分子结构与晶体结构

分子结构与晶体结构
分子结构与晶体结构

第七章分子结构与晶体结构

第一节离子键

一、离子键的形成和特征

1、离子键的形成

电负性I1或Y1(KJ/mol)

电离能很小的金属原子:Na 0.9 496

K 0.8 419

电子亲合能很大的非金属原子:Cl 3.0 -348.8

O 3.5 -141

电负性相差大的元素相遇,一失电子,一得电子,它们之间以静电引力相结合,形成离子键。

④:阳阴离子间具有静电引力,两原子的电子云间存在排斥力,两原子核间存在相互排斥力,当两原子接近到一定距离,引力=斥力,(此时整个体系能量最低),形成离子键。

2、离子键的特征

① 本质:阴、阳离子间的静电引力

② 无方向性、饱和性

只要空间允许,尽可能多地吸引带相反电荷的离子(任何方向,尽可能多)。但总体来说,有一定比例。

二、离子的特性

1、离子的电荷

离子化合物AmBn:A n+,B m-

+n﹥+3,很少见

2、离子的电子层结构

简单阴离子的电子构型,一般与同周期希有气体原子电子层构型相同。

简单的阳离子构型:

3、离子半径

将阴阳离子看成是保持着一定距离的两个球体。

d = r+ + r-单位:pm(10-12m)

规律:

①同一元素:

负离子半径>原子半径>正离子半径

低价负离子半径>高价负离子半径

低价正离子半径>高价正离子半径

例:

②同一周期

从左到右,阳离子:正电荷数↑,半径↓

阴离子:负电荷数↓,半径↓

③同一主族

电荷数基本相同,从上到下,半径↑(∵电子层增加)

离子半径↓,离子间引力↑,离子键强度↑,熔、沸点↑,硬度↑

第二节共价键理论

1916年,路易斯提出共价键理论。

靠共用电子对,形成化学键,得到稳定电子层结构。

定义:原子间借用共用电子对结合的化学键叫作共价键。

对共价键的形成的认识,发展提出了现代价键理论和分子轨道理论。

一、价键理论(电子配对法)

1、氢分子共价键的形成和本质(应用量子力学)

当两个氢原子(各有一个自旋方向相反的电子)相互靠近,到一定距离时,会发生相互作用。每个H原子核不仅吸引自己本身的1s电子还吸引另一个H原子的1s电子,平衡之前,引力>排斥力,到平衡距离d,能量最低:E0﹤2E,形成稳定的共价键。

H原子的玻尔半径:53pm,说明H2分子中两个H原子的1S轨道必然发生重叠,核间形成一个电子出现的几率密度较大的区域。这样,增强了核间电子云对两核的吸引,削弱了两核间斥力,体系能量降低,更稳定。

(核间电子在核间同时受两个核的吸引比单独时受核的吸引要小,即位能低,∴能量低)

2、价键理论要点

① 要有自旋相反的未配对的电子

H↑+ H↓ -→ H↑↓H 表示:H:H或H-H

② 电子配对后不能再配对即一个原子有几个未成对电子,只能和同数目的自旋方向相反的未成对电子成键。如:N:2s22p3,N≡N或NH3

这就是共价键的饱和性。

③ 原子轨道的最大程度重叠

(重叠得越多,形成的共价键越牢固)

3、共价键的类型

①σ键和π键(根据原子轨道重叠方式不同而分类)

s-s :σ键,如:H-H

s-p :σ键,如:H-Cl

p-p :σ键,如:Cl-Cl π键,

单键:σ键

双键:一个σ键,一个π键

叁键:一个σ键,两个π键

例:N≡N

σ键的重叠程度比π键大,∴π键不如σ键牢固。

σ键π键

原子轨道重叠方式头碰头肩并肩

能单独存在不能单独存在

沿轴转180O符号不变符号变

牢固程度牢固差

含共价双键和叁键的化合物重键容易打开,参与反应。

②非极性共价键和极性共价键

根据共价键的极性分(电子云在两核中的分布),由同种原子组成的共价键为非极性共价键。例: H2 ,O2 ,N2等

一般来说,不同种原子组成的共价键为极性共价键。

例: HCl,H2O,NH3等

共价键极性的强弱,可由成键原子的电负性的大小来表示。

极性共价键是非极性共价键和离子键的过渡键型。

③配位共价键(配位键)

原子或离子有空轨道有孤对电子

配位键的离子或分子很普遍(第九章)

二、键参数

表征共价键的物理量叫键参数。

键能:共价键的强度

键长、键角:以共价键形成的分子的空间构型(几何构型)

1、键能:衡量共价键强弱的物理量。

指298.15K,101.3KPa条件下,

AB(g)-→ A(g)+ B(g)所需的E(KJ/mol)

双原子分子,其键能 = 离解能D,如Cl2,HCl

多原子分子,指的是平均键能:

例:CH4 D1 = 435.1KJ/mol; D2 = 443.5KJ/mol; D3 = 443.5KJ/mol; D4 = 338.9KJ/mol;E(C-H)= (D1 + D2 + D3 + D4)/4= 415.25 KJ/mol

2、键长(用X射线法):

成键的两个原子核之间的距离。

两个原子共价半径之和 = 键长

键长越短,键能越大,共价键越牢固。

3、键角

键长和键角确定,分子构型就确定了。

价键理论比较简明地阐述了共价键的形成过程和本质,并成功地解释了共价键的饱和性和方向性,但在解释分子的空间构型(结构)方面发生一定困难。

第三节杂化轨道理论和分子的几何构型

CH4,C的四价问题

1931年,Pauling、Slater在价键理论的基础上,提出杂化轨道理论。

一、杂化轨道的概念

①什么叫杂化轨道?

