圆锥曲线和射影几何

合集下载

高中数学有关圆锥曲线的经典结论

高中数学有关圆锥曲线的经典结论

⾼中数学有关圆锥曲线的经典结论有关解析⼏何的经典结论⼀、椭圆1.点P 处的切线PT 平分△PF 1F 2在点P 处的外⾓.2.PT 平分△PF 1F 2在点P 处的外⾓,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3.以焦点弦PQ 为直径的圆必与对应准线相离.4.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线⽅程是00221x x y ya b +=. 6. 若000(,)P x y 在椭圆22221x y a b+=外,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线⽅程是00221x x y ya b +=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意⼀点12F PF γ∠=,则椭圆的焦点⾓形的⾯积为122tan 2F PF S b γ=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上⼀个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆⼀个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平⾏于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a=-,即0202y a x b K AB-=。

12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的⽅程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹⽅程是22002222x x y yx y a b a b+=+. ⼆、双曲线1.点P 处的切线PT 平分△PF 1F 2在点P 处的内⾓.2.PT 平分△PF 1F 2在点P 处的内⾓,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3.以焦点弦PQ 为直径的圆必与对应准线相交.4.以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右⽀;外切:P 在左⽀)00022a b 0线的切线⽅程是00221x x y ya b -=.6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线⽅程是00221x x y ya b-=. 7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意⼀点12F PF γ∠=,则双曲线的焦点⾓形的⾯积为122t 2F PF S b co γ=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - ,2(,0)F c当00(,)M x y 在右⽀上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左⽀上时,10||MF ex a =-+,20||MF ex a =--9.设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上⼀个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线⼀个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平⾏于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =?,即0202y a x b K AB =。

射影几何课程中的基本数学思想

射影几何课程中的基本数学思想

ΞΞΞ射影几何课程中的基本数学思想徐 天 长( 安庆师范学院 数学系, 安徽 安庆 246011)摘 要: 基本数学思想隐藏于知识和技能之中, 需要经过提炼和总结才能获得。

射影几何课程中的基本数学思想可归纳为五个方面。

关键词: 射影空间; 对偶原理; 变换群; 不变性中图分类号: O 185 文献标识码: A 文章编号: 1007- 4260 ( 2001) 03- 0032- 02数学思想往往隐藏于数学知识和技能之中, 需要经过提炼和总结才能获得, 因而不易为人们所注 意。

在射影几何课程中包含哪些基本的数学思想? 本文将从五个方面进行探讨。

1 在射影空间无通常元素与无穷远元素之分的思想 在射影几何中无穷远元素应该认为是实有其物, 而且应该与通常元素同等对待。

它们之间没有任何本质上的区别, 都是射影空间的有机组成部分。

虽然在初等几何里, 也经常引用无穷远元素, 但是在 那里使用它实质上只是限制在几何事实的特别的文字表达方式上。

例如说把圆柱当做有无穷远顶点的 圆锥, 不说是直线平行而说它们交于无穷远点。

因为在欧氏空间里, 实际上没有所谓无穷远元素。

当我 们比较一下初等几何与射影几何的研究对象时, 就会明显地看出上述所谈差别的原因, 因为初等几何 的主要内容是研究图形的度量性质。

如线段的长度, 两直线间的夹角, 图形的面积等等。

而在射影几何 中, 由于图形的度量性质不是其研究对象, 而只研究点线结合关系的命题, 所以上面提到的无穷远元素和通常元素之间的差异就失去了力量。

另外, 在中心投影下, 无穷远元素和通常元素之间可以相互转变。

如图 1 所示, Π1 上一族平行的的直线, 它们相交于 Π1 上的无穷远点 S ∞, 在 Π上的象却不是平行直线束, 而是构成以 S 为中心的直线束。

这足以说明, 在中心投影下, 无穷远点与通常点之间并没有本质上的差别。

射影几何与初等几何一样也有它自己的公理化体系,如果不从欧氏几何出发而使用近代公理法来定义射影空图 1 间, 则根本不会有无穷远元素这样的东西掺杂其中。

有关圆锥曲线的经典结论

有关圆锥曲线的经典结论

★说明:圆锥曲线我们并未学完,有些内容(如焦半径公式),将此资料发到群里是想让大家在日常学习过程中自我感悟使用,不要过分纠结于此!有关解析几何的经典结论一、椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆22221x ya b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

