无机非金属材料物理化学知识点整理
无机非金属材料知识点总结

5.3 无机非金属材料一、硅酸盐材料1.硅酸盐的组成:硅酸盐是由硅、氧和金属元素组成的化合物的总称。
它们种类繁多,结构复杂,组成各异。
硅酸盐大多难溶于水,化学性质稳定。
2.表示:复杂的硅酸盐可用氧化物质的形式来表示。
例:长石(KAlSi3O8 )可表示为K20·Al2O3·6SiO2注意:(1)用氧化物的形式表示的硅酸盐只是表示方式不同,不可认为硅酸盐是由氧化物形成的混合物。
(2)书写方法:找出组成元素→写成氧化物形式→注意原子守恒→检查有无遗漏→氧化物之间以“·”隔开。
(3)书写顺序:活泼金属氧化物→较活泼金属氧化物→SiO2→H2O。
3.特点:硅酸盐大多硬度高、难溶于水,耐高温、耐腐蚀。
4.硅酸钠(Na2SiO3):Na2SiO3是最简单的硅酸盐,其水溶液是一种无色黏稠状的液体,俗称水玻璃,黏性很强,常用作建筑、玻璃、纸张等的黏结剂。
(1)物理性质:能溶于水。
(2)化学性质①水溶液呈碱性,能使酚酞试液变红。
②与CO2的反应:SiO32-+ CO₂(少量)+ H2O= H2SiO3↓ + CO32-SiO32-+ 2CO₂(过量)+ H2O=H2SiO3↓ + 2HCO3-。
(3)用途:制备硅胶和木材防火剂。
硅酸钠能与比硅酸酸性强的一些酸反应,生成难溶于水的硅酸。
5.常见的硅酸盐产品(传统无机非金属材料)名称原料、制作应用陶瓷黏土经过高温烧结形成建筑材料,绝缘材料,器皿、洁具。
玻璃石灰石、纯碱、石英混合粉碎之后在玻璃窑中熔融,发生复杂的物理化学变化制成。
建筑材料,光学仪器、各种器皿、制造玻璃纤维用于高强度复合材料。
水泥黏土、石灰石经过复杂的物理化学变化加入石膏调节硬化速率,最后磨成粉末。
与水泥沙子混合之后可以得到混凝土大量用于建筑和水利工程。
二、硅酸1.物理性质:难溶于水的白色固体。
2.化学性质:(1)弱酸性:酸性弱于碳酸。
(2)制备:Na2SiO3+2HCl H2SiO3↓+2NaClNa2SiO3+CO2+H2O Na2CO3+H2SiO3↓3.硅胶:(1)制备:硅酸凝胶硅酸干凝胶。
无机非金属材料知识点

无机非金属材料知识点一、重要概念1、无机非金属材料①以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。
②是除有机高分子材料和金属材料以外的所有材料的统称。
2、陶瓷①从制备上开看,陶瓷是由粉状原料成型后在高温作用下硬化而形成的制品。
②从组分上来看,陶瓷是多晶、多相(晶相、玻璃相和气相)的聚集体。
3、玻璃①狭义:熔融物在冷却过程中不发生结晶的无机物质②一般:若某种材料显示出典型的经典玻璃所具有的各种特征性质,则不管其组成如何都可称为玻璃(具有玻璃转变温度 Tg)。
玻璃转变温度:热膨胀系数和比热等物理性质的突变温度。
具有Tg的非晶态材料都是玻璃。
4、水泥凡细磨成粉末状,加入适量水后,可成为塑性浆体,既能在空气中硬化,又能在水中硬化,并能将砂、石、钢筋等材料牢固地胶结在一起的水硬性胶凝材料,通称为水泥。
5、耐火材料耐火度不低于1580℃的无机非金属材料6、复合材料复合材料是两种或两种以上物理、化学性质不同的物质组合而成的一种新的多相固体材料。
通过复合效应获得原组分所不具备的性能。
可以通过材料设计使各组分的性能互相补充并彼此关联,从而获得更优秀的性能。
