射影几何学

合集下载

几何学中的射影几何研究

几何学中的射影几何研究

几何学中的射影几何研究几何学是研究空间图形和它们的性质的学科,而射影几何是其中的一个重要分支。

射影几何通过引入射影平面和射影点的概念,对平行线和无穷远点进行了研究,从而为几何学提供了一种新的视角和工具。

本文将针对射影几何的基本概念、应用以及研究现状进行探讨。

一、射影几何的基本概念射影几何的基本思想是将实数域上的几何问题拓展到射影平面上,从而解决传统几何学中无法解释的问题。

射影几何中最基本的概念是射影平面和射影点。

射影平面可以看作是在传统的欧几里得平面上加入了一条无穷远线形成的平面,而射影点则是传统几何中的点在射影平面上的映射。

二、射影几何的应用射影几何在现实生活中有着广泛的应用。

在计算机图形学中,射影几何可以用来处理透视投影问题,使得计算机生成的图像更加真实。

在地图制作中,射影几何可以用来解决投影问题,实现地球表面的平面展开。

此外,在相机成像和光学仪器设计等领域,射影几何也起着重要的作用。

三、射影几何的研究现状射影几何作为几何学的重要分支,在现代数学中得到了广泛的研究。

从理论的角度来看,射影几何涉及到代数、拓扑和几何学等多个领域的交叉研究。

研究者们通过引入射影空间、投影变换和射影群等概念,对射影几何进行了深入的探讨。

在应用方面,射影几何已经得到了广泛的应用和拓展。

例如,在计算机视觉和模式识别领域,射影几何可以用来进行图像处理和目标跟踪。

此外,在计算机辅助设计和虚拟现实等领域,射影几何也发挥着重要的作用。

射影几何的研究还面临着一些挑战。

其中之一是如何将射影几何与其他数学分支更加紧密地结合起来,从而推动射影几何的发展。

另外,射影几何在应用方面仍有一些问题需要解决,如何将射影几何应用到更多的领域,并且发挥出更大的价值。

总结射影几何作为几何学的重要分支,通过引入射影平面和射影点的概念,为解决传统几何学中的一些难题提供了新的思路和方法。

射影几何在实际生活和学科研究中有着广泛的应用,并且在理论和应用方面都存在着一定的挑战和发展空间。

几何中的射影与相似比

几何中的射影与相似比
形成投影。
射影变换与几何变换的关系
射影变换:通过投影产生的几何变换,不改变图形间的相对位置和大小关系
几何变换:图形在空间中的刚性变换,包括平移、旋转和缩放等
关系:射影变换是几何变换的一种特殊形式,是保持图形间相对关系不变的一种变换
Part Two
射影几何中的相似 比
相似比的定义
相似比是两个相似图形对应边的长度之比 相似比是两个相似图形对应角大小的比值 相似比是两个相似图形对应角平分线长度的比值 相似比是两个相似图形对应高线长度的比值
Part Four
射影几何中的交比
交比的定义
交比是射影几何中 的一个基本概念, 用于描述两条直线 上四个点的相对位 置关系。
交比的定义基于交 叉比的符号,表示 为四个点的顺序排 列。
交比的性质包括交 换律、结合律和分 配律等,这些性质 在射影几何中有着 广泛的应用。
交比的概念在射影 几何中非常重要, 是研究几何图形和 空间结构的基础。
相似比的应用
确定物体间的比 例关系,用于测 量和计算。
在建筑设计中的 应用,通过相似 比可以设计出符 合比例要求的建 筑。
在摄影中,利用 相似比可以调整 焦距和拍摄角度, 获得更好的拍摄 效果。
在物理学中,利 用相似比可以模 拟实验,研究物 理现象的规律。
Part Three
射影几何中的投影
投影的定义
透视的性质
透视变换:通过透视变换将三维物体投影到二维平面上 灭点:透视变换中,平行线在无穷远处汇聚到一点,称为灭点 透视比:物体在透视变换中的大小比例关系 透视失真:由于透视变换导致的物体形状失真现象
透视的应用
建筑学:用于设计和构图,使建筑物看起来更加立体和真实 绘画艺术:通过透视技巧,使画面呈现出深度和立体感,增强视觉效果 游戏开发:在3D游戏中,利用透视技术创建逼真的场景和角色,提高游戏体验 虚拟现实:通过模拟透视效果,增强虚拟环境的真实感,提高沉浸式体验