射影几何入门

射影几何入门

本书介绍了射影几何的基本概念,包括点、直线、平面等基本元素,以及射 影变换、对合等基本运算。这些基本概念是射影几何的基础,对于后续的学习和 理解至关重要。
本书详细阐述了射影几何的基本定理,包括帕斯卡定理、布列安桑定理等。 这些定理是射影几何的核心,它们揭示了射影几何中各种元素之间的关系和性质。 通过学习和理解这些定理,读者可以深入了解射影几何的原理和方法。
《射影几何入门》这本书的目录结构清晰、完整,由浅入深地引导读者逐步 进入射影几何的世界。通过本书的学习,读者不仅可以掌握射影几何的基本理论 知识和方法,还能提高数学思维和解决问题的能力。
作者简介
作者简介
这是《射影几何入门》的读书笔记,暂无该书作者的介绍。
感谢观看
本书还介绍了投影变换的概念和方法,包括中心投影、平行投影等。这些变 换是射影几何中重要的工具,它们可以帮助我们将三维空间中的几何形状映射到 二维平面上,从而方便我们分析和研究。
本书还讨论了二次曲线的射影性质,包括椭圆的性质、双曲线的性质等。这 些性质是射影几何中的重要应用,它们可以帮助我们更好地理解和研究二次曲线。
内容摘要
这些变换是射影几何中重要的工具,它们可以帮助我们将三维空间中的几何形状映射到二维平面 上,从而方便我们分析和研究。 本书还讨论了二次曲线的射影性质,包括椭圆的性质、双曲线的性质等。这些性质是射影几何中 的重要应用,它们可以帮助我们更好地理解和研究二次曲线。 《射影几何入门》这本书是一本很好的入门书籍,它可以帮助读者了解和掌握射影几何的基本原 理和方法。通过阅读这本书,读者可以深入了解射影几何的基础知识,为进一步的学习和研究打 下坚实的基础。
《射影几何入门》是一本非常优秀的教材,它不仅介绍了射影几何的基础知 识,还提供了许多有趣的例子和难题。通过阅读这本书,读者可以深入了解射影 几何的本质和应用,提高自己的数学素养和能力。

圆锥曲线的起源

圆锥曲线的起源

起源编辑2000多年前,古希腊数学家最先开始研究圆锥曲线,并获得了大量的成果。

古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。

用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面倾斜到“和且仅和”圆锥的一条母线平行时,得到抛物线;用平行圆锥的高的平面截取,可得到双曲线的一边;以圆锥顶点做对称圆锥,则可得到双曲线[1]。

阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。

事实上,阿波罗尼在其著作中使用纯几何方法已经取得了今天高中数学中关于圆锥曲线的全部性质和结果。

其中; △‘为一与△同号的值,。

定理说明应用该定理于椭圆时,应将代入。

应用于双曲线时,应将代入,同时不应为零,即ε不为零。

求解y1+y2与y1*y2只须将A与B的值互换且m与n的值互换.可知ε与∆'的值不会因此而改变。

定理补充联立曲线方程与y=kx+是现行高考中比联立”Ax+By+C=0“更为普遍的现象。

其中联立后的二次方程是标准答案中必不可少的一项,x1+x2,x1x2都可以直接通过该方程与韦达定理求得,唯独弦长的表达式需要大量计算。

这里给出一个CGY-EH的斜率式简化公式,以减少记忆量,以便在考试中套用。

若曲线与直线y=kx+相交于E、F两点,则:这里的既可以是常数,也可以是关于k的代数式。

由这个公式我们可以推出:若曲线为椭圆,则若曲线为双曲线,则由于在高考中CGY-EH定理不可以直接应用,所以学生如此解答才可得全步骤分(省略号的内容需要考生自己填写):联立两方程得……(二次式子)(*)所以x1+x2=……①,x1x2=……②;所以|x1-x2|=√(x1+x2)^2-4x1x2=……(此时代入①、②式得到一个大式子,但不必化简)化简得|x1-x2|=(偷偷地直接套公式,不必真化简)下面就可求弦长了。