二、陶瓷知识点1、陶瓷制备的工艺步骤原材料的制备→坯料的成型→坯料的干燥→制品的烧成或烧结2、陶瓷的天然原料①可塑性原料:黏土质陶瓷成瓷的基础(高岭石、伊利石、蒙脱石)②弱塑性原料:叶蜡石、滑石③非塑性原料:减塑剂:石英助熔剂:长石3、坯料的成型的目的将坯料加工成一定形状和尺寸的半成品,使坯料具有必要的机械强度和一定的致密度4、陶瓷的成型方法①可塑成型:在坯料中加入水或塑化剂,制成塑性泥料,然后通过手工、挤压或机加工成型;(传统陶瓷)②注浆成型:将浆料浇注到石膏模中成型③压制成型:在金属模具中加较高压力成型;(特种陶瓷)5、烧结将初步定型密集的粉块(生坯)高温烧成具有一定机械强度的致密体。
固相烧结:烧结发生在单纯的固体之间液相烧结:有液相参与,加助溶剂产生液相好处:降低烧结温度,促进烧结6、陶瓷的组织结构:晶相、玻璃相、气相①晶相:陶瓷的主要组成;分为主晶相和次晶相②玻璃相:玻璃相对陶瓷的机械强度、介电性能、耐热性等不利,不能成为陶瓷的主导组成部分。
《碳、硅及无机非金属材料》 知识清单

《碳、硅及无机非金属材料》知识清单一、碳1、碳的同素异形体金刚石:是自然界中最坚硬的物质之一,具有正四面体的空间网状结构,原子间以很强的共价键相结合。
它常用于珠宝首饰、工业切割等领域。
石墨:层状结构,层内原子间以共价键结合,层与层之间存在较弱的分子间作用力。
具有良好的导电性和润滑性,常用于电极、润滑剂等。
足球烯(C₆₀):由 60 个碳原子组成的分子,具有类似足球的结构。
在材料科学等领域有潜在的应用价值。
2、碳的化学性质可燃性:在氧气充足时,C + O₂= CO₂;氧气不足时,2C +O₂= 2CO。
还原性:可以与氧化铜等金属氧化物发生反应,如 C + 2CuO =2Cu + CO₂↑。
3、碳的化合物一氧化碳(CO):无色、无味、有毒的气体。
具有可燃性和还原性,2CO + O₂= 2CO₂,CO + CuO = Cu + CO₂。
二氧化碳(CO₂):无色、无味的气体。
能溶于水,与水反应生成碳酸,CO₂+H₂O =H₂CO₃。
是导致温室效应的主要气体之一。
二、硅1、硅的存在硅在自然界中主要以二氧化硅(SiO₂)和硅酸盐的形式存在。
二氧化硅广泛存在于沙子、石英等物质中。
2、硅的性质物理性质:晶体硅是带有金属光泽的灰黑色固体,熔点高、硬度大,是良好的半导体材料。
化学性质:常温下化学性质不活泼,但在加热或高温条件下能与氧气、氯气等发生反应。
3、硅的用途半导体材料:用于制造集成电路、晶体管等。
太阳能电池:将光能转化为电能。
4、二氧化硅物理性质:坚硬、难溶的固体。
化学性质:具有酸性氧化物的通性,能与碱反应,SiO₂+ 2NaOH = Na₂SiO₃+ H₂O;能与氢氟酸反应,SiO₂+ 4HF = SiF₄↑ +2H₂O。
用途:用于制造光导纤维、石英玻璃等。
三、无机非金属材料1、传统无机非金属材料水泥:主要成分是硅酸三钙(3CaO·SiO₂)、硅酸二钙(2CaO·SiO₂)和铝酸三钙(3CaO·Al₂O₃)。
无机非金属材料知识点

无机非金属材料知识点无机非金属材料是指由无机化合物或者具有非金属化学元素构成的材料,主要包括陶瓷材料、玻璃材料和高分子材料等。
这些材料具有高温抗性、耐腐蚀性、绝缘性、透明性等特点,被广泛应用于各个领域,如建筑、电子、化工、航空等。
下面将介绍一些无机非金属材料的基本知识点。