射影几何学初步

射影几何学初步

定理5.2(帕普斯(Pappers)定理)
设 A, B,C 和A', B', C ' 都是共线点组,并设 M 是
直线 AB' 和 A'B 的交点, N 是直线 AC' 和 A'C 的交
点, P 是直线 AC' 和 A'C 的交点,则 M , N, P 共
线.
定理5.1
• A 如果两个三角形对应顶点的连线交于一点, 并且对应边都相交,则三个交点共线.
第五章 射影几何学初步
• 1 中心投影 • 2 射影平面 • 3 交比 • 4 射影坐标系 • 5 射影坐标变换与射影变换 • 6 二次曲线的射影理论
§1 中心投影
从上一章中知道平面的仿射变换的重要特性是把
共线的三点变成共线的三点。我们还会遇到更一般的从
一平面到另一平面保持点的共线关系的映射。例如,给

象。为了使中心投影成为一个映射并且是双射,就需要

在 1与1 上添加一些新的点,使点M 0 都有象,点 N 1

都有原象。这样的添加了点的平面就形成了射影平面

的概念 。
图(5.1) O
M理5.1(德扎格(Desarques)定理)
如果两个三角形的对于顶点的连线(有 三条)交于一点,则它们的对应边的焦点 (有三个)共线.
• B 如果两个三角形对应顶点的连线交于一点, 并且它们的一对对边平行,其他两队对应边相交, 则两个交点的连线平行与第一对对应边.
• C 如果两个三角形对应顶点的连线交于一点, 并且已知它们的两对对应边平行,则第三 对对应边也平行.
了两个相交平面
1与
以及两平面外的一点O,将点
1

