聚类分析原理及步骤

合集下载

完整版数据挖掘中的聚类分析方法

完整版数据挖掘中的聚类分析方法

完整版数据挖掘中的聚类分析方法聚类分析方法是数据挖掘领域中常用的一种数据分析方法,它通过将数据样本分组成具有相似特征的子集,并将相似的样本归为一类,从而揭示数据中隐藏的模式和结构信息。

下面将从聚类分析的基本原理、常用算法以及应用领域等方面进行详细介绍。

聚类分析的基本原理聚类分析的基本原理是将数据样本分为多个类别或群组,使得同一类别内的样本具有相似的特征,而不同类别之间的样本具有较大的差异性。

基本原理可以总结为以下三个步骤:1.相似性度量:通过定义距离度量或相似性度量来计算数据样本之间的距离或相似度。

2.类别划分:根据相似性度量,将样本分组成不同的类别,使得同一类别内的样本之间的距离较小,不同类别之间的距离较大。

3.聚类评估:评估聚类结果的好坏,常用的评估指标包括紧密度、分离度和一致性等。

常用的聚类算法聚类算法有很多种,下面将介绍常用的几种聚类算法:1. K-means算法:是一种基于划分的聚类算法,首先通过用户指定的k值确定聚类的类别数,然后随机选择k个样本作为初始聚类中心,通过迭代计算样本到各个聚类中心的距离,然后将样本划分到距离最近的聚类中心对应的类别中,最后更新聚类中心,直至达到收敛条件。

2.层次聚类算法:是一种基于树状结构的聚类算法,将样本逐步合并到一个大的类别中,直至所有样本都属于同一个类别。

层次聚类算法可分为凝聚式(自底向上)和分裂式(自顶向下)两种。

凝聚式算法首先将每个样本作为一个初始的类别,然后通过计算样本之间的距离来逐步合并最近的两个类别,直至达到停止准则。

分裂式算法则是从一个包含所有样本的初始类别开始,然后逐步将类别分裂成更小的子类别,直至达到停止准则。

3. 密度聚类算法:是一种基于样本密度的聚类算法,通过在数据空间中寻找具有足够高密度的区域,并将其作为一个聚类。

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)算法是密度聚类算法的代表,它通过定义距离和邻域半径来确定样本的核心点、边界点和噪声点,并通过将核心点连接起来形成聚类。

聚类分析实验报告

聚类分析实验报告

聚类分析实验报告一、实验目的:通过聚类分析方法,对给定的数据进行聚类,并分析聚类结果,探索数据之间的关系和规律。

二、实验原理:聚类分析是一种无监督学习方法,将具有相似特征的数据样本归为同一类别。

聚类分析的基本思想是在特征空间中找到一组聚类中心,使得每个样本距离其所属聚类中心最近,同时使得不同聚类之间的距离最大。

聚类分析的主要步骤有:数据预处理、选择聚类算法、确定聚类数目、聚类过程和聚类结果评价等。

三、实验步骤:1.数据预处理:将原始数据进行去噪、异常值处理、缺失值处理等,确保数据的准确性和一致性。

2.选择聚类算法:根据实际情况选择合适的聚类算法,常用的聚类算法有K均值算法、层次聚类算法、DBSCAN算法等。

3.确定聚类数目:根据数据的特征和实际需求,确定合适的聚类数目。

4.聚类过程:根据选定的聚类算法和聚类数目进行聚类过程,得到最终的聚类结果。

5. 聚类结果评价:通过评价指标(如轮廓系数、Davies-Bouldin指数等),对聚类结果进行评价,判断聚类效果的好坏。

四、实验结果:根据给定的数据集,我们选用K均值算法进行聚类分析。

首先,根据数据特点和需求,我们确定聚类数目为3、然后,进行数据预处理,包括去噪、异常值处理和缺失值处理。

接下来,根据K均值算法进行聚类过程,得到聚类结果如下:聚类1:{样本1,样本2,样本3}聚类2:{样本4,样本5,样本6}聚类3:{样本7,样本8最后,我们使用轮廓系数对聚类结果进行评价,得到轮廓系数为0.8,说明聚类效果较好。

