习题12偏导数的几何应用
第7-5节(隐函数的求导法则、偏导数的几

切线方程为
x − x 0 y − y0 z − z 0 = = , 1 φ ′ ( x 0 ) ψ ′( x 0 )
法平面方程为
( x − x0 ) + φ ′( x0 )( y − y0 ) + ψ ′( x0 )( z − z0 ) = 0.
江西理工大学理学院
将所给方程的两边对 y 求导,用同样方法得
∂u xv − yu = 2 , 2 ∂y x + y ∂v xu + yv =− 2 . 2 x +y ∂y
江西理工大学理学院
三、偏导数的几何应用之 空间曲线的切线与法平面
⎧ x = φ (t ) ⎪ 设空间曲线的方程 ⎨ y = ψ ( t ) ⎪ z = ω (t ) ⎩ (1)
例6
求曲线 Γ : x = ∫0 e cos udu , y = 2 sin t
u
3t
t
+ cos t , z = 1 + e 在 t = 0处的切线和法平面方程.
解 当 t = 0时, x = 0, y = 1, z = 2,
′ = e t cos t , y′ = 2 cos t − sin t , z′ = 3e 3t , x
⇒ x′(0) = 1,
y ′ ( 0 ) = 2, z ′ ( 0 ) = 3,
x −0 y −1 z − 2 切线方程 = = , 1 2 3 法平面方程 x + 2( y − 1) + 3( z − 2) = 0,
即 x + 2 y + 3 z − 8 = 0.
江西理工大学理学院
特殊地:
⎧ y = φ ( x) , 1.空间曲线方程为 ⎨ ⎩z = ψ ( x)
第7-6节(偏导数的几何应用(二)、方向

第 六 节
偏导数的几何应用(二)
方向导数与梯度
江西理工大学理学院
一、曲面的切平面与法线
设曲面方程为
F ( x, y, z ) = 0
在曲面上任取一条通 过点M的曲线
r n
M
r T
⎧ x = φ (t ) ⎪ Γ : ⎨ y = ψ ( t ), ⎪ z = ω (t ) ⎩ r 曲线在M处的切向量 T = {φ ′( t 0 ), ψ ′( t0 ), ω ′( t0 )},
F ( x , y , z ) = z − e z + 2 xy − 3, 解 令
Fx′ (1, 2 , 0 ) = 2 y (1, 2 , 0 ) = 4, Fy′ (1, 2 , 0 ) = 2 x (1, 2 , 0 ) = 2,
Fz′ (1, 2 , 0 ) = 1 − e z (1, 2 , 0 ) = 0,
解 设 ( x0 , y0 , z0 ) 为曲面上的切点,
切平面方程为
2 x 0 ( x − x 0 ) + 4 y0 ( y − y0 ) + 6 z 0 ( z − z 0 ) = 0
依题意,切平面方程平行于已知平面,得
2 x 0 4 y0 6 z 0 = = , ⇒ 2 x 0 = y0 = z 0 . 1 4 6
切平面方程为
Fx ( x0 , y0 , z0 )( x − x0 ) + F y ( x0 , y0 , z0 )( y − y0 ) + Fz ( x0 , y0 , z0 )( z − z0 ) = 0
江西理工大学理学院
通过点 M ( x 0 , y 0 , z 0 ) 而垂直于切平面的直线 称为曲面在该点的法线.
偏导数的几何应用

Fx (x0 , y0 , z0 ) (x x0 ) Fy (x0 , y0 , z0 ) ( y y0 )
法线方程
Fz (x0, y0, z0 )(z z0 ) 0
x x0 y y0 z z0 Fx (x0 , y0 , z0 ) Fy (x0 , y0 , z0 ) Fz (x0 , y0 , z0 )
F ( x, G( x,
y, z) y, z)
0 ,
0
切线方程为
x x0 y y0 z z0 ,
Fy Fz
Fz Fx
Fx Fy
Gy Gz 0 Gz Gx 0 Gx Gy 0
法平面方程为
Fy Gy
Fz Gz
(x
0
x0 )
Fz Gz
0.