几何学中的射影定理和相似三角形——几何知识要点

几何学中的射影定理和相似三角形——几何知识要点

几何学中的射影定理和相似三角形——几何知识要点几何学是研究空间和形状的学科,其中射影定理和相似三角形是其中重要的概念和定理。

本文将介绍这两个知识点,并探讨它们在几何学中的应用。

一、射影定理射影定理是几何学中的重要定理之一,它描述了两条平行线与一条横截线所形成的射影关系。

射影定理可以用于求解平行线之间的距离、角度和比例等问题。

射影定理的几何表述如下:当一条横截线与两条平行线相交时,它们所形成的对应的线段长度相等。

换句话说,射影定理说明了平行线与横截线之间的相似关系。

射影定理的应用非常广泛。

在建筑设计中,我们常常需要确定建筑物的高度、宽度等尺寸,射影定理可以帮助我们通过测量建筑物的阴影长度来确定其实际尺寸。

在地理测量中,射影定理也可以用于确定高山的高度、河流的宽度等。

二、相似三角形相似三角形是指具有相同形状但大小不同的三角形。

相似三角形之间存在一种特殊的比例关系,即对应边的比例相等。

相似三角形的判定条件有两种:AAA判定和AA判定。

AAA判定是指两个三角形的对应角度相等,而AA判定是指两个三角形的两个对应角度相等且对应边成比例。

相似三角形的性质有很多。

首先,相似三角形的对应角度相等,对应边成比例。

其次,相似三角形的周长和面积之间也存在一定的比例关系。

另外,相似三角形的高度、中线、角平分线等也成比例。

相似三角形在几何学中的应用非常广泛。

例如,在地图上测量两座建筑物之间的距离时,我们可以利用相似三角形的性质来计算。

此外,在工程设计中,相似三角形也可以用于计算物体的尺寸、角度等。

总结:几何学中的射影定理和相似三角形是非常重要的知识点。

射影定理描述了平行线与横截线之间的射影关系,可以用于求解距离、角度和比例等问题。

相似三角形是具有相同形状但大小不同的三角形,其对应边成比例。

相似三角形的性质有很多,可以用于计算距离、尺寸和角度等。

这些知识点在实际应用中具有广泛的用途,对于几何学的学习和应用都具有重要意义。

通过学习射影定理和相似三角形,我们可以更好地理解和应用几何学知识,提高解决实际问题的能力。

射影几何定理

射影几何定理

射影几何定理摘要:一、射影几何定理的定义与背景1.射影几何的起源与发展2.射影几何定理的概念引入二、射影几何定理的重要性质1.定理的基本内容与公式表述2.定理在射影几何中的核心地位三、射影几何定理的应用领域1.在数学领域的应用2.在其他学科领域的应用四、射影几何定理的意义与价值1.对于数学理论的贡献2.对于实际问题的解决正文:射影几何定理,作为射影几何学中的一个重要理论,起源于19 世纪,经历了漫长的发展过程,逐渐成为了射影几何学研究的基础。

该定理不仅对射影几何学科有着深远的影响,同时也为其他学科领域提供了有力的理论支持。

射影几何定理的一个重要性质是,它揭示了射影空间中的点到直线、直线与平面的位置关系。

具体来说,该定理的公式表述为:在射影空间中,给定点P、直线L 和平面π,如果P 在L 上,且L 在π上,那么P 也在π上。

这个定理在射影几何中具有核心地位,为射影几何的研究奠定了基础。

射影几何定理在数学领域具有广泛的应用。

例如,在代数几何中,射影几何定理可以用来解决代数曲线的几何问题;在拓扑学中,射影几何定理可以帮助研究者理解流形之间的映射关系。

此外,射影几何定理还在计算机科学、物理学和工程学等领域发挥着重要作用。

射影几何定理对数学理论的发展作出了巨大贡献。

它不仅丰富了射影几何学的理论体系,而且为其他数学分支的研究提供了有力的工具。

同时,射影几何定理在实际问题中的应用也体现出其具有很高的价值。

例如,在计算机图形学中,射影几何定理可以用来简化三维模型的表示和计算;在光学设计中,射影几何定理有助于优化光学系统的结构和性能。

总之,射影几何定理作为射影几何学科的一个重要理论,具有深刻的内涵和广泛的应用价值。

射影几何

射影几何

在19世纪以前,射影几何一直是 在欧氏几何的框架下被研究的, 其早期开拓者德沙格、帕斯卡等 主要是以欧式几何的方法处理问 题(这点很重要)。 而且由于18世纪解析几何、微积 分的发展洪流而被人遗忘。
德沙格(1591-1661) 帕斯卡(1623-1662)
加斯帕尔· 蒙日 (Gaspard Monge, 1746~1818),法 国数学家、化学家 和物理学家。
射影几何学的发展和其他数 学分支的发展有密切的关系。 特别是“群”的概念产生以 后,也被引进了射影几何学, 对这门几何学的研究起了促 进作用。
对于我们来说,射影几何最重要的 应用是在对初等几何数学的指导, 它不仅表现在提高数学思想与观念 上,还直接表现在对初等几何图形 性质的研究中。由射影 几何的性质, 指导研究初等几何中的一些问题。
射影几何的繁荣
射影几何学是专门研究图 形的位置关系的,也是专 门用来讨论在把点投影到 直线或者平面上的时影几何的早期发展; 3.射影几何的繁荣; 4.射影几何的应用;
数学透视法的天才阿尔贝 蒂(1401-1472)的《论绘 画》一书(1511)则更是 早期数学透视法的代表作, 成为射影几何学发展的起 点。
19世纪前半叶: 庞斯列(1788~1867,P-J.Poncelet)是 射影几何的主要奠基人。 在公元1822年,完成了一部理论严谨、 构思新颖的巨著——《论图形的射影 性质》。这部书的问世,标志着射影 几何座位一门学科的正式诞生。
默比乌斯:常见一种齐次坐标系,把 变换分成全等、相似、仿射、直射等 类型,给出线束中四条线交比的度量 公式等。 普吕克:引进了另一种齐次坐标系, 得到了平面上无穷远线的方程,无穷 远圆点的坐标。
完全四点形