五、实验分析和总结:通过本次实验,我们利用聚类分析方法对给定的数据进行了聚类,并进行了聚类结果的评价。

实验结果显示,选用K均值算法进行聚类分析,得到了较好的聚类效果。

实验中还发现,数据预处理对聚类分析结果具有重要影响,必要的数据清洗和处理工作是确保聚类结果准确性的关键。

此外,聚类数目的选择也是影响聚类结果的重要因素,过多或过少的聚类数目都会造成聚类效果的下降。

聚类分析原理

聚类分析原理

聚类分析原理
聚类分析是一种无监督学习算法,它将数据集中的对象分
成相似的组或簇。

其原理基于以下几个关键步骤:
1. 选择合适的相似性度量:聚类算法需要定义一个衡量对
象之间相似性的度量方式。

常用的度量方法包括欧氏距离、曼哈顿距离、余弦相似度等。

2. 初始化聚类中心:聚类算法通常需要提前指定簇的数量K。

然后可以随机选取K个样本作为初始的聚类中心,或者通过某种启发式方法选择初始聚类中心。

3. 分配样本到簇:将每个样本分配到最接近的聚类中心所
属的簇。

这个过程可以通过计算每个样本与每个聚类中心
之间的距离,并选择距离最小的聚类中心来完成。

4. 更新聚类中心:根据当前簇中的样本重新计算聚类中心
的位置,通常是取簇内所有样本的均值作为新的聚类中心。

5. 重复步骤3和步骤4,直到簇的分配结果不再变化或达
到预定的停止条件。

6. 输出最终的聚类结果。

聚类分析的目标是在不知道样本的真实标签的情况下,将
样本聚类成相似的组。

它可以帮助发现数据的内在结构,
识别相似的样本和异常值,以及进行数据压缩和预处理等
任务。

聚类分析原理及步骤

聚类分析原理及步骤

聚类分析原理及步骤
一,聚类分析概述
聚类分析是一种常用的数据挖掘方法,它将具有相似特征的样本归为
一类,根据彼此间的相似性(相似度)将样本准确地分组为多个类簇,其中
每个类簇都具有一定的相似性。

聚类分析是半监督学习(semi-supervised learning)的一种,半监督学习的核心思想是使用未标记的数据,即在训
练样本中搜集的数据,以及有限的标记数据,来学习模型。

聚类分析是实际应用中最为常用的数据挖掘算法之一,因为它可以根
据历史或当前的数据状况,帮助组织做出决策,如商业分析,市场分析,
决策支持,客户分类,医学诊断,质量控制等等,都可以使用它。

二,聚类分析原理
聚类分析的本质是用其中一种相似性度量方法将客户的属性连接起来,从而将客户分组,划分出几个客户类型,这样就可以进行客户分类、客户
细分、客户关系管理等,更好地实现客户管理。

聚类分析的原理是建立在相似性和距离等度量概念之上:通过对比一
组数据中不同对象之间的距离或相似性,从而将它们分成不同的类簇,类
簇之间的距离越近,则它们之间的相似性越大;类簇之间的距离越远,则
它们之间的相似性越小。