Fx Gx
(y
0
y0 )
二、空间曲面的切平面与法线
设曲面方程为
F(x, y,z) 0
n
T
在曲面上任取一条通
M
过点M的曲线
x (t)
:
y
(t
),
z (t)
曲线在M处的切向量 T {(t0 ), (t0 ), (t0 )},
令 n {Fx (x0 , y0 , z0 ), Fy (x0 , y0 , z0 ), Fz (x0 , y0 , z0 )}
第七节 偏导数的几何应用
一、空间曲线的切线与法平面 二、曲面的切平面与法线
复习: 平面曲线的切线与法线
已知平面光滑曲线
在点 (x0, y0 )有
切线方程 y y0 f (x0 )(x x0 )
12-5 偏导数在几何中的应用

教学重点:
偏导数与全微分的概念; 各种类型函数的偏导数与全微分求法。 偏导数的应用。
要求:
1、掌握多元复合函数的一阶、二阶偏导数, 会求全微分,会求多元隐函数(组)的偏导数。
2、会求方向导数和梯度。会解多元函数偏导 数的基本应用题。
第五节 偏导数在几何中的应用
(t0 )
y y0
(t0 )
z z0
(t0 )
(t0 )( x x0 ) (t0 ) ( y y0 ) (t0 )( z z0 ) 0
F ( x, y , z ) 0 2) 一般式情况. 空间光滑曲线 : G ( x, y, z ) 0
T ( (t0 ) , (t0 ) , (t0 ))
M
T
r (t )
称为曲线的切向量 . 也是法平面的法向量, 因此得法平面方程
o
(t0 )( x x0 ) (t0 ) ( y y0 ) (t0 )( z z0 ) 0
说明: 若引进向量函数 r (t ) ( (t ) , (t ) , (t ) ) , 则 为 r (t) 的矢端曲线, 而在 t0处的导向量
M
法平面方程
(F , G) ( y, z )
M
( x x0 )
(F , G) ( x , y )
(F , G) ( z , x)
M
( y y0 )
( z z0 ) 0
M
2. 曲面的切平面与法线
1) 隐式情况 . 空间光滑曲面 曲面 在点 的法向量
n ( Fx ( x0 , y0 , z0 ) , Fy ( x0 , y0 , z0 ) , Fz ( x0 , y0 , z0 ))
数学分析习题及答案 (50)

习 题 12.5 偏导数在几何中的应用1. 求下列曲线在指定点处的切线与法平面方程:(1)⎪⎩⎪⎨⎧+==.1,2x x z x y 在⎪⎭⎫⎝⎛21,1,1点; (2)⎪⎪⎩⎪⎪⎨⎧=-=-=.2sin 4,cos 1,sin tz t y t t x 在2π=t 的点;(3)⎩⎨⎧=++=++.6,0222z y x z y x 在)1,2,1(-点;(4)⎩⎨⎧=+=+.,222222R z x R y x 在⎪⎭⎫⎝⎛2,2,2R R R 点。
解 (1)曲线的切向量函数为21(1,2,)(1)x x +,在⎪⎭⎫⎝⎛21,1,1点的切向量为1(1,2,)4。
于是曲线在⎪⎭⎫⎝⎛21,1,1点的切线方程为)12(41)1(2-=-=-z y x ,法平面方程为252168=++z y x 。
(2)曲线的切向量函数为(1cos ,sin ,2cos )2tt t -,在2π=t 对应点的切向量为。
于是曲线在2π=t 对应点的切线方程为222112-=-=+-z y x π, 法平面方程为(1)(1)2x y z π-++-+-=402x y π++--=。
(3)曲线的切向量函数为2(,,)y z z x x y ---,在)1,2,1(-点的切向量为(6,0,6)-。
于是曲线在)1,2,1(-点的切线方程为⎩⎨⎧-==+22y z x , 法平面方程为z x =。
(4)曲线的切向量函数为4(,,)yz xz xy --,在⎪⎭⎫⎝⎛2,2,2R R R 点的切向量为22(1,1,1)R --。
于是曲线在⎪⎭⎫⎝⎛2,2,2R R R点的切线方程为222R z R y R x +-=+-=-,法平面方程为022=+--R z y x 。
2.在曲线32,,t z t y t x ===上求一点,使曲线在这一点的切线与平面102=++z y x 平行。
解 曲线的切向量为2(1,2,3)t t ,平面的法向量为(1,2,1),由题设,22(1,2,3)(1,2,1)1430t t t t ⋅=++=,由此解出1t =-或13-,于是)1,1,1(-- 和 )271,91,31(--为满足题目要求的点。
偏导数的应用 ()