定理简证设曲线x^2/m+y^2/n=1①与直线Aχ+By+C=0②相交于E、F两点,联立①②式可得最终的二次方程:(A^2 m+B^2 n) x^2+2ACmx+C^2 m-mnB^2=0应用韦达定理,可得:x_1+x_2=(-2ACm)/(A^2 m+B^2 n)x_1 x_2=(m(C^2-B^2 n))/(A^2 m+B^2 n)∆=4mnB^2(ε-C^2)对于等价的一元二次方程∆的数值不唯一,且∆的意义仅在于其与零的关系,故由4B^2>0恒成立,则可取与∆同号的∆'=mn(ε-C^2)作为∆的值。

射影几何在圆锥曲线中的应用

射影几何在圆锥曲线中的应用

射影几何在圆锥曲线中的应用。

射影几何在圆锥曲线中的应用一、引言射影几何是现代数学中的一个重要分支,它不仅在几何学中具有广泛的应用,还在物理学、工程学和计算机图形学等领域中发挥着重要作用。

而在圆锥曲线的研究中,射影几何更是扮演着关键的角色。

本文将探讨射影几何在圆锥曲线中的应用,深入剖析相关理论,并结合实际例子进行分析,帮助读者更全面地理解这一主题。

二、射影几何的基本概念射影几何是研究几何中不变性质的一门学科,它主要研究图形在投影变换下的性质。

在射影几何中,有一些基本概念需要了解。

首先是射影空间的概念,它是将n维欧氏空间中的点和直线扩充为射影空间中的点和超平面,从而使得无穷远处的点也有了几何意义。

其次是投影变换的概念,它将射影空间中的点投影到一个维数较低的子空间上,保持了射影空间中的同一直线上的点在投影后仍然在一条直线上。

还有射影几何中的几何元素,如点、直线、圆锥曲线等。

三、圆锥曲线的基本性质圆锥曲线是指平面上满足一般二次方程方程的曲线,包括椭圆、双曲线和抛物线。

这三种曲线在几何上有着独特的性质,而射影几何恰好能够帮助我们更好地理解这些性质。

椭圆是一个闭曲线,它有两个焦点,而双曲线是一个开曲线,它有两个渐近线,抛物线则是一种特殊的双曲线。

在射影几何中,我们可以通过投影变换将椭圆、双曲线和抛物线转化为标准形式,从而更好地研究它们的性质和特点。

四、射影几何在圆锥曲线的研究中的应用在圆锥曲线的研究中,射影几何发挥着重要作用。

首先是通过射影几何的方法来研究圆锥曲线的渐近线和双曲线的渐近线的性质,可以更清晰地理解曲线的渐近线与离心率的关系。

其次是射影几何可以帮助我们更好地理解曲线的偏心率和焦点之间的关系,从而揭示曲线的几何本质。

射影几何还可以应用于圆锥曲线的投影性质和对偶性质的研究中,从而为曲线的相关性质提供更深入的理解。

五、射影几何在圆锥曲线的实际应用除了理论研究,射影几何在圆锥曲线的实际应用中也发挥着重要作用。

有关圆锥曲线的经典结论(精选课件)

有关圆锥曲线的经典结论(精选课件)

有关圆锥曲线的经典结论★说明:圆锥曲线我们并未学完,有些内容(如焦半径公式),将此资料发到群里是想让大家在日常学习过程中自我感悟使用,不要过分纠结于此!有关解析几何的经典结论一、椭 圆1.点P 处的切线PT平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线P T上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点..3..4. 以焦点弦PQ 为直径的圆必与对应准线相离。

5.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.6. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y y a b+=.7. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P1P2的直线方程是00221x x y yab+=. 8. 椭圆22221x y a b+= (a〉b >0)的左右焦点分别为F 1,F2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.9. 椭圆22221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).10. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥N F..11..12. 过椭圆一个焦点F 的直线与椭圆交于两点P、Q , A 1、A 2为椭圆长轴上的顶点,A 1P和A 2Q 交于点M,A 2P和A 1Q 交于点N ,则MF ⊥NF 。

