎦ (1)632- 6 3 2101263011,130 2 6 311206333T B AA ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦特征值对应,特征值对应,特征值对应 2221 2 2,131222 2 2TC A A ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦-⎢⎥⎢⎥⎣⎦⎣⎦特征值对应,特征值对应故263 2 6 32210263 2 203 2 6 3220063 2 20 33HA ⎡⎤-⎢⎥⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦-⎢⎥⎢⎥⎣⎦(2) 2010,240401T B AA ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦特征值对应,特征值对应, 0040012201-1,2-400- 2 20-11022- 2 2T C A A ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦特征值对应,特征值对应,特征值对应 0101022200A 001 2202022022H⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦3.求下列矩阵A 的满秩分解123002111021A ⎛⎫⎪=- ⎪⎪⎝⎭112211001230010,021110102111001230010,021101100001001230=010021-11-11L L A L L L A A ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦故4 设A 、B 均为n 阶Hermite 正定矩阵,证明:若B A ≥且BA AB =,则33B A ≥.证明:由于A 、B 均为n 阶Hermite 正定矩阵,且BA AB =,则AB 与BA 均为n 阶Hermite 正定矩阵。

天津大学矩阵论期末考试题

天津大学矩阵论期末考试题
为实数。

5

第 7 页
5

第 6 页
1 O T r r 证 In A A In V U U O O O
O T Ir O T V I n V V O O O O T V I nr
I O T O V I r V V O O O
天津大学矩阵论期末考试
1 2 1 3 , 一、 (8 分)设矩阵 A 2 2 1 1 1 (1)求 A 的特征多项式和 A 的全部特征值; (2)求 A 的行列式因子、不变因子和初等因子;
(3)求 A 的最小多项式,并计算 A 3 A 2I ;
i, j

所以

是C
nn
上的相容矩阵范数。

四(10 分)设微分方程组
5

第 4 页
d x Ax 5 0 8 1 dt , A 3 1 6 , x0 1 2 0 3 1 x(0) x0
At t

五(10 分)对下面矛盾方程组 Ax b
5

第 5 页
x3 1 x1 x2 x3 1 x x 1 1 2
(1)求 A 的满秩分解 A FG ; (2)由满秩分解计算 A ; (3)求该方程组的最小 2-范数最小二乘解 x LS 。


0 0 1 0 1 1 1 0 (1) A 1 1 1 1 1 FG (不唯一) 1 1 0 1 00 0 1
(1)求 A 的最小多项式 m A ( ) ; (3)求 e ; (3)求该方程组的解。

矩阵论试题及答案

矩阵论试题及答案

一.(10分)已知n n C ⨯中的两种范数a ⋅和b ⋅,对于n n C A ⨯∈,证明b a A A A +=是n n C ⨯中的范数. 解:⑴非负性:由于b a ⋅⋅,是两种范数,故当A=0时,0,0==b a A A ,所以000=+=+=b a A A A ; 当A ≠0时,0,0>>b a A A ,所以0>+=b a A A A⑵齐性:()A A A A A A A A b a b a b a ααααααα=+=+=+= ⑶三角不等式:B A B A B A B A B A B A b b a a b a +=+++≤+++=+二.(每小题10分,共20分)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101121103A ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=002t e t b , 1. 求At e2. 用矩阵函数方法求微分方程()()()()()⎪⎩⎪⎨⎧-=+=T x t b t Ax t x dt d1,0,10的解.解:1. ()1112113det ----=-λλλλA I ()()3211132-=----=λλλλ显然, )det(A I -λ的一阶子式的公因子为1, 容易知道)det(A I -λ 的二阶子式的公因子为2-λ,所以A的最小多项式为()()()23222-=--=λλλλm ,即()()022=-=I A A m ,设()()()b a g m e f t ++==λλλλλ,则()a te f t =='λλ 对于特征值2=λ有()()⎩⎨⎧=='+==a te f b a e f t t 22222,()⎩⎨⎧+-==ttet b te a 2212 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+=+=t t t t t t e bI aA e t At1010122. ()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎰⎰--ds e s s s ss s e e ds s b e x e t x s t s At t As At 001010110102020 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t t e t e t At 1001012三.(15分)用Givens 变换求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2100421132403100A 的QR 分解. 解:()T01001=β,构造()s c T ,13=,1101sin ,0100cos 22232132223211=+=+===+=+==xx x s x x x c θθ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=210031002340421121421132403100100000010010010013A T⎥⎦⎤⎢⎣⎡--=21312A , 构造),(12s c T , ()21sin ,21111cos 222122222211=+==-=+--=+==x x x s x x x c θθ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡---=1052212131111121212A T⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2/1002/12/1002/10010010013122T T I T ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==2/12/100000100102/12/100TT Q ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/12/522344211R四.(10分)用Gerschgorin 定理证明⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=8110260110410100A 至少有两个实特征值. 解:A 的4个盖尔圆为:{}1|1≤=z z G ,{}2114|2=+≤-=z z G , {}3216|3=+≤-=z z G , {}2118|4=+≤-=z z G ,它们构成的两个连通部分为11G S =,4322G G G S =.易见,1S ,2S 都关于实轴对称且各含有1个和3个特征值,因为实矩阵的复特征值必成对出现, 故1S ,2S 必各含有一个实特征值,从而A 至少含有2个实特征值.五.(20分)已知⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=221221*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=44111b 1. 求A 的满秩分解.2. 求+A3. 用广义逆矩阵的方法判别方程组b Ax =是否相容.4. 求方程组b Ax =的极小范数解或极小范数最小二乘解并指出所求解的类型.解 1。