射影定理在几何学中的推广及应用

射影定理在几何学中的推广及应用

射影定理在几何学中的推广及应用简介射影定理是几何学中的一个重要定理,它描述了在一个平面上,如果通过一个点将一条直线与一个圆相交,那么这个点到直线的距离与该点到圆心的距离的积等于该点到相交点的距离的平方。

推广射影定理不仅适用于直线和圆的相交,还可以推广到其他几何形状的相交问题。

下面是一些射影定理的推广应用。

射影定理推广至椭圆在椭圆上,通过一个点将一条直线与这个椭圆相交,同样可以应用射影定理。

该定理表明,点到直线的距离与点到椭圆焦点的距离的积等于点到相交点的距离的平方。

射影定理推广至抛物线抛物线也适用于射影定理的推广。

通过一个点将一条直线与抛物线相交,同样可以使用射影定理,得到点到直线的距离与点到抛物线焦点的距离的积等于点到相交点的距离的平方。

射影定理推广至双曲线双曲线也是射影定理的一个推广对象。

通过一个点将一条直线与双曲线相交时,点到直线的距离与点到双曲线焦点的距离的积等于点到相交点的距离的平方。

应用射影定理在几何学中有广泛的应用。

直线与椭圆的交点在解决直线和椭圆相交的问题时,可以应用射影定理。

通过求解点到直线的距离与点到椭圆焦点的距离的比值,可以得到交点的坐标。

空间几何中的投影射影定理在空间几何中也有应用。

在空间中,如果一条直线与一个平面相交,可以利用射影定理求解点到直线的距离与点到平面的距离的比值,获得投影点的坐标。

几何构造问题射影定理也在几何构造问题中起到重要作用。

通过利用射影定理的推广形式,可以进行各种几何形状的构造。

结论射影定理是一个重要的几何定理,在直线和圆的相交问题上有广泛的应用。

同时,射影定理还可以推广到其他几何形状的相交问题,并具有广泛的应用领域。

《射影几何与透视学》课件

《射影几何与透视学》课件

射影几何的应用
通过射影几何理论,可以更好地 设计建筑物的外观和内部结构。
在计算机游戏中,利用射影几何 可以创造出更加真实的三维场景 。
摄影和电影制作 建筑设计
机器人视觉 计算机图形学
利用射影几何原理,可以更好地 理解和处理图像的透视关系。
射影几何在机器人视觉中用于识 别和定位物体。
02
透视学基础
《射影几何与透视学》PPT课件
目录
• 射影几何概述 • 透视学基础 • 射影几何与透视学的关系 • 射影几何与透视学的实际应用 • 结论 • 参考文献
01
射影几何概述
Chapter
射影几何的定义
01
02
03
射影几何
研究图形在射影变换下不 变性质的几何分支。
射影变换
保持图形间点与点、直线 与直线间对应关系的变换 。
绘画艺术中的射影几何与透视学
绘画中的空间表现
利用射影几何与透视学的原理, 画家可以更好地表现画面的空间
关系和深度感。
绘画中的立体感
通过透视学的原理,画家可以创造 出更加逼真的立体感,使画面更加 生动。
绘画中的光影效果
利用射影几何的原理,画家可以更 好地表现光影效果,增强画面的层 次感和立体感。
摄影技巧中的射影几何与透视学
03
射影几何与透视学的关系
Chapter
射影几何对透视学的影响
射影几何为透视学提供了理论基础,使得透视学得以发 展。
射影几何中的投影原理为透视学中的投影提供了理论支 持。
射影几何中的一些基本概念,如点、线、面等,在透视 学中也有广泛应用。
透视学在射影几何中的应用
透视学为射影几何提供了实际 应用的场景,使得射影几何的 理论得以具体化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在射影几何学中,把无穷远点看作是“理想点”。