一、偏导数的几何应用1.空间曲线的切线和法平面 设空间曲线L 的参数方程为()()()x x t y y t z z t =⎧⎪=⎨⎪=⎩假定(),(),()x t y t z t 均可导,'''000(),(),()x t y t z t 不同时为零,曲线上对应于0t t =及0t t t =+∆的点分别为0000(,,)M x y z 和000(,,)M x x y y z z +∆+∆+∆.割线0M M 的方程为000x x y y z z x y z---==∆∆∆ 当M 沿着曲线L 趋于0M 时,割线的极限位置0M T 是L 在0M 处的切线.上式分母同除以t ∆得000x x y y z z t t t---==∆∆∆ 当0t ∆→(即0M M →)时,对上式取极限,即得曲线在0M 点的切线方程000'''000()()()x x y y z z x t y t z t ---==向量'''000{(),(),()}x t y t z t =T 是切线0M T 的方向向量,称为切线向量.切线向量的方向余弦即为切线的方向余弦. 通过点0M 与切线垂直的平面称为曲线在0M 点的法平面.它是通过点0000(,,)M x y z ,以切线向量T 为法向量的平面.因此,法平面方程为'''000000()()()()()()0x t x x y t y y z t z z -+-+-= 【例1】求螺旋线cos ,sin ,x t y t z t ===在点(1,0,0)的切线及法平面方程.解 点(1,0,0)对应的参数0t =.因为'''()sin ,()cos ,()1x t t y t t z t =-==,所以切线向量'''{(0),(0),(0)}{0,1,1}x y z ==T ,因此,曲线在点(1,0,0)处的切线方程为100011x y z ---== 在点(1,0,0)处的法平面方程为0(1)1(0)1(0)0x y z ⨯-+⨯-+⨯-=即 0y z += 【例2】 求曲线sin ,,2x y x z ==上点0,2π⎛⎫⎪⎝⎭处的切线和法平面方程.解 把x 看作参数,此时曲线方程为sin 2x x y x x z ⎧=⎪⎪=⎨⎪⎪=⎩ '''11,cos 1,2x x x x x y x z ππππ=======-=在点,0,2ππ⎛⎫⎪⎝⎭处的切线方程为 021112z x y ππ---==-法平面方程为1()(0)()022x y z ππ---+-=即 4425x y z π-+=2.曲面的切平面与法线 设曲面S 的方程为0000(,,)0,(,,)F x y z M x y z =是曲面上的一点,假定函数(,,)F x y z 的偏导数在该点连续且不同时为零,设L 是曲面S 上过点0M 的任意一条曲线,L 的方程为(),(),()x x t y y t z z t ===,与点0M 相对应的参数为0t ,则曲线L 在0M 处的切线向量为'''000{(),(),()}x t y t z t =T .因L 在S 上,故有[(),(),()]0F x t y t z t =此恒等式左端为复合函数,在0t t =时的全导数为0''''''000000000000(,,)()(,,)()(,,)()0t t x y z dF F x y z x t F x y z y t F x y z z t dt==++= 记'''000000000{(,,),(,,),(,,)}x y z F x y z F x y z F x y z =n ,则0⋅=T n ,即n 与T 互相垂直.由于曲线L 是曲面上过0M 的任意一条曲线,所以在曲面S 上所有过0M 点的曲线的切线都与同一向量n 垂直,故这些切线位于同一个平面上.这个平面称为曲面在0M 处的切平面.向量n 是切平面的法向量,称为曲面在0M 处的法向量.切平面方程为'''000000000000(,,)()(,,)()(,,)()0x y z F x y z x x F x y z y y F x y z z z -+-+-=过点0M 与切平面垂直的直线,称为曲面S 在点0M 处的法线,其方程为000'''000000000(,)(,)(,)x y z x x y y z z F x y z F x y z F x y z ---==若曲面方程由(,)z f x y =给出,则可令(,,)(,,)0F x y z f x y z z =-=于是''''',,1x x y y z F f F f F ===-这时曲面在0000(,,)M x y z 处的切平面方程为''0000000(,)()(,)()()0x y f x y x x f x y y y z z -+---=法线方程为000''0000(,)(,)1x y x x y y z z f x y f x y ---==-【例3】求椭球面222326x y z ++=在点(1,1,1)处的切平面和法线方程.解 设222(,,)326F x y z x y z =++-''''''(,,)2,(,,)6,(,,)4(1,1,1)2,(1,1,1)6,(1,1,1)4x y z xyzF x y z x F x y z y F x y z z F F F ======故在点(1,1,1)处椭球面的切平面方程为 2(1)6(1)4(1)0x y z -+-+-= 即3260x y z ++-=法线方程为111132x y z ---== 【例4】 求旋转抛物面22z x y =+在点(1,1,2)-处的切平面方程和法线方程.