1.陶瓷材料陶瓷材料是一类由无机非金属化合物构成的材料,如氧化物、氮化物、碳化物等。
陶瓷材料具有高硬度、高熔点、低导热性、耐腐蚀性等特点。
依据其化学成分和特性,陶瓷材料可分为结构陶瓷和功能陶瓷。
结构陶瓷主要用于制造陶瓷器具、建筑装饰、陶瓷芯片等;功能陶瓷主要用于电子元件、传感器、催化剂等。
2.玻璃材料玻璃材料由无机非金属氧化物构成的无定形固体材料。
玻璃材料具有透明、硬度大、耐高温、绝缘性好等特点。
主要分为硅酸盐玻璃和非硅酸盐玻璃两类。
硅酸盐玻璃是指以二氧化硅为主要组成物质,如石英玻璃、锂辉石玻璃等;非硅酸盐玻璃是指由其他氧化物组成的玻璃,如硼酸盐玻璃、硫酸盐玻璃等。
玻璃材料广泛应用于建筑、家居、光学、电子等领域。
3.高分子材料高分子材料是一类大分子化合物组成的材料,由无机非金属化合物(如聚合物)构成。
高分子材料具有高强度、韧性好、耐磨性、导电性等特点。
根据成型方法,高分子材料可分为热塑性高分子和热固性高分子两类。
热塑性高分子可经过加热软化并可反复加工,如聚乙烯、聚丙烯等;热固性高分子则经过加热硬化不可逆反应,如酚醛树脂、环氧树脂等。
高分子材料广泛应用于塑料制品、橡胶制品、纺织品等领域。
4.碳材料碳材料是一类由碳元素构成的非金属材料,包括石墨、金刚石、碳纤维等。
碳材料具有高强度、高导热性、化学稳定性好等特点。
石墨具有良好的导电性和导热性,主要应用于电极、涂料、石墨烯等;金刚石是一种硬度极高的材料,通过人工合成可以制备用于切削、研磨等领域;碳纤维具有高强度、低密度、耐腐蚀等特点,广泛用于汽车、航空、运动器材等。
以上是无机非金属材料的一些基本知识点,介绍了陶瓷材料、玻璃材料、高分子材料和碳材料的特点和应用领域。
高中化学第四章 非金属及其化合物知识点总结

第四章 非金属及其化合物第一讲 碳、硅及无机非金属材料考点1 碳、硅单质及其重要化合物的性质一、碳、硅的单质1.存在:自然界中碳元素既有游离态,又有化合态,而硅元素因有亲氧性,所以仅有化合态。
碳单质主要有金刚石、石墨、C 60等同素异形体,硅单质主要有晶体硅和无定形硅两大类。
2.碳、硅单质的结构、物理性质与用途的比较碳、硅在参与化学反应时,一般表现还原性。
碳⎩⎪⎪⎨⎪⎪⎧与O 2反应⎩⎪⎨⎪⎧O 2(足量):C +O 2=====点燃CO 2O 2(不足):2C +O 2=====点燃2CO 与氧化物反应⎩⎪⎨⎪⎧CuO :2CuO +C=====△2Cu +CO 2↑(冶炼金属)SiO 2:SiO 2+2C=====高温Si +2CO ↑(制取粗硅)H 2O :C +H 2O (g )=====高温CO +H 2(制取水煤气)与强氧化性酸反应⎩⎪⎨⎪⎧浓H 2SO 4:C +2H 2SO 4(浓)=====△CO 2↑+2SO 2↑+2H 2O 浓HNO 3:C +4HNO 3(浓)=====△CO 2↑+4NO 2↑+2H 2O 二、碳、硅的氧化物 1.CO 的性质(1)物理性质:无色无味的气体,难溶于水。
能使人中毒的原因是其与人体中血红蛋白相结合,因缺氧而中毒。
(2)化学性质①可燃性:2CO +O 2=====点燃2CO 2。
②还原性:CO 还原Fe 2O 3的反应为Fe 2O 3+3CO=====高温2Fe +3CO 2。
2.二氧化碳与二氧化硅的比较 (1)物理性质①熔、沸点:CO 2的熔、沸点比SiO 2的熔、沸点低。