.13..14. A B是椭圆22221x y a b+=的不平行于对称轴的弦,M),(00y x 为AB 的中点,则22OM AB b k k a⋅=-,即0202y a x b K AB -=.15. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.16. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+.二、双曲线1.点P 处的切线PT 平分△PF 1F 2在点P 处的内角。

重要但常不为人知道的几何定理

重要但常不为人知道的几何定理

阿基米德折弦定理:AB和BC是⊙O的两条弦(即ABC是圆的一条折弦),BC〉AB,M是弧ABC的中点,则从M向BC所作垂线之垂足D是折弦ABC的中点,即CD=AB+BD.从圆周上任一点出发的两条弦,所组成的折线,我们称之为该图的一条折弦.角平分线定理定理1:角平分线上的点到这个角两边的距离相等。

该命题逆定理成立:在角的内部到一个角的两边距离相等的点在这个角的角平分线上。

定理2:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例。

该命题逆定理成立:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线.xv=uy燕尾定理因此图类似燕尾而得名,是五大模型之一,是一个关于三角形的定理(如图△ABC,D、E、F 为BC、CA、AB 上点,满足AD、BE、CF 交于同一点O)。

S△ABC中,S△AOB:S△AOC=S△BDO:S△CDO=BD:CD;同理,S△AOC:S△BOC=S△AFO:S△BFO=AF:BF;S△BOC:S△BOA=S△CEO:S△AEO=EC:AE。

推论:共边比例定理:四边形ABCD(不一定是凸四边形),设AC,BD相交于E,则有BE :DE=S△ABC :S△ADC。

此定理是面积法最重要的定理.典型例题:如图三角形ABC的面积是10平方厘米,AE=ED,BD=2DC,则阴影部分的面积是_____平方厘米.答案:4解析:过D作DM‖BF交AC于M(如图)因为BD=2DC,因为AE=DE,所以△ABE的面积与△DBE的面积相等,所以阴影部分的面积为△DBE的面积+△AEF的面积,即三角形AFB的面积,由DM‖BF知道△DMC相似△CBF 所以CM:CF=CD:CB=1:3,即FM=CF,因为EF是△ADM的中位线,AF=MF,所以AF=AC,由此即可求出三角形AFB的面积,即阴影部分的面积.解:过D作DM‖BF交AC于M(如图)因为BD=2DC,因为AE=DE,所以△ABE的面积与△DBE的面积相等所以阴影部分的面积为△DBE的面积+△AEF的面积DM‖BF所以△DMC相似△CBF 所以CM:CF=CD:CB=1:3即FM=CF因为EF是△ADM的中位线,AF=MF,所以AF=AC所以△ABF的面积10×=4(平方厘米)即阴影部分的面积(即△DBE的面积加△AEF的面积)等于4平方厘米答:阴影部分的面积是4平方厘米,故答案为:4.共角定理:若两三角形有一组对应角相等或互补,则它们的面积比等于对应两边乘积的比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线与射影几何
射影几何是几何学的重要内容,射影几何中的一些重要定理与结论往往能运用在欧式几何中,有利于我们的解题。

在这里,我们将对解析几何中一些常见的圆锥曲线问题进行总结,并给中一些较为方便的解法。

例1:设点C(2,0)B(1,0),A(-1,0),, D 在双曲线12
2=-y x 的左支上,A D ≠,直线
CD 交双曲线122=-y x 的右支于点E 。

求证:直线AD 与直线BE 的交点P 在直
线2
1=
x 上。

如果是用解析几何的做法,这将是非常麻烦的。

但是如果用射影几何的知识求解,将会有意想不到的效果。

我们知道,圆与圆锥曲线在摄影变换下是可以互相转换的。

我们先不考虑题目中的数据与特殊的关系,仅仅考虑点线之间的位置关系,那么题设变成:
有一点
A 在一条双曲线内部,过A 引两条直线与双曲线分别交于
B ,
C ,
D ,
E 。