聚类分析的原理分为两类,一类是基于距离的聚类。

聚类分析详解ppt课件

聚类分析详解ppt课件

以上我们对例6.3.1采用了多种系统聚类法进行聚类,其结果 都是相同的,原因是该例只有很少几个样品,此时聚类的过 程不易有什么变化。一般来说,只要聚类的样品数目不是太 少,各种聚类方法所产生的聚类结果一般是不同的,甚至会 有大的差异。从下面例子中可以看到这一点。
动态聚类法(快速聚类)
(4) 对D1 重复上述对D0 的两步得 D2,如此下去 直至所有元素合并成一类为止。
如果某一步Dm中最小的元素不止一个,则称此现 象为结(tie),对应这些最小元素的类可以任选一对 合并或同时合并。
27
二、最长距离法
类与类之间的距离定义为两类最远样品间的距离, 即
DKL
max
iGK , jGL
聚类分析应注意的问题
(1)所选择的变量应符合聚类的要求
如果希望依照学校的科研情况对高校进行分类,那么可以 选择参加科研的人数、年投入经费、立项课题数、支出经 费、科研成果数、获奖数等变量,而不应选择诸如在校学 生人数、校园面积、年用水量等变量。因为它们不符合聚 类的要求,分类的结果也就无法真实地反映科研分类的情 况。
主要内容
引言 聚类分析原理 聚类分析的种类 聚类分析应注意的问题 聚类分析应用 聚类分析工具及案例分析
聚类分析的种类
(1)系统聚类法(也叫分层聚类或层次聚类) (2)动态聚类法(也叫快速聚类) (3)模糊聚类法 (4)图论聚类法
系统聚类法
对比
常用的系统聚类方法
一、最短距离法 二、最长距离法 三、中间距离法 四、类平均法 五、重心法 六、离差平方和法(Ward方法)
对比
k均值法的基本步骤
(1)选择k个样品作为初始凝聚点,或者将所有样品分成k 个初始类,然后将这k个类的重心(均值)作为初始凝聚点。

聚类分析法ppt课件全

聚类分析法ppt课件全

8/21/2024
25
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(3)分类函数
按照修改原则不同,动态聚类方法有按批修改法、逐个修改法、混合法等。 这里主要介绍逐步聚类法中按批修改法。按批修改法分类的原则是,每一步修 改都将使对应的分类函数缩小,趋于合理,并且分类函数最终趋于定值,即计 算过程是收敛的。
8/21/2024
23
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(2)初始分类 有了凝聚点以后接下来就要进行初始分类,同样获得初始分类也有不同的
方法。需要说明的是,初始分类不一定非通过凝聚点确定不可,也可以依据其 他原则分类。
以下是其他几种初始分类方法: ①人为分类,凭经验进行初始分类。 ②选择一批凝聚点后,每个样品按与其距离最近的凝聚点归类。 ③选择一批凝聚点后,每个凝聚点自成一类,将样品依次归入与其距离
8/21/2024
14
1.2 聚类分析的种类
(2)系统聚类分析的一般步骤 ①对数据进行变换处理; ②计算各样品之间的距离,并将距离最近的两个样品合并成一类; ③选择并计算类与类之间的距离,并将距离最ቤተ መጻሕፍቲ ባይዱ的两类合并,如果累的个
数大于1,则继续并类,直至所有样品归为一类为止; ④最后绘制系统聚类谱系图,按不同的分类标准,得出不同的分类结果。
8/21/2024
18
1.2 聚类分析的种类
(7)可变法
1 2 D kr
2 (8)离差平方和法
(D k 2 pD k 2 q)D p 2q
D k 2 rn n ir n n p i D i2 pn n ir n n q iD i2 qn rn in iD p 2 q
8/21/2024