②溶解性:CO 2可溶于水,SiO 2不溶于水。
(2)化学性质CO 2+H 2OH 2CO 3CO 2:化工原料、灭火剂。
干冰用作制冷剂,人工降雨。
SiO 2:制光学仪器、石英玻璃。
水晶可制作饰品,常用来制造通讯材料光导纤维。
考点2 硅酸盐及无机非金属材料一、硅酸和硅酸钠 1.硅酸(H 2SiO 3)硅酸不溶于水,其酸性比碳酸弱,不能使紫色石蕊试液变红色。
《无机非金属材料》 知识清单

《无机非金属材料》知识清单一、什么是无机非金属材料无机非金属材料,顾名思义,是指除金属材料和有机高分子材料以外的几乎所有材料的统称。
这些材料通常具有高硬度、耐高温、耐腐蚀等优良性能,在现代工业、科技和日常生活中发挥着不可或缺的作用。
从组成上来看,无机非金属材料主要由无机化合物构成,包括氧化物、氮化物、碳化物、硼化物等。
它们的结构和性能特点取决于所包含的化学元素以及原子之间的结合方式。
二、常见的无机非金属材料1、陶瓷材料陶瓷是人类使用历史最为悠久的无机非金属材料之一。
传统的陶瓷如陶器、瓷器,是以黏土等天然矿物为原料,经过成型和高温烧制而成。
现代陶瓷则在成分和工艺上有了很大的改进和创新,具有更加优异的性能。
例如,氧化铝陶瓷硬度高、耐磨,常用于制造刀具和机械零件;氧化锆陶瓷韧性好,可用于制作生物医学材料,如人工关节。
2、玻璃材料玻璃是一种非晶态的无机非金属材料,通常由石英砂、纯碱、石灰石等原料制成。
根据成分和性能的不同,玻璃可以分为多种类型,如普通玻璃、钢化玻璃、硼硅玻璃等。
普通玻璃广泛应用于建筑门窗、容器等;钢化玻璃强度高,用于汽车车窗、高层建筑的幕墙;硼硅玻璃耐高温、化学稳定性好,常用于实验室器具和太阳能热水器的集热管。
3、水泥材料水泥是建筑行业中不可或缺的无机非金属材料,主要成分是硅酸钙、铝酸钙等。
水泥与水混合后会发生化学反应,逐渐硬化形成坚固的结构体。
常见的水泥有硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥等,它们在强度、凝结时间等方面有所不同,适用于不同的建筑工程。
4、耐火材料耐火材料能够在高温环境下保持物理和化学稳定性,抵抗高温的侵蚀。
常见的耐火材料有耐火砖、耐火纤维等。
它们广泛应用于冶金、化工、电力等高温工业领域,如炼钢炉的内衬、高温窑炉的隔热层。
5、半导体材料半导体材料是现代电子信息技术的基础,如硅、锗、砷化镓等。
这些材料的导电性介于导体和绝缘体之间,可以通过掺杂等工艺控制其电学性能,从而制造出各种电子器件,如集成电路、二极管、三极管等。
无机非金属材料知识点总结

无机非金属材料知识点总结无机非金属材料是指那些由非金属元素组成的材料。
与有机材料相比,无机非金属材料具有独特的性质和广泛的应用领域。
本文将对无机非金属材料的知识点进行总结。
一、常见的无机非金属材料及其性质1. 硅(Si):硅是地壳中最丰富的元素之一,常见的硅材料有硅石、石英等。
硅具有高熔点、高硬度、耐酸碱等性质,广泛用于电子、光学、建筑等领域。
2. 氧化物:氧化物是由氧元素和其他非金属元素组成的化合物。
常见的氧化物有氧化铝、氧化锌等。
氧化物具有高熔点、高硬度、绝缘性等性质,被广泛应用于陶瓷、涂料、电子器件等领域。
3. 硝酸盐:硝酸盐是由金属离子和硝酸根离子组成的化合物。
常见的硝酸盐有硝酸钠、硝酸铜等。