能量相近的原子轨道混合起来,重新组成一组能量相同的轨道,这一过程,称原子轨道杂化,组成的新轨道叫杂化轨道。

② 原子轨道杂化后,使一头肥大,电子云分布更集中,成键能力更强。

原子轨道杂化轨道

成键能力:S ﹤ P ﹤ SP ﹤ SP2﹤ SP3

二、杂化轨道的类型和分子的几何构型

① SP杂化和分子的几何构型

例: HgCl2

Hg 5d106s2

BeCl2,ⅡB族形成的AB2型分子都为直线形。

② SP2杂化和分子的几何构型

例:BF3

③ SP3杂化和分子的几何构型

例:CCl4

如CH4,SiH4,SiCl4,CCl4等

三、不等性杂化

1、有孤对电子参加的不等性杂化

①H2O分子的几何构型

孤对电子不成键,能量较低,对成键电子云排斥更大,使两个O-H键角压缩成104.5O,(而正四面体型为109.5O)(两孤对电子之间夹角>109.5O)

斥力:

孤对电子-孤对电子>孤对电子-成键电子>成键电子-成键电子

②NH3的几何构型

2、无孤对电子参加的不等性杂化

C2H4的分子构型:--部分杂化

三个sp2杂化轨道与两个H及另一个C成σ键,一个p轨道与C成π键。

第四节晶体的特征

一、晶体的一般概念

1、晶体与非晶体

晶体:固体内部微粒(原子、分子或离子)呈有规则的空间排列。

非晶体:固体内部微粒(原子、分子或离子)排列毫无规则。

如玻璃、沥青、炉渣、石蜡等

2、晶体的特性

① 有一定的几何外形(指晶体外形,与物质外观有区别)

② 有固定的熔点(纯晶体)

③ 各向异性:

指在不同方向上有不同的光学、电学、热学等性质。

例如石墨沿层方向易断裂,层方向的导电率高于竖方向导电率近1万倍。这是由于其层状结构决定的。

∴结构决定性质。非晶体无上述特性。

二、晶体内部结构

根据X射线对晶体物质的研究,晶体是由组成晶体的微粒(分子、原子或离子)在三维空间中作有规则排列而组成的。

1、微粒在空间有规则地重复构成了一定的几何形状,称为晶格;

2、在晶体中切割出一个能代表晶格一切特征的最小单元,称为晶胞。

注意:晶胞与周围晶胞都是以离子键结合;正立方体型晶格,为面心立方晶胞。

结点:微粒排列在结点上,结点的总和构成晶格。

晶胞在空间上、下、左、右、前、后重复排列就形成宏观的晶体。

根据微粒的不同,晶体可分为:

晶体结点上排列的微粒种类微粒间作用力

离子晶体阴、阳离子静电作用

原子晶体原子共价键

分子晶体分子范德华力、氢键

金属晶体金属原子金属键

第五节离子晶体

一、离子晶体的特征

1、由于正、负离子静电作用较强(离子键的键能较大),所以离子晶体一般有较高的熔(b.p.)、沸点(m.p.)

2、熔、溶状态有优良的导电性

3、不存在单个分子,(NaCl)n NaCl:是化学式。

二、离子晶体的类型

离子种类不同,离子间的排列是多种多样的。

三类典型结构:

配位数晶体类型实例

4 ZnS型ZnO,BeS,CuI等

6 NaCl型Li+,Na+,K+,Rb+的卤化物

Mg2+,Cu2+,Sr2+,Ba2+的氧化物和硫化物

8 CsCl型CsBr,CsI,TiCl等

配位数:晶体内任一离子或原子周围最接近的其它微粒数目。

三、晶格能

指在标准状态下,破坏1mol晶体,使之成为气态阴阳离子,需吸收的能量。

离子键的稳定程度(熔、沸点,硬度)用晶格能来衡量。

对AB型化合物:

① 离子电荷数↑,晶格能↑,→ 熔点↑,硬度↑

② 离子半径↓,晶格能↑,→熔点↑,硬度↑

第六节原子晶体

以共价键结合形成巨大分子,作用力极强。

物理性质:硬度高(刻划法,分十级);熔点极高,熔融也不导电。

单质:金刚石(C),单质硅(Si),硼(B)

化合物:SiC,石英。

第七节分子间力和分子晶体

一、分子间作用力

1、分子的极性

任何以共价键结合的分子中,存在带正电荷的原子核、带负电荷的电子。

∴分子中存在正电荷中心("+"极)、负电荷中心("-"极)

两中心重合,整个分子无极性,称为非极性分子;

两中心不重合,整个分子有极性,称为极性分子。

① 由共价键结合的双原子分子,键的极性和分子极性一致;

例: O2、N2、H2、Cl2非极性键,非极性分子。

HI、HBr 极性键,极性分子。

② 由共价键结合的多原子分子,键的极性与分子极性不完全一致,而与几何构型有关

③ 分子极性的大小通常用偶极矩来度量。

μ = q × d

μ:偶极矩,由实验测得;是矢量,方向从正极到负极

q:原子的正或负中心,一端的电荷量,单位:库仑(C),

1个电子的电量= 1.602×10-19C

d:正负电荷中心间距离,单位:米(m),其数量级相当于原子距离,≈10-11 m

μ≈10-30C·m

测定μ,①可判断分子极性大小;②可判断多原子分子是否具有对称结构。

2、分子的变形性

①什么叫分子的变形性?