线性代数试卷答案及评分标准

线性代数试卷答案及评分标准
2017—2018 学年第二学期期末考试
课程名称:线性代数 B
闭卷 A 卷 120 分钟
题号 一 二
三 四 五 六 七 八 九 合计
满分 16 10 实得分
12 12 12 10 12 10 6 100
姓名----------------- 重修标记
评阅人 得分 一、填空题(每小题 2 分,共 16 分)
0
−2
0
r
~
0
1
0
,求得基础解系为
4 2 −4 0 0 0
α3 = (1,0,1)T ..(10 分)
故相似变换矩阵为 P = (α1,α2 ,α3 ) .(11 分)
−1
相应的对角阵= 为 Λ
−1
.(12
分)
1
第5页共6页
评阅人 得分
3 4
八、设
A
=
4
−3
2
,求 0
A4
1
(10 分,写出分块阵得 2 分,其余每个箭头的 1 分,如先计算逆矩阵得 4 分)
−1
所以
X
=A
( A − 2E)−1 B
=4 −
5 2

1 2

7 2
−4

1 2
= −−120
1
−14
−2
.(12
分)
4
评阅人 得分
五、求解非齐次线性方程组
6 x1 x1
− −
2 x2 x2
5 5
= 1.设 A
= 12 −21 32, B
1
−1
2
3
,则 ( BA)T
=
0
−5

矩阵期末试题及答案

矩阵期末试题及答案

矩阵期末试题及答案一、选择题1. 矩阵的主对角线元素是指:A. 矩阵的第一行元素B. 矩阵的第一列元素C. 矩阵的第一行和第一列元素D. 矩阵从左上角到右下角的元素答案:D2. 已知矩阵A = [1 2 3; 4 5 6; 7 8 9],则矩阵A的转置矩阵为:A. [1 2 3; 4 5 6; 7 8 9]B. [1 4 7; 2 5 8; 3 6 9]C. [1 2 3; 7 8 9; 4 5 6]D. [9 8 7; 6 5 4; 3 2 1]答案:B3. 若矩阵A是m×n矩阵,矩阵B是n×p矩阵,则矩阵A乘以矩阵B得到的矩阵维度为:A. m×pB. n×pD. n×n答案:A4. 若矩阵A = [2 4; 6 8; 10 12],则矩阵A的行数和列数分别为:A. 3,2B. 2,3C. 3,3D. 2,2答案:A5. 矩阵的逆矩阵存在的条件是:A. 矩阵可逆B. 矩阵为零矩阵C. 矩阵是方阵D. 矩阵不存在逆矩阵答案:C二、填空题1. 一个3×4矩阵由36个元素构成,其中每个元素都是实数。