硝酸盐具有较高的溶解度、较好的导电性和光学性质,被广泛应用于化肥、炸药、玻璃等领域。
4. 硫化物:硫化物是由硫元素和其他非金属元素组成的化合物。
常见的硫化物有硫化镉、硫化铜等。
硫化物具有较低的熔点、良好的导电性和磁性,被广泛应用于电池、光电子器件等领域。
二、无机非金属材料的应用领域1. 电子领域:无机非金属材料在电子领域具有重要的应用价值。
硅材料在集成电路和太阳能电池中被广泛使用,氧化锌材料在发光二极管和薄膜晶体管中具有重要作用。
2. 光学领域:无机非金属材料在光学领域有着广泛的应用。
氧化铝材料被用作高透明度的窗户和镜片,硅材料被用作光纤和光学器件的基底。
3. 材料领域:无机非金属材料在材料领域有着多样的应用。
硫化物材料具有良好的导电性和磁性,被用于制作电池和磁性材料。
硅酸盐材料具有较好的耐热性和化学稳定性,被广泛应用于陶瓷、建筑和玻璃制造等领域。
4. 环境领域:无机非金属材料在环境领域有着重要的作用。
氧化物材料被用作催化剂和吸附剂,用于处理废气和废水。
硅材料被用作光催化剂,可以将光能转化为化学能,用于净化空气和水资源。
三、无机非金属材料的研究与发展趋势1. 纳米材料:随着纳米技术的发展,研究纳米级无机非金属材料成为热点。
化学九年级无机非金属材料知识点

化学九年级无机非金属材料知识点化学作为一门研究物质构成、性质和变化的学科,对于我们生活中的各种物质都有着重要的意义。
在化学的学习过程中,我们不仅要了解金属材料,还要了解无机非金属材料的特性和应用。
本文将介绍一些关于无机非金属材料的知识点。
一、无机非金属材料的分类无机非金属材料主要包括陶瓷材料、石墨材料、人造纤维和塑料。
1. 陶瓷材料:陶瓷材料是一类通过高温烧成的无机非金属材料,具有高硬度、高抗磨损性和耐高温性等特点。
陶瓷材料广泛应用于建筑、医疗、航空航天等领域,如瓷砖、陶瓷盆、陶瓷刀等。
2. 石墨材料:石墨材料是一种由碳元素形成的无机非金属材料,具有良好的导电性和热导性。
石墨材料广泛应用于电池、电解槽、电极材料等领域,如铅笔芯、石墨电极等。
3. 人造纤维:人造纤维是一种通过人工合成的无机非金属材料,具有柔软、易染色和易清洗等特点。
人造纤维广泛应用于纺织、服装、家居等领域,如涤纶、尼龙等。
4. 塑料:塑料是一种通过合成聚合的无机非金属材料,具有轻质、可塑性强和耐酸碱等特点。
塑料广泛应用于包装、电子产品、建筑材料等领域,如聚乙烯、聚苯乙烯等。
二、无机非金属材料的制备与性质无机非金属材料的制备通常涉及到物质的分离、纯化和合成等过程。
在制备过程中,常常需要控制温度、压力和反应条件等因素以获得理想的产物。
1. 制备方法:无机非金属材料的制备方法多种多样,包括溶液法、固相法、气相法等。
不同的制备方法可以得到不同性质的无机非金属材料。
2. 物理性质:无机非金属材料的物理性质与其结构和成分密切相关。
例如,陶瓷材料的硬度与其晶体结构和化学成分有关;石墨材料的导电性与其层状结构和碳原子的排列方式有关。
3. 化学性质:无机非金属材料的化学性质与其化学成分和结构有关。
例如,陶瓷材料在常温下不易与其他物质发生化学反应;石墨材料在高温下能与氧气反应生成二氧化碳。
三、无机非金属材料的应用无机非金属材料在日常生活和工业生产中有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无机非金属材料物理化学知识点整理无机非金属材料为北航材料学院2009年考研新加科目,考试内容包括大三金属方向限选课《无机非金属材料物理化学》(60%左右)和大四金属方向限选课《特种陶瓷材料》(40%左右)。