在外电场作用下,分子中的正负电荷中心的位置发生改变,产生"诱导偶极",这种现象称为分子的极化或变形极化。

分子受极化后,分子外形发生改变,称为分子的变形。

②影响分子变形性的内在因素

分子中的原子数越多,原子半径越大(分子越大),分子中电子数越多,变形性越大。

③分子在外电场作用下的变形程度,用极化率α来度量

3、分子间力

①分子间力

范德华,1873年首先提出,又称为范德华力。

说明分子间距离很近时,存在作用力。

ⅰ)色散力(一切分子之间)

一段时间内某一瞬间

总的情况(由于原子核、电子云的不断运动)

色散力与分子的变形性(以极化率度量)成正比,与分子间距离R6成反比。

色散力↑,熔、沸点↑。

ⅱ)诱导力

极性分子非极性分子产生诱导偶极

诱导力与极性分子的μ2成正比

与被诱导分子的变形性成正比

与分子间距离的R6成反比

发生在非极性分子与极性分子之间及极性分子与极性分子之间。

ⅲ)取向力(极性分子与极性分子之间)

诱导力与极性分子的μ2成正比

与T成反比

与分子间距离的R6成反比

非极性分子之间,存在:色散力 P224,表8-5

极性分子与非极性分子间:色散力、诱导力

极性分子之间,存在:色散力、取向力、诱导力

②分子间作用力的特性

ⅰ)分子间作用力是存在于分子间的一种永久性吸引作用。

ⅱ)是一种短程力,作用范围:300-500pm,因此,只有当分子之间距离很近时,才有分子间作用力。当距离很远时,这种力消失。

ⅲ)没有方向性和饱和性。(分子间力实质为静电引力)

ⅳ)强度为化学键的1/10~1/100 。

ⅴ)除μ很大的分子(如H2O)外,分子间作用力以色散力为主。

③分子间作用力对物质物理性质的影响

4、氢键

氢化物ⅦA HF HCl HBr HI

b.p.(℃)19.5 -84.9 -67 -35.4

ⅥA H2O H2S H2Se H2Te

ⅤA NH3PH3AsH3SbH3

①氢键形成的条件

O、N、F电负性大,原子半径小,具有孤对电子,易形成氢键。

F O N Cl

χ 4.0 3.5 3.0 3.0

共价半径(pm) 64 66 70 99 从左到右形成氢键能力减弱。

注意:

ⅰ)不同分子亦会形成氢键 H3N……H-O-H

ⅱ)分子内亦会形成氢键

②氢键的强度和性质

ⅰ)强度:比化学键小得多

与分子间力相同数量级,是键能的1/20。

ⅱ)具有方向性和饱和性

③氢键的形成对物质b.p.、m.p.的影响

显著升高

二、物质溶解度原理

结构相似者(溶剂、溶质结构相似)易溶,即"相似相溶"

L-L:CH3OH,C2H5OH在水(H-O-H)中易溶

S-L:离子型盐易溶于氢键型溶剂(极性大);非极性化合物易溶于非极性或低极性溶剂。

三、分子晶体

作用力

极性分子如:冰范德华力(氢键)

非极性分子如:干冰CO2(S)、I2、P4、S8范德华力(色散力)

固体熔化,直到气化,不打断共价键,仅破坏分子间力,氢键。

分子间力比化学键弱,∴m.p.低,硬度小。

第八节金属晶体

1)金属最外层上电子少,与原子核联系松弛,自由电子能在整个金属上运动。

2)可传热、导电

3)结合力为金属键:既无方向性,又无饱和性

4)可相对位移,不破坏金属键,较好延展性。

出现金属阳离子,与金属原子产生作用力。

第九节离子极化

1931年,德国化学家法扬斯(Fijans)首先提出了离子极化作用,常称法扬斯学派。

一、基本观点

先把化学键看作纯粹的离子键,但正负离子不是简单的点电荷,核外有电子层结构,考虑相互作用,相互的电子云会发生重叠,使离子键带有一定程度的共价性。

二、离子极化作用(离子间的相互极化)

三、离子极化力和变形性

1、主极化的一方--(一般是正离子)提供电场。

其强度用极化力表示,极化力指离子使其它离子变形(即极化)的能力。

半径↓,正电荷数↑, 极化力↑

电荷相同,半径相近时: 18,18+2电子型>9-17电子型>8电子型

2、被极化的一方--(一般是负离子)在电场作用旧,发生变形。

其变形性大小用极化率来度量。

半径↑,负电荷数↑ , 变形性↑

负电荷相同,半径相近时: 18电子型>18+2电子型>9-17电子型>8电子型

四、离子极化的后果

1、对化学键键型的影响

AgF AgCl AgBr AgI

离子晶体过渡型晶体共价型晶体

极化力不变,而变形性↑

2、离子极化作用导致化合物的颜色变深

AgCl AgBr AgI

白色淡黄色黄色

相互极化作用越强,颜色越深。

3、离子极化作用导致化合物的溶解度降低

AgF AgCl AgBr AgI

易溶由于极性降低,溶解度依次降低

4、离子极化作用对卤化物m.p.的影响

共价性↑,m.p.↓

离子极化理论还不完善,尚在继续研究。

第十节混合型晶体

晶格结点上粒子间作用力并不完全相同。

例:石墨 C: 2s22p2

三个sp2杂化轨道,生成σ键

一个p轨道,生成大π键(共价键)

层内:

C--C间以sp2-sp2杂化轨道形成σ键,p-p形成大π键,键长为142pm 由于生成大π键,使其具有导电性,可作电极材料

层间:

C--C间只存在分子间作用力,键长335pm

故其质软、具有润滑性,可作润滑剂,铅笔芯。

本章要求

明确化学键的含义及其基本类型。理解离子键、共价键的形成条件和本质。了解共价键的理论要点;掌握共价键的特征,会区分极性键和非极性键,σ键п键;了解键参数的意义。了解杂化轨道理论的要点;掌握以SP、SP2、SP3杂化轨道成键的分子空间几何构型,以水、氨分子为代表的不等性杂化轨道成键的分子空间几何构型。掌握分子间力、分子间力的特点、氢键及其形成条件,及其它们对物质的某些物理性质的影响。掌握极性分子和非极性分子的含义及其区别。了解晶体和非晶体的区别,结合具体物质掌握晶体的基本类型及其特点。了解离子极化及离子极化对化合物性质的影响。重点掌握从价键理论理解共价键的形成、特性(方向性、饱和性)和类型(σ键、π键)。熟练掌握杂化轨道类型(SP、SP2、SP3)与分子构型的关系。了解不同类型晶体的特性。了解晶胞、晶格、配位数及晶格能的概念。掌握离子极化、分子间力、氢键及其对物质性质的影响。

高中化学选修三_晶体结构与性质

晶体结构与性质 一、晶体的常识 1.晶体与非晶体 得到晶体的途径:熔融态物质凝固;凝华;溶质从溶液中析出 特性:①自范性;②各向异性(强度、导热性、光学性质等) ③固定的熔点;④能使X-射线产生衍射(区分晶体和非晶体最可靠的科学方法) 2.晶胞--描述晶体结构的基本单元.即晶体中无限重复的部分 一个晶胞平均占有的原子数=1 8×晶胞顶角上的原子数+1 4×晶胞棱上的原子+1 2×晶胞面上的粒子数+1×晶胞体心内的原子数 思考:下图依次是金属钠(Na)、金属锌(Zn)、碘(I 2)、金刚石(C)晶胞的示意图.它们分别平均含几个原子? eg :1.晶体具有各向异性。如蓝晶(Al 2O 3·SiO 2)在不同方向上的硬度不同;又如石墨与层垂直方向上的电导率和与层平行方向上的电导率之比为1:1000。晶体的各向异性主要表现在( ) ①硬度 ②导热性 ③导电性 ④光学性质 A.①③ B.②④ C.①②③ D.①②③④ 2.下列关于晶体与非晶体的说法正确的是( ) A.晶体一定比非晶体的熔点高 B.晶体一定是无色透明的固体 C.非晶体无自范性而且排列无序 D.固体SiO 2一定是晶体 3.下图是CO 2分子晶体的晶胞结构示意图.其中有多少个原子?

二、分子晶体与原子晶体 1.分子晶体--分子间以分子间作用力(范德华力、氢键)相结合的晶体 注意:a.构成分子晶体的粒子是分子 b.分子晶体中.分子内的原子间以共价键结合.相邻分子间以分子间作用力结合 ①物理性质 a.较低的熔、沸点 b.较小的硬度 c.一般都是绝缘体.熔融状态也不导电 d.“相似相溶原理”:非极性分子一般能溶于非极性溶剂.极性分子一般能溶于极性溶剂 ②典型的分子晶体 a.非金属氢化物:H 2O、H 2 S、NH 3 、CH 4 、HX等 b.酸:H 2SO 4 、HNO 3 、H 3 PO 4 等 c.部分非金属单质::X 2、O 2 、H 2 、S 8 、P 4 、C 60 d.部分非金属氧化物:CO 2、SO 2 、NO 2 、N 2 O 4 、P 4 O 6 、P 4 O 10 等 f.大多数有机物:乙醇.冰醋酸.蔗糖等 ③结构特征 a.只有范德华力--分子密堆积(每个分子周围有12个紧邻的分子) CO 2 晶体结构图 b.有分子间氢键--分子的非密堆积以冰的结构为例.可说明氢键具有方向性 ④笼状化合物--天然气水合物

晶体缺陷习题与答案

晶体缺陷习题与答案 1 解释以下基本概念 肖脱基空位、弗仑克尔空位、刃型位错、螺型位错、混合位错、柏氏矢量、位错密度、位错的滑移、位错的攀移、弗兰克—瑞德源、派—纳力、单位位错、不全位错、堆垛层错、汤普森四面体、位错反应、扩展位错、表面能、界面能、对称倾侧晶界、重合位置点阵、共格界面、失配度、非共格界面、内吸附。 2 指出图中各段位错的性质,并说明刃型位错部分的多余半原子面。 3 如图,某晶体的滑移面上有一柏氏矢量为b 的位错环,并受到一均匀切应力τ。(1)分析该位错环各段位错的结构类型。(2)求各段位错线所受的力的大小及方向。(3)在τ的作用下,该位错环将如何运动?(4)在τ的作用下,若使此位错环在晶体中稳定不动,其最小半径应为多大? 4 面心立方晶体中,在(111)面上的单位位错]101[2a b =,在(111)面上分解为两个肖克莱不全位错,请写出该位错反应,并证明所形成的扩展位错的宽度由下式给出πγ242Gb s d ≈ (G 切变 模量,γ层错能)。 5 已知单位位错]011[2a 能与肖克莱不全位错]112[6 a 相结合形成弗兰克不全位错,试说明:(1)新生成的弗兰克不全位错的柏氏矢量。(2)判定此位错反应能否进行?(3)这个位错为什么称固定位错? 6 判定下列位错反应能否进行?若能进行,试在晶胞上作出矢量图。 (1)]001[]111[]111[2 2a a a →+ (2)]211[]112[]110[662a a a +→ (3)]111[]111[]112[263a a a →+ 7 试分析在(111)面上运动的柏氏矢量为]101[2a b =的螺位错受阻时,能否通过交滑移转移