聚类分析原理

聚类分析原理

聚类分析原理聚类分析是一种常用的无监督学习方法,它通过对数据进行分组,将相似的对象归为一类,而不同类别之间的对象则具有较大的区别。

聚类分析的原理是寻找数据内部的结构和规律,帮助我们理解数据集的组成和特点。

聚类分析的核心思想是相似度或距离度量,即将数据样本看作在一个特征空间中的点,通过计算样本之间的距离或相似度,确定样本之间的关系。

常用的距离度量方法有欧氏距离、曼哈顿距离、闵可夫斯基距离等,而相似度度量方法则包括余弦相似度、相关系数等。

这些度量方法在聚类分析中起着重要的作用,帮助我们衡量不同样本之间的差异程度。

聚类分析的过程包括以下几个步骤。

首先,选择适当的特征空间和相似度度量方法。

其次,选择合适的聚类算法,根据数据的特点确定聚类的数量。

常见的聚类算法有层次聚类、K-means聚类、DBSCAN 聚类等。

不同的算法适用于不同类型的数据集,选择合适的聚类算法对聚类结果的质量至关重要。

然后,通过迭代计算的方式优化聚类结果,直到满足停止条件。

最后,对聚类结果进行评估和解释,利用聚类结果可以识别出数据集中的特殊模式、异常值等。

聚类分析在许多领域中都有广泛的应用。

例如,在市场细分中,可以利用聚类分析方法将消费者划分为不同的群体,以便针对不同群体制定不同的市场策略。

在社交网络中,可以对用户进行聚类分析,找出具有相似兴趣、社交关系的用户群体。

在医学领域,可以利用聚类分析对疾病进行分类,从而更好地理解其发展规律和治疗方法。

聚类分析也存在一些挑战和限制。

首先,聚类结果的有效性和稳定性很大程度上取决于特征选择和相似度度量的准确性。

如果选择了不合适的特征或相似度度量方法,可能导致聚类结果不准确或不可解释。

其次,对于大规模数据集,聚类分析的计算复杂度很高,需要消耗大量的计算资源和时间。

因此,在应用聚类分析之前,需要仔细考虑数据集的规模和计算能力的限制。

综上所述,聚类分析是一种重要的无监督学习方法,通过对数据进行分组和归类,揭示数据内部的结构和规律。

如何使用聚类分析进行市场细分

如何使用聚类分析进行市场细分

如何使用聚类分析进行市场细分市场细分是指根据消费者的特征和需求将市场划分为若干具有一定相似性的细分市场。

通过市场细分可以更好地了解消费者的需求并制定相应的营销策略,以提高市场竞争力和销售业绩。

聚类分析是一种常用的市场细分方法,可以帮助我们发现消费者群体中的相似特征并进行细分。

本文将介绍如何使用聚类分析进行市场细分。

一、聚类分析的原理聚类分析是一种无监督学习方法,通过对样本数据进行分类,将相似度高的样本划分到同一类别中。

其基本原理是通过计算样本之间的相似度或距离,将相似度高的样本归为一类。

二、聚类分析的步骤1. 收集数据:首先需要收集市场相关的数据,包括消费者的基本信息、消费行为、偏好等。

这些数据可以通过市场调研、问卷调查等方式获得。

2. 数据预处理:对收集到的数据进行预处理,包括数据清洗、缺失值处理、数据标准化等。

确保数据的准确性和可靠性。

3. 确定聚类变量:根据实际需求选择适合的聚类变量,一般选择与市场细分相关的特征指标,如购买频率、客单价、消费偏好等。

4. 选择聚类方法:根据数据的特点选择合适的聚类方法,常用的有层次聚类、K均值聚类、密度聚类等。

不同的方法对数据的要求和聚类效果可能会有所不同,需要根据具体情况选择。

5. 进行聚类分析:根据选定的聚类方法进行数据分析,将样本数据划分到不同的类别中。

可以使用统计软件进行聚类计算和可视化展示。

6. 评价结果:对聚类结果进行评价,包括聚类的合理性、稳定性和可解释性等。

如果聚类结果不理想,可以调整聚类方法或者变量选择,重新进行分析。

7. 市场细分应用:根据聚类结果制定相应的市场细分策略。

可以根据每个细分市场的特征和需求制定差异化的产品、定价、促销和渠道策略,提高市场竞争力和销售业绩。

三、聚类分析的应用实例以某电商平台为例,假设我们想要对购买者进行市场细分,将消费者划分为不同的购买群体,并制定相应的营销策略。

1. 数据收集:收集购买者的基本信息和购买行为数据,如性别、年龄、购买频率、客单价等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、什么是聚类分析
聚类分析也称群分析或点群分析,它是研究多要素事物分类问题的数量方法,是一种新兴的多元统计方法,是当代分类学与多元分析的结合。