通常的直线再加上一个无穷点就是无穷远,如果一个平面内两条直线平行,那么这两条直线就交于这两条直线共有的无穷远点。

通过同一无穷远点的所有直线平行。

德国数学家克莱因(图)在爱尔朗根大学提出著名的《爱尔朗根计划书》中提出用变换群对几何学进行分类在引入和无穷远直线后,原来普通点和普通直线的结合关系依然成立,而过去只有两条直线不平行的时候才能求交点的限制就消失了。

由于经过同一个无穷远点的直线都平行,因此和两者就可以统一了。

平行射影可以看作是经过无穷远点的中心投影了。

这样凡是利用中心投影或者平行投影把一个图形映成另一个图形的映射,就都可以叫做射影变换了。

射影变换有两个重要的性质:首先,射影变换使点列变点列,直线变直线,线束变线束,点和直线的结合性是射影变换的不变性;其次,射影变换下,交比不变。

交比是射影几何中重要的概念,用它可以说明两个平面点之间的射影对应。

在射影几何里,把点和直线叫做对偶元素,把“过一点作一直线”和“在一直线上取一点”叫做对偶运算。

在两个图形中,它们如果都是由点和直线组成,把其中一里的各元素改为它的对偶元素,各运算改为它的对偶运算,结果就得到另一个图形。

这两个图形叫做对偶图形。

在一个命题中叙述的内容只是关于点、直线和平面的位置,可把各元素改为它的对偶元素,各运算改为它的对偶运算的时候,结果就得到另一个命题。

这两个命题叫做对偶命题。

这就是射影几何学所特有的对偶原则。

在射影平面上,如果一个成立,那么它的对偶命题也成立,这叫做平面对偶原则。

同样,在射影空间里,如果一个命题成立,那么它的也成立,叫做空间对偶原则。

研究在射影变换下二次曲线的不变性质,也是射影几何学的一项重要内容。

如果就几何学内容的多少来说,射影几何学;仿射几何学;欧氏几何学,这就是说欧氏几何学的内容最丰富,而射影几何学的内容最贫乏。

比如在欧氏几何学里可以讨论仿射几何学的对象(如简比、平行性等)和射影几何学的对象(如四点的交比等),反过来,在射影几何学里不能讨论图形的仿射性质,而在仿射几何学里也不能讨论图形的度量性质。

1872年,德国数学家克莱因在爱尔朗根大学提出著名的中提出用变换群对几何学进行分类,就是凡是一种变换,它的全体能组成“群”,就有相应的几何学,而在每一种几何学里,主相关书籍扩大空间和射影空间,在一个欧氏(或仿射)平面上,两条一般相交于一点,但有例外,平行线不相交。

这种例外,使某些显得复杂。

为了排除这种例外,在每条直线上添上一个理想点,叫做无穷远点,并假定平行直线相交于无穷远点。

添上无穷远点的直线叫做扩大直线,它是闭的,象那样,去掉它上面一点,不会使它分成两截。

再假定不平行的直线有不同的无穷远点,这样,平面上一切无穷远点的集合就叫做无穷远(直)线,而添上无穷远线之后的平面就叫做扩大平面。

扩大平面也是闭的,去掉它上面一条直线,不会使它分成两块。

同样,(或仿射)空间中一切无穷远点的集合叫做无穷远(平)面。

添上无穷远面后的空间叫做扩d大空间,它也是闭的。

在扩大空间,不但平行直线交于一个无穷远点,而且平行平面交于一条无穷远直线,一条非无穷远直线和一个与它平行的平面交于一个无穷远点。

如果再进一步,把无穷远元素(点、线、面)和非无穷远元素平等看待,不加区别,扩大空间就叫做射影空间。

同样,从扩大直线和扩大平面可以得到射影直线和射影平面。

在里,的概念消失了:两条共面直线或一个平面和一条直线总相交于一点,两个平面总相交于一条直线;为了能用代数方法来处理射影(或扩大)空间的几何问题,需要引进齐次坐标(有时还引进射影坐标)。