则该矩阵共有________个元素。

2. 若矩阵A = [1 0; 0 -1],则矩阵A的特征值为________。

答案:1,-13. 以矩阵A = [1 2; 3 4; 5 6]为被乘矩阵,矩阵B = [7 8; 9 10]为乘矩阵,两矩阵相乘的结果为矩阵C = ________。

答案:[25 28; 57 64; 89 100]4. 若矩阵A = [1 2; 3 4],则矩阵A的转置矩阵为矩阵______。

答案:[1 3; 2 4]5. 设矩阵A = [2 4; 6 8],矩阵B = [1 2; 3 4],则矩阵A与矩阵B的乘积为矩阵______。

答案:[14 20; 30 44]三、计算题1. 计算矩阵A = [2 1; -3 4; 5 6]的转置矩阵。

矩阵分析期末试题及答案

矩阵分析期末试题及答案

矩阵分析期末试题及答案矩阵分析是一门重要的数学课程,在科学、工程和经济等领域都有广泛的应用。

期末试题的设置既考查学生对于矩阵分析理论的理解,也测试其应用能力和解决问题的能力。

本文将为您提供一套矩阵分析的期末试题,并附有答案解析。

1. 简答题(每小题2分,共20分)(1) 请简述矩阵的定义和基本术语。

答案:矩阵是由数个数排成m行n列的一个数表。

行数和列数分别称作矩阵的行数和列数。

矩阵的元素用a[i, j]表示,其中i表示所在的行数,j表示所在的列数。

(2) 请解释什么是方阵和对角矩阵。

答案:方阵是行数和列数相等的矩阵。

对角矩阵是除了主对角线上的元素外,其他元素都为零的矩阵。

(3) 请解释矩阵的转置和逆矩阵。

答案:矩阵的转置是指将矩阵的行和列进行互换得到的新矩阵。

逆矩阵是满足A * A^(-1) = I的矩阵A的逆矩阵,其中I是单位矩阵。

(4) 请简述特征值和特征向量的定义。

答案:特征值是方阵A满足方程A * X = λ * X的标量λ,其中X是非零的列向量。

特征向量是对应特征值的零空间上的非零向量。

(5) 请解释矩阵的秩和行列式。

答案:矩阵的秩是指矩阵中线性无关的行或列的最大个数。

行列式是将矩阵的元素按照一定规则相乘并相加得到的一个标量。

(6) 请解释正交矩阵和幂等矩阵。

答案:正交矩阵是满足A * A^T = I的矩阵A。

幂等矩阵是满足A *A = A的矩阵A。

(7) 请解释矩阵的特征分解和奇异值分解。

答案:矩阵的特征分解是将一个矩阵表示为特征向量矩阵、特征值矩阵和其逆的乘积。

奇异值分解是将一个矩阵表示为三个矩阵相乘的形式,其中一个是正交矩阵,一个是对角矩阵。

(8) 请解释矩阵的迹和范数。

答案:矩阵的迹是指矩阵对角线上元素的和。

范数是用来衡量矩阵与向量的差异程度的指标。

(9) 请解释矩阵的稀疏性和块状矩阵。

答案:矩阵的稀疏性是指矩阵中大部分元素为零的特性。

块状矩阵是由多个子矩阵组成的一个矩阵。

(10) 请解释矩阵的正定性和对称性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵理论2017-2018学年期末考试试题
⼀、选择题 (每题5分,共25分)
1.下列命题错误的是(A)(B)若,且,则(C)设且,令,则的谱半径为1
(D)设为空间的任意⼦空间,则2.下列命题错误的是(A)若,则(B)若,则(C)若,则(D)设的奇异值分别为,,如果,则3.下列说法正确的是(A)若,则(B)若为收敛矩阵,则⼀定可逆
(C)矩阵函数对任何矩阵均有定义,⽆论A 为实矩阵还是复矩阵
(D)对任意⽅阵,均有4.下列选项中正确的是(A)且,则为收敛矩阵;
(B)为正规矩阵,则(C),则(D)为的所有正奇异值,5.下列结论错误的是(A)若和分别是列满秩和⾏满秩矩阵,则(B)若矩阵为⾏满秩矩阵,则是正定矩阵(C)设为严格对⾓占优矩阵,,则的谱半径(D)任何可相似对⾓化的矩阵,皆可分解为幂等矩阵的加权和,即⼆、判断题(15分)(正确的打√,错误的打×)