晶体结构缺陷

第二章 晶体结构缺陷 我们在讨论晶体结构时,是将晶体看成无限大,并且构成晶体的每个粒子(原子、分 子或离子)都是在自己应有的位置上,这样的理想结构中,每个结点上都有相应的粒子, 没有空着的结点,也没有多余的粒子,非常规则地呈周期性排列。实际晶体是这样的吗? 测试表明,与理想晶体相比,实际晶体中会有正常位置空着或空隙位置填进一个额外质点, 或杂质进入晶体结构中等等不正常情况,热力学计算表明,这些结构中对理想晶体偏离的 晶体才是稳定的,而理想晶体实际上是不存在的。结构上对理想晶体的偏移被称为晶体缺 陷。 实际晶体或多或少地存在着缺陷,这些缺陷的存在自然会对晶体的性质产生或大或小 的影响。晶体缺陷不仅会影响晶体的物理和化学性质,而且还会影响发生在晶体中的过程, 如扩散、烧结、化学反应性等。因而掌握晶体缺陷的知识是掌握材料科学的基础。 晶体的结构缺陷主要类型如表 2 — 1所示。这些缺陷类型,在无机非金属材料中最基本 和最重要的是点缺陷,也是本章的重点。 2.1点缺陷 研究晶体的缺陷, 就是要讨论缺陷的产生、 缺陷类型、浓度大小及对各种性质的影响。 60 年代,F . A . Kroger 和H . J . Vink 建立了比较 完整的缺陷研究理论一一缺陷化学理论,主要 用于研究晶体内的点缺陷。点缺陷是一种热力 学可逆缺陷,即它在晶体中的浓度是热力学参 数(温度、压力等)的函数,因此可以用化学 热力学的方法来研究晶体中点缺陷的平衡问 题,这就是缺陷化学的理论基础。点缺陷理论 的适用范围有一定限度,当缺陷浓度超过某一 临界值(大约在0. 1原子%左右)时,由于缺陷的 相互作用,会导致广泛缺陷(缺陷簇等)的生 成,甚至会形成超结构和分离的中间相。但大多数情况下,对许多无机晶体,即使在高温 下点缺陷的浓度也不会超过上述极限。 缺陷化学的基本假设:将晶体看作稀溶液,将缺陷看成溶质,用热力学的方法研究各种 缺陷在一定条件下的平衡。 也就是将缺陷看作是一种化学物质, 它们可以参与化学反应 准化学反应,一定条件下,这种反应达到平衡状态。 2.1.1 点缺陷的类型 点缺陷主要是原子缺陷和电子缺陷,其中原子缺陷可以分为三种类型: (1) 空位:在有序的理想晶体中应该被原子占据的格点,现在却空着。 (2) 填隙原子:在理想晶体中原子不应占有的那些位置叫做填隙(或间隙)位置,处于填 隙(或间隙)位 置上的原子就叫填隙(或间隙)原子。 (3) 取代原子:一种晶体格点上占据的是另一 种原子。如 AB 化合物晶体中, A 原子占据了 B 格点的位置,或 B 原子占据了 A 格点位置(也称错位原子) ;或外来原子(杂质原子)占据在A 格点 或B 格点上。 晶体中产生以上各种原子缺陷的基本过程有以下三种: 表2— 1 晶体结构缺陷的主要类型

二晶体结构缺陷

1、说明下列符号的含义: V Na,V Na’,V Cl?,.(V Na’V Cl?),CaK?,CaCa,Cai?? 2、写出下列缺陷反应式: (1)NaCl溶入CaCl2中形成空位型固溶体; (2)CaCl2溶人NaC1中形成空位型固溶体; (3)NaCl形成肖脱基缺陷; (4)AgI形成弗仑克尔缺陷(Ag+进入间隙)。 3、MgO的密度是3.58克/厘米3,其晶格参数是0.42nm,计算单位晶胞MgO的肖脱基缺陷数。 4、(a)MgO晶体中,肖脱基缺陷的生成能为6eV,计算在25℃和1600℃时热缺陷的浓度。 (b)如果MgO晶体中,含有百万分之一摩尔的A12O3杂质,则在1600℃时,MgO晶体中是热缺陷占优势还是杂质缺陷占优势,说明原因。 5、MgO晶体的肖特基缺陷生成能为84kJ/mol,计算该晶体在1000K和1500K的缺陷浓度。 6、非化学计量化合物FexO中,Fe3+/Fe2+=0.1,求Fe x O中的空位浓度及x值。 7、非化学计量缺陷的浓度与周围气氛的性质、压力大小相关,如果增大周围氧气的分压,非化学计量化合物Fe1-X O及Zn1+X O的密度将发生怎么样的变化?增大还是减小?为什么? 8、对于刃位错和螺位错,区别其位错线方向、柏氏矢量和位错运动方向的特点。 9、图2.1是晶体二维图形,内含有一个正刃位错和一个负刃位错。 (a)围绕两个位错柏格斯回路,最后得柏格斯矢量若干? (b)围绕每个位错分别作柏氏回路,其结果又怎样? 10、有两个相同符号的刃位错,在同一滑移面上相遇,它们将是排斥还是吸引? 11、晶界对位错的运动将发生怎么样的影响?能预计吗? 12、晶界有小角度晶界与大角度晶界之分,大角度晶界能用位错的阵列来描述吗? 13、试述影响置换型固溶体的固溶度的条件。

高中化学选修三选修物质结构与性质第三章第章常见晶体结构晶胞分析归纳整理总结

个六元环共有。每个六元环实际拥有的碳原子数为 ______个。C-C键夹角:_______。C原子的杂化方式是______ SiO2晶体中,每个Si原子与个O原子以共价键相结合,每个O原子与个Si 原子以共价键相结合,晶体中Si原子与O原子个数比为。晶体中Si原子与Si—O键数目之比为。最小环由个原子构成,即有个O,个Si,含有个Si-O键,每个Si原子被个十二元环,每个O被个十二元环共有,每个Si-O键被__个十二元环共有;所以每个十二元环实际拥有的Si原子数为_____个,O原子数为____个,Si-O键为____个。硅原子的杂化方式是______,氧原子的杂化方式是_________. 知该晶胞中实际拥有的Na+数为____个 Cl-数为______个,则次晶胞中含有_______个NaCl结构单元。 3. CaF2型晶胞中,含:___个Ca2+和____个F- Ca2+的配位数: F-的配位数: Ca2+周围有______个距离最近且相等的Ca2+ F- 周围有_______个距离最近且相等的F——。 4.如图为干冰晶胞(面心立方堆积),CO2分子在晶胞中的位置为;每个晶胞含二氧化碳分子的个数为;与每个二氧化碳分子等距离且最近的二氧化