其基本原理是,根据样本自身的属性,用数学方法按照某种相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行聚类。

聚类分析是将分类对象置于一个多维空问中,按照它们空问关系的亲疏程度进行分类。

通俗的讲,聚类分析就是根据事物彼此不同的属性进行辨认,将具有相似属性的事物聚为一类,使得同一类的事物具有高度的相似性。

聚类分析方法,是定量地研究地理事物分类问题和地理分区问题的重要方法,常见的聚类分析方法有系统聚类法、动态聚类法和模糊聚类法等。

2、聚类分析方法的特征
(1)、聚类分析简单、直观。

(2)、聚类分析主要应用于探索性的研究,其分析的结果可以提供多个可能的解,选择最终的解需要研究者的主观判断和后续的分析。

(3)、不管实际数据中是否真正存在不同的类别,利用聚类分析都能得到分成若干类别的解。

(4)、聚类分析的解完全依赖于研究者所选择的聚类变量,增加或删除一些变量对最终的解都可能产生实质性的影响。

(5)、研究者在使用聚类分析时应特别注意可能影响结果的各个因素。

(6)、异常值和特殊的变量对聚类有较大影响,当分类变量的测量尺度不一致时,需要事先做标准化处理。

3、聚类分析的发展历程
在过去的几年中聚类分析发展方向有两个:加强现有的聚类算法和发明新的聚类算法。

现在已经有一些加强的算法用来处理大型数据库和高维度数据,例如小波变换使用多分辨率算法,网格从粗糙到密集从而提高聚类簇的质量。

然而,对于数据量大、维度高并且包含许多噪声的集合,要找到一个“全能”的聚类算法是非常困难的。

某些算法只能解决其中的两个问题,同时能很好解决三个问题的算法还没有,现在最大的困难是高维度(同时包含大量噪声)数据的处理。

算法的可伸缩性是一个重要的指标,通过采用各种技术,一些算法具有很好的伸缩
性。

这些技术包括:数据采样、信息浓缩、网格和索引。

CLARANS是最早使用数据采样的算法,CURE使用优选的采样点,信息浓缩技术在BIRCH方法和DECLIJE方法中得到应用。

许多算法都使用了索引技术,典型的有:BIRCH方法、DBSCAN方法、小波变换方法、DENCLUE方法、DENCLUE方法、小波变换方法、STING方法和CLIQUE方法使用了网格技术。

但是以上方法仍然不能很好地处理高维度并且大数据量的集合。

最近还发现了一些新的技术如:STING+方法引入动态数据挖掘触发器:mAFIA方法引入间距尺寸自适应网格分割算法;OptiGrid算法使用迭代和网格等技术处理高维度数据。

新技术的引进大大加强了聚类算法的效能,尤其提升了处理高维度数据的能力,但是由于这些算法刚刚形成,所以在某些地方还有待完善,对于刚接触数据分析的博友,可以先看下博客的《解读常用的10种可用性研究数据类型方法》相关介绍。

4、系统聚类分析法
系统聚类法(Hierarchical Clustering Method)是目前国内外使用晟多的一种方法,有关它的研究极为丰富。

其基本思想是:先将11个样本各自看成一类,然后规定样本之间的距离和类与类之间的距离;然后选择距离最小的一对并成一个新类,计算新类和其他类的距离;再将距离最小的两类合并,这样每次减少一类,直至所有的样本都成为一类为止。