参考书:陆佩文主编《无机材料科学基础》,武汉理工大学出版社,1996年。
本资料由陆晨整理录入。
祝愿大家考出好成绩。
第一章无机非金属材料的晶体结构第一节:概述一、晶体定义:晶体是内部质点在三维空间呈周期性重复排列的固体。
二、晶体结构=空间点阵+结构单元三、晶体的基本性质:1、均一性2、各向异性3、自限性4、对称性5、稳定性四、对称性、对称元素、七大晶系、十四种布拉菲格子结晶符号1、晶面符号——米勒指数(hkl) 2、晶棱符号[ uvw]PS:其实只要看了金属学,这些就都会了,懒得写了…第二节:晶体化学一、离子键、共价键、金属键、分子间力、氢键定义、特点(大家都知道的东西…)二、离子极化:三、鲍林规则(重点):鲍林第一规则──配位多面体规则,其内容是:“在离子晶体中,在正离子周围形成一个负离子多面体,正负离子之间的距离取决于离子半径之和,正离子的配位数取决于离子半径比”。
鲍林第二规则──电价规则指出:“在一个稳定的离子晶体结构中,每一个负离子电荷数等于或近似等于相邻正离子分配给这个负离子的静电键强度的总和,其偏差≤1/4价”。
静电键强度S=正离子数Z+/正离子配位数n ,则负离子电荷数Z=∑Si=∑(Zi+/ni)。
鲍林第三规则──多面体共顶、共棱、共面规则,其内容是:“在一个配位结构中,共用棱,特别是共用面的存在会降低这个结构的稳定性。
其中高电价,低配位的正离子的这种效应更为明显”。
鲍林第四规则──不同配位多面体连接规则,其内容是:“若晶体结构中含有一种以上的正离子,则高电价、低配位的多面体之间有尽可能彼此互不连接的趋势”。
例如,在镁橄榄石结构中,有[SiO4]四面体和[MgO6]八面体两种配位多面体,但Si4+电价高、配位数低,所以[SiO4]四面体之间彼此无连接,它们之间由[MgO6]八面体所隔开。
鲍林第五规则──节约规则,其内容是:“在同一晶体中,组成不同的结构基元的数目趋向于最少”。
例如,在硅酸盐晶体中,不会同时出现[SiO4]四面体和[[Si2O7]双四面体结构基元,尽管它们之间符合鲍林其它规则。
这个规则的结晶学基础是晶体结构的周期性和对称性,如果组成不同的结构基元较多,每一种基元要形成各自的周期性、规则性,则它们之间会相互干扰,不利于形成晶体结构。
第三节:典型的晶体结构(参考课件或复印的资料) 1.AX 型 2.AX 2型 3.A 2X 3型4.AX 3和A 2X 5型5.ABO 3型6.ABO 4型7.AB 2O 4型8.硅酸盐晶体结构第二章 无机非金属材料的晶体缺陷第一节:晶体缺陷:点缺陷、线缺陷、面缺陷(参考金属学吧…)第二节:缺陷化学反应表示法(重点) 一、点缺陷符号:克罗格-明克(Kroger-Vink )符号 ① 主符号,表明缺陷种类; ② 下标,表示缺陷位置;“i”表示填隙位置③ 上标,表示缺陷有效电荷,“ • ”表示有效正电荷,用“ ' ”表示有效负电荷,用“ ⨯ ”表示有效零电荷,零电荷可以省略 ① 空位:VVM —— M 原子空位 VX —— X 原子空位在金属材料中,只有原子空位对于离子晶体,如果只是 M2+ 离子离开了格点形成空位,而将 2 个电子留在了原处,这时电子被束缚在空位上称为附加电子,所以空位带有 2 个有效负电荷,写成 正离子空位如果 X2- 离开格点形成空位,将获得的2 个电子一起带走,则空位上附加了 2个电子空穴,所以负离子空位上带有 2 个有效正电荷,写成 。