碳分子有个。 5.如图为石墨晶体结构示意图, 每层内C原子以键与周围的个C原子结合,层间作用力为;层内最小环有 _____个C原子组成;每个C原子被个最小环所共用;每个最小环含有个C原子,个C—C键;所以C原子数和C-C键数之比是_________。C原子的杂化方式是__________. 6.冰晶体结构示意如图,冰晶体中位于中心的一个水分子 周围有______个位于四面体顶角方向的水分子,每个水分子通过 ______条氢键与四面体顶点上的水分子相连。每个氢键被_____个 水分子共有,所以平均每个水分子有______条氢键。 7.金属的简单立方堆积是_________层通过_________对 _________堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是_____,代表物质是________________________。 8.金属的体心立方堆积是__________层通过 ________对________堆积方式形成的,晶胞如图: 每个阳离子的配位数是__________.代表物质是 _____________________。

第二章 晶体结构与晶体缺陷

2-1 (a )MgO 具有NaCl 结构。根据O 2-半径为0.140nm 和Mg 2+半径为0.072nm ,计算球状离子所占有的空间分数(堆积系数)。 (b )计算MgO 的密度。 解:(a )MgO 具有NaCl 型结构,即属面心立方,每个晶胞中含有4个Mg 2+和4个O 2-,故Mg 所占有体积为: 2233MgO Mg O 334 4()34 4(0.0720.140) 3 0.0522nm V R R ππ+- ?+?+=== 因为Mg 2+和O 2-离子在面心立方的棱边上接触: 22Mg O 2()20.0720.1400.424nm a R R +-++==()=() 堆积系数=%=)(=5.68424.00522 .033 MgO a V (b ) 37233 )10424.0(1002.6) 0.163.24(4·0MgO -???+?= = a N M n D =3.51g/cm 3 2-2 Si 和Al 原子的相对质量非常接近(分别为28.09和26.98),但SiO 2和Al 2O 3的密度相差很大(分别为2.65g/cm 3和3.96g/cm 3)。试计算SiO 2和Al 2O 3的堆积密度,并用晶体结构及鲍林规则说明密度相差大的原因。 解: 首先计算SiO 2堆积系数。每cm 3中含SiO 2分子数为: 3223 22343223 2322223 2.65SiO /cm 2.6410/cm (28.0932.0)/(6.0310) Si /cm 2.6410/cm O /cm 2.64102 5.2810/cm +-?+?????= =个=个==个 每cm 3 中Si 4+ 和O 2- 所占体积为: 2-32273 Si432273 O 4 /cm 2.6410(0.02610)3 0.001954 /cm 5.2810(0.13810)3 0.5809V V ππ-+-????????==== Si 2O 3晶体中离子堆积系数=000195+0.5809=0.5829或58.29% Al 2O 3堆积系数计算如下:

高中化学选修三选修3物质结构与性质第三章第3章常见晶体结构晶胞分析归纳整理总结

1 1. 金刚石晶体结构(硅单质相同) 1mol 金刚石中含有 mol C —C 键, 最小环是 元环,(是、否) 共平面。 每个C-C 键被___个六元环共有,每个C 被_____ 个六元环共有。每个六元环实际拥有的碳原子数为 ______个。C-C 键夹角:_______。C 原子的杂化方式是______ SiO 2晶体中,每个Si 原子与 个O 原子以共价键相结合, 每个O 原子与 个Si 原子以共价键相结合,晶体中Si 原子与 O 原子个数比为 。 晶体中Si 原子与Si —O 键数目之比 为 。最小环由 个原子构成,即有 个O , 个Si ,含有 个Si-O 键,每个Si 原子被 个十二元环,每 个O 被 个十二元环共有,每个Si-O 键被__个十二元环共 有;所以每个十二元环实际拥有的Si 原子数为_____个,O 原子数为____个,Si-O 键为____个。硅原子的杂化方式是______,氧原子的杂化方式是_________. 2 . 在NaCl 晶体中,与每个Na +等距离且最近的Cl -有 个, 这些Cl -围成的几何构型是 ;与每个Na +等距离且最近的 Na +有 个。由均摊法可知该晶胞中实际拥有的Na +数为____个 Cl -数为______个,则次晶胞中含有_______个NaCl 结构单元。 3. CaF 2型晶胞中,含:___个Ca 2+和____个F - Ca 2+的配位数: F -的配位数: Ca 2+周围有______个距离最近且相等的Ca 2+ F - 周围有_______个距离最近且相等的F ——。

2 4.如图为干冰晶胞(面心立方堆积),CO 2分子在晶胞 中的位置为 ;每个晶胞含二氧化碳分子的 个数为 ;与每个二氧化碳分子等距离且最 近的二氧化碳分子有 个。 5.如图为石墨晶体结构示意图, 每层内C 原子以 键与周围的 个C 原子结合,层间作用力为 ; 层内最小环有 _____个C 原子组成;每个C 原子被 个最小环所共用;每个 最小环含有 个C 原子, 个C —C 键;所以C 原子数和C-C 键数之比是_________。C 原子的杂化方式 是__________. 6. 冰晶体结构示意如图 ,冰晶体中位于中心的一个水分子 周围有______个位于四面体顶角方向的水分子,每个水分子通过 ______条氢键与四面体顶点上的水分子相连。每个氢键被_____个 水分子共有,所以平均每个水分子有______条氢键。 7. 金属的简单立方堆积是_________层通过_________对 _________堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是_____,代表物质是________________________。 8. 金属的体心立方堆积是__________层通过 ________对________堆积方式形成的,晶胞如图: 每个阳离子的配位数是__________.代表物质是 _____________________ 。