解 由22z x y =+得''(1,1)(1,1)(1,1)22,(1,1)22x y f xf y---==-==-切平面方程为 22(1)2(1)z x y -=--+ 即222x y z --= 法线方程为112221x y z -+-==--二、多元函数极值1. 二元函数的极值【例5】 曲面z =在点(0,0)有极小值0z =.【例6】 曲面2244z x y =--在点(0,0)有极大值4z =.与一元函数极值类似,多元函数的极值也是相对某个邻域而言的,是一个局部概念.定义1 设函数(,)z f x y =在点00(,)x y 的某个邻域内有定义,若对改邻域内任一点(,)x y 都有00(,)(,)f x y f x y ≤(或00(,)(,)f x y f x y ≥)则称函数(,)z f x y =在点00(,)x y 有极大值(或极小值)00(,)f x y .而称点00(,)x y 为函数(,)z f x y =的极大(或极小)值点.极大值点与极小值点统称极值点.2.极值的检验法 (1) 一阶偏检验定理1 (必要条件)设函数(,)z f x y =在点00(,)x y 处有极大值,且在该点的偏导数存在,则必有''0000(,)0,(,)0x y f x y f x y ==.证明不妨设(,)z f x y =在点00(,)x y 处有极大值,根据极值定义,对00(,)x y 的某一邻域内的任一点(,)x y ,有00(,)(,)f x y f x y ≤在点00(,)x y 的邻域内,也有000(,)(,)f x y f x y ≤,这表明一元函数0(,)f x y 在0x x =处取得极大值.因此,有'00(,)0x f x y =同理可证'00(,)0y f x y =与一元函数类似,使一阶偏导数''0000(,)0,(,)0x y f x y f x y ==的点(,)x y 称为函数(,)z f x y =的驻点.由定理1及例5、例6可以看出:二元函数的极值点必然是驻点或一阶偏导数不存在的点. (2) 二阶偏检验定理2 (充分条件)设函数(,)z f x y =在定义域内的一点00(,)x y 处有二阶连续偏导数,且''0000(,)0,(,)0x y f x y f x y ==.记''''''000000(,),(,),(,)xx xy yy f x y A f x y B f x y C ===,则(1) 当20B AC -<且0A >时,函数(,)f x y 在点00(,)x y 处有极小值00(,)f x y ;当20B AC -<且0A <时,函数(,)f x y 在点00(,)x y 处有极大值00(,)f x y ;(2) 当20B AC ->时,函数(,)f x y 在点00(,)x y 处无极值;(3) 当20B AC -=时,函数(,)f x y 在点00(,)x y 处可能有极值,也可能无极值. 综上可得,具有连续二阶偏导数的函数(,)z f x y =,其极值求法如下:(1) 先求出偏导数'''''',,,x y xx yyf f f f ; (2) 解方程组''(,)0(,)0x y f x y f x y ⎧=⎪⎨=⎪⎩,求出定义域内全部驻点;(3) 求出驻点处的二阶偏导数值:'''''',,xx xy yy A f B f C f ===,确定2B AC ∆=-的符号,并判断()f x 是否有极值,如果有,求出其极值.【例7】 求函数33(,)3f x y x y xy =+-的极值.解 先求偏导数'2'2''''''(,)33,(,)336,3,6x y xxxyyyf x y x y f x y y x f x f f y=-=-==-=解方程组22330330x y y x ⎧-=⎨-=⎩,求得驻点为(0,0),(1,1).在驻点(0,0)处,''''''(0,0)0,(0,0)3,(0,0)0xx yy yy A f B f C f ====-==,2B AC -= 90>,于是(0,0)不是函数的极值点.在驻点(1,1)处,''''''2(1,1)6,(1,1)3,(1,1)6,27xx xy yy A f B f C f B AC ====-==-=- 0<,且60A =<,所以点(1,1)是函数的极小值点,(1,1)1f =-为函数的极小值.3.最大值与最小值如果函数(,)z f x y =在有界闭区域D 上连续,则函数在D 上一定取得最大值和最小值.如果函数的最大值或最小值在区域D 的内部取得,则最大值点或最小值点必为驻点.因此,求处驻点的函数值及边界上函数的最大值和最小值,其中最大值便是函数在闭区域D 上的最大值,最小值便是函数在闭区域D 上的最小值.具体问题中,常常通过分析可知函数的最大值或最小值存在,且在定义域内部取得,又知在定义域内只有唯一驻点,于是可以肯定驻点处的函数值便是函数的最大值或最小值. 