BD ,CE 交于点P ,且P 点在四边形BCDE 外部。

又因为双曲线与圆在射影几何中属同一个变换群,所以可以将双曲线变为圆。

如图1 连
BE ,CD 交于点Q ,连PQ ,先证明:直线PQ 是A 点的极线。

D
证明: 对
C 于'C 重合,B 于'B 重合的六边形''EBB DCC 用帕斯卡定理得:
DC 于EB 的交点Q ,'CC 于'BB 的交点M ,E C '于'DB 的交点P 三点共线,
同理P ,Q ,N 三点共线
所以
P ,Q ,M ,N 四点共线。

又因为
BC 是M 的极线,DE 是N 的极线,所以MN 是BC 与DE 的交点A
的极线,即
PQ 是A 的极线。

回到原图,由极线的定义与性质得
PQ OA ,且FAGH
为调与点列。

有了前面的铺垫再证例1就简单了。

证明: 过
P 点作X PH ⊥轴,则PH 是C 点的极线,AHBC 为调与点列 因为
A (-1,0),
B (1,0),
C (2,0)
所以H (2
1,0)

P 在直线2
1=x 上
关于极线的知识,下文仍有用到,这里不再叙述。

例2:
M 是抛物线)0(22≥=p px y 的准线上的任意点,过M 点作抛物线的切线
1l ,2l ,切点分别为A ,B (A 在X 轴的上方)。

(1) 求证:直线AB 过定点。

(2) 过
M 作X 轴的平行线l 与抛物线交于P ,与AB 交于Q .
证明
PQ MP =。

证明:
(1)同例一,我们很容易得到AB 是M 的极线。

在准线上再取一点N ,过N 点作抛物线的切线3l ,4l ,切点为C ,D ,CD 为N 的极线
所以
AB ,CD 的交点E 的极线为MN 即直线
AB 过定点E
(2)易得M ,P ,Q ,以及l 与抛物线另一端的交点∞M 为调与点列。

因为∞M 是无穷远点
所以
PQ MP =,证毕。

仿射几何是射影几何的“子几何”,相对与射影几何,仿射几何有着更为丰富的性质。

例3:已知椭圆122
22
=+b
y a x ,求这个椭圆内接三角形的面积的最大值。

对于例3,因为面积不是射影不变量,所以我们不能单单用射影变换来解题。

我们可以对变
换的条件加以限制,使之变成仿射变换,欧式平面上两个几何图形的面积比是仿射不变量。

证明:我们把平面直角坐标系中的每一个点
),(y x 变成)','(y x ,其中
x x =',
ay y ='
显然,当
'''M Q P ∆为正三角形时,面积最大。

此时
2
4
33'''a S M Q P =∆
根据仿射变换的性质,
a
b
S S M Q P PQM =∆∆''' 所以ab S PQM 4
3
3=∆ 例4:作斜率为3
1的直线l 与椭圆C :143622=+y x 交于A ,B 两点,且)2,23(P 在直线的左上方。

求证:
PAB ∆的内切圆圆心在一条定直线上。

证明:由于关于椭圆的计算比较烦杂,我们仍对椭圆作仿射变换。

我们把平面直角坐标系中的每一个点
),(y x 变成)','(y x ,其中
','
猜想这条定直线平行于Y 轴

PH 垂直于X 轴,与AB 交点为C ,过P 点作X 轴的平行线与AB 交于D 。

若猜想成立,由于︒=∠90CPD ,则ACBD 为调与点列
现在证明
ACBD 为调与点列:

),23(a C ,易得)23,26(a D -,x a y OC 2
3=
过过D 点作⊥DE OC ,垂足为E ,a
x a y DE
3623+-= 将两条直线方程联立,解出
E 的横坐标为2182108a
+ 所以
⋅+=⋅22)23(a OE OC ⋅+2)23(
1(a
36)1821082=+a 所以D 的极线过C 点,即ACBD 为调与点列 由于︒=∠90CPD ,则CPB APC ∠=∠
所以
PAB ∆的内切圆圆心在PC 上
其实,类似的题目还有很多,这里不再叙述。

学几何,我们不能局限于解析几何,有时可以跳出来,从几何的本质入手,这样跟有利于我们学习数学。

相关文档
最新文档