晶体结构缺陷

第三章晶体结构缺陷 【例3-1】写出MgO形成肖特基缺陷的反应方程式。 【解】 MgO形成肖特基缺陷时,表面的Mg2+和O2-离子迁到表面新位置上,在晶体内部留下空位,用方程式表示为: ????该方程式中的表面位置与新表面位置无本质区别,故可以从方程两边消掉,以零O(naught)代表无缺陷状态,则肖特基缺陷方程式可简化为: 【例3-2】写出AgBr形成弗伦克尔缺陷的反应方程式。 【解】AgBr中半径小的Ag+离子进入晶格间隙,在其格点上留下空位,方程式为: 【提示】一般规律:当晶体中剩余空隙比较小,如NaCl型结构,容易形成肖特基缺陷;当晶体中剩余空隙比较大时,如萤石CaF2型结构等,容易产生弗伦克尔缺陷。 【例3-3】写出NaF加入YF3中的缺陷反应方程式。 【解】首先以正离子为基准,Na+离子占据Y3+位置,该位置带有2个单位负电荷,同时,引入的1个F-离子位于基质晶体中F-离子的位置上。按照位置关系,基质YF3中正负离子格点数之比为1/3,现在只引入了1个F-离子,所以还有2个F-离子位置空着。反应方程式为:可以验证该方程式符合上述3个原则。 ????再以负离子为基准,假设引入3个F-离子位于基质中的F-离子位置上,与此同时,引入了3个Na+离子。根据基质晶体中的位置关系,只能有1个Na+离子占据Y3+离子位置,其余2个Na+位于晶格间隙,方程式为:

????此方程亦满足上述3个原则。当然,也可以写出其他形式的缺陷反应方程式,但上述2个方程所代表的缺陷是最可能出现的。 【例3-4】写出CaCl2加入KCl中的缺陷反应方程式。 【解】以正离子为基准,缺陷反应方程式为: ????以负离子为基准,则缺陷反应方程式为: ????这也是2个典型的缺陷反应方程式,与后边将要介绍的固溶体类型相对应。 【提示】通过上述2个实例,可以得出2条基本规律: ????(1)低价正离子占据高价正离子位置时,该位置带有负电荷。为了保持电中性,会产生负离子空位或间隙正离子。 ????(2)高价正离子占据低价正离子位置时,该位置带有正电荷。为了保持电中性,会产生正离子空位或间隙负离子。 【例3-5】 TiO2在还原气氛下失去部分氧,生成非化学计量化合物TiO2-x,写出缺陷反应方程式。 【解】非化学计量缺陷的形成与浓度取决于气氛性质及其分压大小,即在一定气氛性质和压力下到达平衡。该过程的缺陷反应可用 或 方程式表示,晶体中的氧以电中性的氧分子的形式从TiO2中逸出,同时在晶体中产生带正电荷的氧空位和与其符号相反的带负电荷的来保持电中性,方程两边总有效电荷都等于零。可以看成是Ti4+被还原为Ti3+,三价Ti占据了四价Ti的位置,因而带一个单位有效负电荷。而二个Ti3+替代了二个Ti4+,

晶体结构与晶体中的缺陷

第二章晶体结构与晶体中的缺陷 内容提要:通过讨论有代表性的氧化物、化合物和硅酸盐晶体结构, 用以掌握与本专业有关的各种晶体结构类型。介绍了实际晶体中点缺陷分 类;缺陷符号和反应平衡。固熔体分类和各类固熔体、非化学计量化学化 合物的形成条件。简述了刃位错和螺位错。 硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式为孤岛状、组群状、链状、层装和架状五类。这五类的[SiO4]四面体中,桥氧的数目也依次由0增加到4, 非桥氧数由4减至0。硅离子是高点价低配位的阳离子。因此在硅酸盐晶体中,[SiO4] 只能以共顶方式相连,而不能以共棱或共面方式相连。表2-1列出硅酸盐晶体结构类型及实例。 表2-1 Array硅酸 盐晶 体的 结构 类型

真实晶体在高于0K的任何温度下,都或多或少地存在着对理想晶体结构的偏离,即存在着结构缺陷。晶体中的结构缺陷有点缺陷、线缺陷、面缺陷和复合缺陷之分,在无机材料中最基本和最重要的是点缺陷。 点缺陷根据产生缺陷的原因分类,可分为下列三类: (1)热缺陷(又称本征缺陷) 热缺陷有弗仑克儿缺陷和肖特基缺陷两种基本形式。 弗仑克儿缺陷是指当晶格热震动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗仑克儿缺陷。 肖特基缺陷是指如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,而在原正常格点上留下空位,这种缺陷称为肖特基缺陷。 (2)杂质缺陷(非本征缺陷) (3)非化学计量化学化合物 为了便于讨论缺陷反应,目前广泛采用克罗格-明克(Kroger-Vink)的点缺陷符号(见表2-2)。 表2-2 Kroger-Vink缺陷符号(以M2+X2-为例)