''M V ••XV 'M ''M 2e V V +=•••+=2hV V X X② 填隙原子:Mi —— M 原子处在间隙位置上 Xi —— X 原子处在间隙位置上 如 Ca 填隙在 MgO 晶格中写作 Cai ③ 错放位置:MX 表示 M 原子被错放在X 位置上 ④ 溶质原子:LM 表示 L 溶质处在 M 位置 SX 表示 S 溶质处在 X 位置例如Ca 取代了MgO 晶格中的Mg 写作CaMg ⑤ 自由电子 e ' 及电子空穴 h •: 存在于强离子性材料中,电子并不一定属于某一个特定位置的原子,可以在晶体中运动。
在某些缺陷上缺少电子,这就是电子空穴,也不属于某一个特定的原子所有,也不固定在某个特定的原子位置。
⑥ 带电缺陷:不同价离子之间的替代就出现带电缺陷,如 Ca2+ 取代 Na+ 形成 Ca2+ 取代 Zr4+ 形成 ⑦ 缔合中心:一个带电的点缺陷与另一个带相反电荷的点缺陷相互缔合形成一组或一群新的缺陷,它不是原来两种缺陷的中和消失,这种新缺陷用缔合的缺陷放在括号内表示。
缔合中心是一种新的缺陷,并使缺陷总浓度增加。
出现过的考试题:假设MX 为二价离子组成的化合物晶体,写出缺陷1、2、3、4、5、6、7、8的符号二、缺陷反应方程式: 遵循规则 1.质量平衡:①缺陷方程的两边必须保持质量平衡②缺陷符号的下标只是表示缺陷位置,对质量平衡没有作用 ③V M 为 M 位置上的空位,不存在质量。
''Zr Ca )V (V V V Cl 'Na Cl 'Na ••=+2.电荷守恒:①在缺陷反应前后晶体必须保持电中性②缺陷反应式两边必须具有相同数目总有效电荷 例:TiO2在还原气氛中形成TiO 2-x (期末考试考过) 以上方程都为正解三、点缺陷的化学平衡 1. 弗伦克尔缺陷晶格离子 + 未被占据的间隙位置=间隙离子 + 空位 当缺陷浓度很小时,[V i ] ≈ [Ag Ag ] ≈ 12. 肖特基缺陷分子式形如CaF 2第三节:固溶体(Solid solution ) 一、判断连续固溶体的形成条件。
(重点) (1)质点尺寸因素 —— 决定性因素。
从晶体结构的稳定观点来看,相互替代的质点尺寸愈接近,则固溶体愈稳定,其固溶量将愈大。
∆经验证明:• 当∆<15%时,溶质和溶剂之间有可能形成连续固溶体;• 当∆=15~30%之间时,溶质和溶剂之间可以形成有限固溶体;• 当∆>30%时,溶质和溶剂之间不生成固溶体,仅在高温下有少量固溶。
(2)晶体结构类型• 连续固溶体必要条件:具有相同的晶体结构(不是充分条件)• 晶体结构不同,最多只能形成有限型固溶体(满足尺寸条件前提下)(3)电价因素• 连续固溶体必要条件:原子价(或离子价)相同;多组元复合取代总价 数相等,电中性。
不是充分条件。