在看来系统聚类法的优点在于:利用样本之问的距离最近原则进行聚类。

这种系统归类过程与所规定的归类指数有关,同时也与具体的归类方法有关系,整个聚类过程可用一张聚类图(树)形象表示。

在聚类分析中,聚类要素的选择是十分重要的,它直接影响分类结果的准确性和可靠性,在地理分类和研究分区中,被聚类的对象常常是多个要素构成的。

不同要素的数据往往具有不同的单位和量纲,其数值的变异可能是很大的,这就会对分类结果产生影响,因此当分类要素的对象确定之后,在进行聚类分析之前,首先要对数据要素进行处理。

在聚类分析中,常用的聚类要素的数据处理方法有如下几种:
①、总和标准化
②、标准差标准化
③、极大值标准化
④、极差的标准化
经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在0与1之间。

距离是事物之间差异性的测度,差异性越大,则相似性越小,所以距离是系统聚类分析的依据和基础。

5、聚类分析的3种方法
聚类分析是数据挖掘中的一个很活跃的研究领域,并提出了许多聚类算法。

(1)、直接聚类法
直接聚类法是根据距离矩阵的结构一次并类得到结果,其基本步骤如下:
①、把各个分类对象单独视为一类;
②、根据距离最小的原则,依次选出一对分类对象,并成新类;
③、如果其中一个分类对象已归于一类,则把另一个也归入该类;如果一对分类对象正好属于已归的两类,则把这两类并为一类;每一次归并,都划去该对象所在的列与列序相同的行;
④、那么,经过m-1次就可以把全部分类对象归为一类,这样就可以根据归并的先后顺序作出聚类谱系图,直接聚类法虽然简便,但在归并过程中是划去行和列的,因而难免有信息损失,因此,直接聚类法并不是最好的系统聚类方法。

(2)、最短距离聚类法
最短距离聚类法是在原来的m×m距离矩阵的非对角元素中找出,把分类对象Gp和Gq归并为一新类Gr,然后按计算公式计算原来各类与新类之间的距离,这样就得到一个新的(m-1)阶的距离矩阵。

再从新的距离矩阵中选出最小者,把Gi和Gj归并成新类;再计算各类与新类的距离,这样一直下去,直至各分类对象被归为一类为止。

(3)、最远距离聚类法
最远距离聚类法与最短距离聚类法的区别在于计算原来的类与新类距离采用的公式不同。

6、系统聚类方法的步骤
(1)、对数据进行变换处理;(不是必须的,当数量级相差很大或指标变量具有不同单位时是必要的)
(2)、构造n个类,每个类只包含一个样本;
(3)、计算n个样本两两间的距离;
(4)、合并距离最近的两类为一新类;
(5)、计算新类与当前各类的距离,若类的个数等于1,转到6;否则回4;(6)、画聚类图;
(7)、决定类的个数,从而得出分类结果。

7、聚类分析的主要应用
对于聚类分析的应用,简单的从以下6个领域为大家总结了一下:
(1)、商业
聚类分析被用来发现不同的客户群,并且通过购买模式刻画不同的客户群的特征。

聚类分析是细分市场的有效工具,同时也可用于研究消费者行为,寻找新的潜在市场、选择实验的市场,并作为多元分析的预处理。

(2)、生物
聚类分析被用来动植物分类和对基因进行分类,获取对种群固有结构的认识。

(3)、地理
聚类能够帮助在地球中被观察的数据库商趋于的相似性。

(4)、保险行业
聚类分析通过一个高的平均消费来鉴定汽车保险单持有者的分组,同时根据住宅类型,价值,地理位置来鉴定一个城市的房产分组。

(5)、因特网
聚类分析被用来在网上进行文档归类来修复信息(关于这点我也曾在博客的《实例解析关键词聚类的方法策略》一文中跟大家详细的介绍过)。

(6)、电子商务
聚类分析在电子商务中网站建设数据挖掘中也是很重要的一个方面,通过分组聚类出具有相似浏览行为的客户,并分析客户的共同特征,可以更好的帮助电子商务的用户了解自己的客户,向客户提供更合适的服务。

相关文档
最新文档