1.若,且,,则
2.若且,则为到的值域上的正交投影
3.设都是可逆矩阵,且齐次线性⽅程组有⾮零解,为算⼦范数,则
4.,定义,则是上的范数
5.设矩阵的最⼤秩分解为,则当且仅当 ( )
(A ⊗B =⊗)H A H B H
A ∈C n ×n =A A 2rank (A )=tr (A )μ∈C n μ=1μH H =E −2μμH H ,V 1V 2V dim (+)=dim ()+dim ()
V 1V 2V 1V 2( )
=A ,=A A H A 2=A A +A =A A H A H (=(A m )+A +)m
x ∈C n ∥x ≤∥x ≤∥x ∥∞∥2∥1
A ,
B ∈
C n ×n ≥≥⋯≥>0σ1σ2σn ≥≥⋯≥>0σ′1σ′2σ′
n >(i =1,2,⋯,n )σi σ′i ∥>∥A +∥2B +∥2
( )A =⎡⎣⎢⎢π000π001π⎤⎦⎥⎥sinA =⎡⎣⎢⎢0000000sin 10⎤⎦
⎥⎥A E −A e A A A ,B =e A e B e A +B
( )A ∈C n ×n ∥A <1∥m A A ∈C n ×n r (A )=∥A ∥2A ∈(r >0)C m ×n r ∥A =A +∥F r
√≥≥⋯≥σ1σ2σr A ∥=A +∥21σ1
( )
A B (AB =)+
B +A +
A A A H
Hermite A =()∈(n >1)a ij C n ×n D =diag (,,⋯,)a 11a 22a nn E −A D −1r (E −A )≥1
D −1(i =1,2,⋯,n )A i A =∑n i =1λi A i A ∈C m ×n A ≠0(A =A A −)H A −∥A =n A −∥2 ( )
A ∈,G ∈C m ×n C n ×m AGA =A y =AGx ,∀x ∈C m C m A ( )
A ,
B ∈
C n ×n (A +B )x =0∥⋅∥∥A ∥≥1B −1 ( )∀(x ,y )∈R 2f (x ,y )=2+3−4xy x 2y 2‾
‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√f (x ,y )R 2 ( )A A =BD Ax =0Dx =0 ( )
三、(10分)
设的特征值为,证明:
A =()∈a ij C n ×n ,,⋯,λ1λ2λn |≤∥A ∑i =1n
λi |2∥2F
四、(10分)(1).设为正规矩阵的特征值,证明:是的特征值;
(2).设和⾣等价,证明:
(i =1,2,⋯,n )λi A ∈C n ×n |(i =1,2,⋯,n )λi |2A A H A =(a ij )n ×n B =(b ij )n ×n |=|∑i =1n ∑j =1n b ij |2∑i =1n ∑j =1n
a ij |2
五、(10分)
设为可逆矩阵,为的任意⼀个特征值,为任意的算⼦范数,证明:
A ∈C n ×n λA ∥⋅∥≤|λ|≤1∥∥
A −1∥∥A m ‾‾‾‾‾‾√m
六、(13分)已知矩阵,(1).求矩阵的最⼤秩分解;
(2).求;
(3).⽤⼴义逆矩阵⽅法判断⽅程组是否有解?
(4).求⽅程组的最⼩范数解或最佳逼近解?(要求指出所求的是哪种解)
A =⎡⎣⎢⎢⎢⎢01−10−101−11−101⎤⎦⎥⎥⎥⎥b =⎡⎣⎢⎢⎢⎢1121⎤⎦
⎥⎥⎥⎥A A +Ax =b Ax =b
七、(10分)设,计算:(1).;
(2).A =⎡⎣⎢⎢⎢2300130130130⎤⎦
⎥⎥⎥∑∞k =0A k e At
⼋、(7分)
A∈C n×n Hermite,λ1λn A
设为矩阵,分别是的最⼤和最⼩特征值,证明:
λn a kkλ1
≤≤ (k=1,2,⋯,n)。

相关文档
最新文档