↑+++=••2O O 'Ti 2O 213O V 2Ti 2TiO ↑+++=+••2O O 'Ti O Ti O 213O V 2Ti 4O 2Ti ↑++=+••2O 'Ti O Ti O 21V 2Ti O 2Ti ↑++=••2O 'O O 21V 2e O 'Agi i Ag V Ag V Ag +=+•F i Ag 'Ag i ]][V [Ag ]][V [Ag K =•F 'Ag i ]][V [Ag K =•][V ][Ag 'Ag i =•)/exp(f 0F kT G K K ∆-=)2/exp(][Ag f 0i kT G K ∆-=•S S O ''Mg O Mg O Mg V V O Mg +++=+••••+=O''Mg V V 0)/exp(f 20SkT G K K ∆-=)2/exp(][V f '02/1S O kT G K K ∆-==••)3/exp(][V f 0''Ca kT G K ∆-=)3/exp(2]2[V ][V f 0''Ca F kT G K ∆-==•121r r r -=•如果价态不同,则最多只能生成有限固溶体(满足尺寸条件前提下)(4)离子的外层电子构型和键性(5)电负性因素•电负性相近,有利于固溶体的生成•电负性差别大,倾向于生成化合物以± 0.4 作为边界条件(6)温度•虽是外因,对固溶体的形成有明显影响•四种类型:1. 阴离子缺位型(TiO2-x、ZrO2-x)2. 阳离子空位型(Fe1-x O、Cu2-x O)3. 阴离子间隙型(UO2+x)4. 阳离子填隙型(Zn1+x O、Cd1+x O)重点:典型物质的缺陷方程式及其化学平衡方程;氧浓度对化学平衡的影响;V 色心及F色心的含义“组分缺陷”意义:1.制造不同材料2.造成晶格畸变,晶格活化,有利于以扩散现象为基础的一系列高温过程,3.如固相反应、相转变和烧结过程等。
4.Al2O3中加1~2% TiO2,T烧↓300︒C5.ZrO2中加CaO 稳定剂,避免有害的体积效应,提高热稳定性6.ZrO2电解质材料:Y2O3 掺杂,成为阴离子导体。
三、固溶体的研究方法主要掌握课件上的例题计算方法。
第三章表面与界面第一节、概论(参考金属学相关内容就好)表面质点所处环境不同于内部质点,存在悬键或受力不均而处于较高能态,呈现一系列特殊的性质。
表面与界面可近似看作是材料中的二维缺陷。
引起熔点、沸点、蒸汽压、溶解度、吸附、润湿、化学活性、化学反应等方面的变化。
有关强度、韧性、导热、导电、介电、传感、腐蚀、氧化、催化、能量交换、摩擦磨损、光的吸收与反射等都与表面与界面特性密切相关。
●多晶材料的界面分为:同相界面:相同化学成分和晶体结构的晶粒间界面,如晶界、孪晶界、畴界等。
异相界面:不同化学成分和晶体结构的区域间界面,如同质异构体界面、异质异构体界面。
第二节、固体的表面1 表面驰豫、重构及双电层●理想表面:表面结构不变地延续到表面后中断,是理论上结构完整的二维点阵平面,忽略了热运动热扩散和热缺陷及表面的物理化学现象等。
●真实清洁表面:没有表面污染的实际表面。
二者有如下不同:■表面结构弛豫概念:表面晶体结构与体内基本相同,但点阵参数略有差异,特别表现在垂直方向上,称为法向弛豫,如下图所示。
原因:表面质点受力不对称。
可以波及几个质点层,越接近表层,变化越显著。
■表面结构重构表面晶体结构和体内出现了本质的不同。
重构常表现为表面超结构的出现,即两维晶胞的基矢按整数倍扩大。
重构表面示意图离子晶体表面双电层(重点)概念:在离子晶体表面上,作用力较大、极化率小的正离子处于稳定的晶格位置。
为降低表面能,各离子周围的互作用将尽量趋于对称,因而M+离子在周围质点作用下向晶体内靠拢,而易极化的X-离子受诱导极化偶极子的排斥而被推向外侧形成表面双电层。