仍从欧氏(或仿射)平面开始。

设在平面上已经建立了以O为原点的直角(或仿射)坐标系,(x,y)为一点p的坐标。

令则比值x0:x1:x2完全确定p的位置,(x0,x1,x2)就叫做p的齐次(笛氏)坐标。

原点的齐次坐标显然可以写成(1,0,0)。

设p不是原点O,则x1,x2不同时等于零;再令x1,x2固定,而令x0向0接近,则p点沿一条经过O而斜率为x2:x1的直线l向远方移动。

设表示扩大直线l上的无穷远点,则可以认为,当x0趋于O时,p趋于。

因此,可以把(0,x1,x2)作为的,特殊地,(0,1,0)和(0,0,1)依次是x轴和y轴上无穷远点的齐次坐标。

这样,每一组不同时为零的三个数x0,x1,x2都是扩大平面上一点的齐次坐标,而若ρ为不等于零的数,则(ρx0,ρx1,ρx2)和(x0,x1,x2)代表同一点,下面引进记号(x)=(x0,x1,x2),ρ(x)=(ρx0,ρx1,ρx2)。

设(u1,u2不都是0)是欧氏(或仿射)平面上一条直线的。

在用齐次坐标时,它可以写成, (1)这也就是扩大直线的齐次方程,这直线上的无穷远点是(0,u2,-u1)。

扩大平面上的无穷远直线方程显然可以写成x0=0。

这样,每一个齐次线性方程都代表扩大平面上一条直线。

由于比值u0:u1:u2完全确定直线,(u)=(u0,u1,u2)就叫做(齐次)线坐标。

为了区别两种齐次坐标,上面引进的(x)=(x0,x1,x2)就叫做(齐次)点坐标。

方程(1)叫做点(x)和线(u)的关联条件或接合(即(x)在(u)上,或(u)经过(x))条件。

当不区别无穷远元素和非无穷远元素,使扩大平面成为射影平面时,(x)和(u)就依次成为射影平面上的齐次点坐标和线坐标,它们都可以看作射影坐标的特款。

与此类似,可以得到扩大或射影直线上的点坐标(x)=(x0,x1)以及扩大或射影空间的点坐标(x)=(x0,x1,x2,x3)和面坐标(u)=(u0,u1,u2,u3)。

在扩大或射影空间中,点(x)和面(u)的关联条件是下面,除非特别指明,所讨论的空间,就是三维射影空间,所讨论的点、线、面都是射影空间里的点,射影直线和关联关系是射影平面和射影空间的基本关系。

在关联(1)中,(x)和(u)有完全的对称性,这就使得直线和点可以在逻辑上取得平等的地位。

它们叫做平面上的。

设方程(1)里的u j是固定的,它就代表一条直线;令满足(1)的x j变动,就可以得到在该线上的一切点,这些点的集合叫做以(u)为底的点列,而(1)也就是点列的方程。

根据线性方程理论,可以看出,点列中每三点线性相关。

即:若(y),(z)是点列中任意两个不同的点,则它的每一点(x)都可以写成(y)和(z)的线性组合(x)=λ(y)+μ(z,),其中λ,μ是。

在一定意义上,λ,μ也可以作为点列中的射影坐标。

另一方面,若令(1)中的x j固定,而令u j变动,就得到一切经过点(x)的直线(u),它们的集合叫做以(x)为中心的线束,而(1)就是线束的方程,同时也是点(x)的方程。