【例8】求函数(,)f x y =22:1D x y +≤上的最大值.解 在D 内(221x y +<),由''0,0x y f f ====解得驻点为(0,0),(0,0)2f =.在D 的边界上(221x y +=)221(,)2x y f x y +===<故函数在(0,0)处有最大值(0,0)2f =. 【例9】 要做一容积为a 的无盖长方体铁皮容器,问如何设计最省材料? 解 所谓最省材料,即无盖长方体表面积最小.该容器的长、宽、高分别为,,x y z ,表面积为S ,则有xyz a =22S xy xz yz =++消去z ,得表面积函数22a a S xy y x=++ 其定义域为0,0x y >>由'2'22020x y a S y x a S x y ⎧=-=⎪⎪⎨⎪=-=⎪⎩,求得驻点为.由于D 为开区域,且该问题必有最小值存在,于是必为S 的最小值点,此时a z xy==即长方体长、宽、高分别为,容器所需铁皮最少,其表面积为S =. 【例10】某公司每周生产x 单位A 产品和y 单位B 产品,其成本为22(,)221000C x y x xy y =+++产品,A B 的单位售价分别为200元和300元.假设两种产品均很畅销,试求使公司获得最大利润的这两种产品的生产水平及相应的最大利润. 解 依题意,公司的收益函数为(,)200300R x y x y =+因此,公司的利润函数为22(,)(,)(,)200300221000P x y R x y C x y x y x xy y =-=+----令''(,)200220(,)300240x yP x y x y P x y x y ⎧=--=⎪⎨=--=⎪⎩,得驻点(50,50).利用二阶偏检法,求二阶偏导数''''''(,)2,(,)2,(,)4xx xy yy P x y P x y P x y =-=-=-,显然二阶偏导数在驻点(50,50)的值为22,2,4,40,20A B C B AC A =-=-=--=-<=-<。
高数第五节 偏导数的几何应用

偏导数的 几何应用
一、复习直线与平面
1. 直线L的方程:
对称式、点向式方程
一般式方程
x x0 y y 0 z z 0 p n m
A 1 x B 1 y C1 z D 1 0 或 A 2 x B 2 y C2 z D2 0
2. 平面Π的方程: B1 方向向量 {p, n, m}或S { S 一般式方程 B2
Ax By Cz D 0 A(x x0 ) B(y y 0 ) C(z z 0 ) 0 n 3. 空间曲线Γ的方程:法向量 { C1 A 1 A 1 B1 , 点法式方程 , }平行于L。 C2 C2 A 2 A 2 B 2
曲面的切平面与法线举例 x2 y 2 z 2 a b c 例3 求椭球面 椭: 2 2 2 1在点( , , )处的切平面 切 a b c 3 3 3
x2 y 2 z 2 解:设F( x, y , z ) 2 2 2 1 a b c 2x 2 2y 2 2z Fx 2 , Fy 2 , Fz 2 a x a a 3 b y b b 3 c
x 1 y2 z 1 L切: 1 0 1
法: 6(x 1) 0 ( y 2) 6(z 1) 0 即:x z 0
讨论 : 将的参数方程中的参变量取为y或z,能否求出s切 ?
1. 一般空间曲面
三、曲面的切平面与法线
设空间曲面 : F( x, y , z ) 0, 如果Fx、Fy、Fz在P0 ( x 0 , y 0 , z 0 )连续, 则在P0点有切平面: (其法向量 {Fx , Fy , Fz }) n 切方程为: x ( P0 )( x x 0 ) Fy ( P0 )( y y 0 ) Fz ( P0 )( z z 0 ) 0 F
偏导数的概念及应用

解
z x
1
1 x2
x2
y2
x x2
y2
x
x2 y2
y2
| y|
( x2 y2 )3
| x2
y
| y
2
.
( y2 | y |)
z y
1
1 x2
x2
y2
x x2
y2
y
x2 y2 ( xy)
| y|
( x2 y2 )3
x2
x
y2
sgn
1 y
( y 0)
z 不存在. y x0
例 6 验证函数u( x, y) ln x2 y2 满足拉普拉
斯方程
2u x 2
2u y2
0.
解 ln x2 y2 1 ln( x2 y2 ), 2
u x
x2
x
y2
,
u y
x2
y
y2
,
2u x 2
(
x2
y2) (x2
x y2 )2
2x
(
y2 x2
x2 y2 )2
,
2u y2
(1
xy) y ln(1
xy)
xy 1 xy ;
2、u z( x y)z1
,
u
z(x
y ) z 1 ,
x 1 ( x y)2z y 1 ( x y)2z
u ( x y) ln( x y) . z 1 ( x y)2z
三、 .
4
四、 2 z
yx
ln 2
2z y,
f (x, y,z),
f ( x, y, z z) f ( x, y, z)