若(υ),(ω)是线束中任意两条直线,则线束的每一条直线(u)都可以写成。

由于点列和线束中的元素都只依赖于两个齐次参数的比值,即依赖于一个独立参数,它们就都叫做一维基本形。

已给平面上一个以点和直线构成的图形,把其中的点和直线对换,就得到另一个图形,叫做所给图形的对偶。

例如,点列(和一条直线关联的点的集合)和线束(和一点关联的直线的集合)是对偶形。

三角形是自对偶形。

图1对于平面上一个只涉及点与直线的关联关系的,如果把其中的点和直线及其关联关系对换,就得到一个新定理,叫做原定理的对偶。

“如果原定理成立,则它的对偶定理也成立。

”称它为对偶定理。

这是因为,从观点看,这两个定理的证明步骤是完全相同的。

射影几何中,一个最早而又重要的定理是德扎格定理(图1):两个三角形A B C和的对应顶点的联线经过同一点的充要条件是它们的对应边B C和;CA和;A B和的交点共线。

这是个自对偶定理。

如果不是在射影(或扩大)平面上而是在欧氏(或仿射)平面上,证明这个就需要区别并分别处理其中有某些直线平行的各种特款。

三维空间也有对偶定理。

在空间,点和面是对偶元素,直线是自对偶元素。

线束是自对偶形。

空间还有一个一维基本形是面束,这是经过同一条直线的平面的集合。

面束是点列的对偶。

在同一个平面上的点的集合叫做点场,经过同一点的平面的集合叫做面把;点场和面把互为对偶。

在同一个平面上的直线的集合叫做线场,经过同一点的直线的集合叫做线把;线场和线把互为对偶。

,,面把,线把都是二维基本形。

空间的点的集合和空间的平面的集合依次叫做点空间和面空间,它们是互为对偶的三维基本形。

在空间,三角形的对偶是三棱形。

三棱形由经过同一点的三条不共面的直线所构成,这三条直线两两确定三个不共线的平面。

对于不共面的两个三角形,德扎格定理仍然成立,但在空间,它不是自对偶定理。

通过代数来说明对偶原理是简捷了当的,但不是必须的。

空间的直线构成一个四维集合(见)。

射影对应与射影变换;在一维基本形之间,可以通过投影和截影互相转化。

用{p}表示直线l上的点列,其中p表示点列中的任意点。

设S为不在l上的一点,作直线p=SP,则当p在l上变动时,就得到以S为中心的线束{p},叫做点列{p}的投影,而{p}就叫做线束{p}的截影,p和p叫做对应(图再设S1为空间不在{p}的平面上的点,作经过S1和p的平面π,就得到以SS1为轴的面束{π},它是{p}的投影,{p}是{π}的截影,p和π是对应元素(图3)。

若经过一系列的和,从一个一维基本形到另一个,这两个基本形就叫做射影相关,它们元素间的对应关系就叫做射影对应。

一个射影对应所包含的两个变换叫做射影变换,它们互为逆变换。

在空间,通过投影和截影,点场和线把之间,线场和面把之间都可以互相转化,因而点场之间,线把之间,线场之间,面把之间也可以互相转化。

至于二维基本形之间的其他转化,例如点场和线场之间的转化,则可以通过下面将要叙述的代数方法来确定。

同样,三维基本形之间的转化也要通过代数方法。

总之,两个二维基本形之间或两个三维基本形之间,也都可以有射影对应和射影变换。

已经指出,如何在点列,点场,点空间,以及线场和面空间里建立齐次坐标系。

事实上,在任何一个一、二、三维的基本形里,都可以建立齐次(或叫射影)坐标(见射影坐标)。

这样,射影对应或射影变换就可以通过齐次坐标间的满秩齐次线性变换来表示。

例如,设(x),()为两个点场的齐次坐标,则射影变换(x)→()可以用三个变数的齐次线性变换(2)表示,式中det表示行列式;ρ是非零比例常数。

解这个方程组,就得到逆变换()→(x)的方程。

射影变换的一个基本性质是保持关联关系,这等于说,它把线性相关的元素变成线性相关的元素。

例如,点场之间的变换(2)就把点列变成点列,即直线变成直线,因而,它还把线束变成线束。

由此又可以看出,只涉及关联关系的每个定理(如德扎格定理)一定代表一种射影性质,即经过射影变换不变的性质。

换句话说,这种定理是一个射影定理。

关于射影对应,有一个基本定理。

相关文档
最新文档