高中化学选修三——晶体结构与性质.doc

晶体结构与性质 一、晶体的常识1.晶体与非晶体 晶体与非晶体的本质差异 晶体非晶体 自范性 有(能自发呈现多面体外形)无(不能自发呈现多面体外形) 微观结构 原子在三维空间里呈周期性有序排列 原子排列相对无序 晶体呈现自范性的条件:晶体生长的速率适当 得到晶体的途径:熔融态物质凝固;凝华;溶质从溶液中析出特性:①自范性;②各向异性(强度、导热性、光学性质等)③固定的熔点;④能使X-射线产生衍射(区分晶体和非晶体最可靠的科学方法)2.晶胞--描述晶体结构的基本单元,即晶体中无限重复的部分 一个晶胞平均占有的原子数=8×晶胞顶角上的原子数+4×晶胞棱上的原子+2×晶胞面上的粒子数+1×晶胞体心内的原子数 思考:下图依次是金属钠(Na)、金属锌(Zn)、碘(I2)、金刚石(C)晶胞的示意图,它们分别平均含几个原子? 1 1 1

eg:1.晶体具有各向异性。如蓝晶(Al2O3·SiO2)在不同方向上的硬度不同;又如石墨与层垂直方向上的电导率和与层平行方向上的电导率之比为1:1000。晶体的各向异性主要表现在() ①硬度②导热性③导电性④光学性质 A.①③ B.②④ C.①②③ D.①②③④ 2.下列关于晶体与非晶体的说法正确的是() A.晶体一定比非晶体的熔点高 B.晶体一定是无色透明的固体 C.非晶体无自范性而且排列无序 D.固体SiO2一定是晶体 3.下图是CO2分子晶体的晶胞结构示意图,其中有多少个原子? 二、分子晶体与原子晶体 1.分子晶体--分子间以分子间作用力(范德华力、氢键)相结合的晶体注意:a.构成分子晶体的粒子是分子 b.分子晶体中,分子内的原子间以共价键结合,相邻分子间以分子间作用力结合 ①物理性质 a.较低的熔、沸点 b.较小的硬度 c.一般都是绝缘体,熔融状态也不导电 d.“相似相溶原理”:非极性分子一般能溶于非极性溶剂,极性分子一般能溶于极性溶剂 ②典型的分子晶体 a.非金属氢化物:H2O、H2S、NH3、CH4、HX等 b.酸:H2SO4 、HNO3、

专题08 分子结构与晶体结构

专题八分子结构与晶体结构 ★双基知识 1.几个基概念 化学键:相邻的两个或多个原子间强烈的相互作用 共价键:原子间通过共用电子对所形成的相互作用 离子键:阴、阳离子通过静电作用所形成的化学键 极性键:由不同元素的原子所形成的共价键 非极性键:由相同元素的原子所形成的共价键 金属键:金属阳离子与自由电子之间较强烈的作用叫金属键。 氢键: 范德华力(分子间作用力) 极性分子非极性分子 离子晶体分子晶体 原子晶体金属晶体 2.常见几种晶体的结构分析(点、线、面、体) (1)氯化钠晶体(2)氯化铯晶体(3)二氧化碳晶体(4)白磷分子的结构(5)C n的结构(6)金刚石晶体(7)二氧化硅晶体(8)石墨晶体 ★巧思巧解 (1)异类晶体:原子晶体(离子晶体)分别大于分子晶体

一般地,原子晶体>离子晶体>分子晶体 (2)同种类型晶体:构成晶体质点间的作用力大,则熔、沸点高,反之则小。 ①离子晶体:离子所带的电荷数越高,离子半径越小,离子键越强,则熔、沸点越高。 ②分子晶体:对于组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越大,则熔、沸点越高。 在同分异构体中,一般地,支链越多,熔、沸点越低。 ③原子晶体:原子半径越小,键长越短、键能越大,则熔、沸点越高 ④金属晶体:金属阳离子半径越小,离子所带的电荷越多,则金属键越强,金属熔、沸点越高 ★例题精析 [例1]:下列性质中,可以证明某化合物内一定存在离子键的是:( ) A .可以溶于水 B.具有较高的熔点 C .水溶液能导电 D.熔融状态能导电 [例2]:下列化合物中阴离子半径和阳离子半径之比最大的是: A .LiI B. NaBr C. KCl D. CsF [例3]:食盐晶体如右下图所示。在晶体中●表示Na +,○表示Cl - ,已知食盐的密度为ρg/cm 3, NaCl 的摩尔质量为M g/mol ,阿佛加得罗常数为N ,则在食盐晶体是Na +离子和Cl - 离子的 间距大约是: A . B. 3 2N M C. D. [例4]:根据石墨晶体结构示意图及提供的数据计算(保留三位有效数值)。有关公式、数据见框图。⑴12 g 石墨中,正六边形的数目有多少? ⑵求石墨密度。 ⑶求12克石墨的体积。

半导体晶体缺陷

半导体晶体缺陷 创建时间:2008-08-02 半导体晶体缺陷(crystal defect of semiconductor) 半导体晶体中偏离完整结构的区域称为晶体缺陷。按其延展的尺度可分为点缺陷、线缺陷、面缺陷和体缺陷,这4类缺陷都属于结构缺陷。根据缺陷产生的原因可分为原生缺陷和二次缺陷。从化学的观点看,晶体中的杂质也是缺陷,杂质还可与上述结构缺陷相互作用形成复杂的缺陷。一般情况下,晶体缺陷是指结构缺陷。 点缺陷(零维缺陷)主要是空位、间隙原子、反位缺陷和点缺陷复合缺陷。 空位格点上的原子离开平衡位置,在晶格中形成的空格点称为空位。离位原子如转移到晶体表面,在晶格内部所形成的空位,称肖特基空位;原子转移到晶格的间隙位置所形成的空位称弗兰克尔空位。 间隙原子位于格点之间间隙位置的原子。当其为晶体基质原子时称为自间隙原子,化合物半导体MX晶体中的白间隙原子有Mi、Xi两种。 反位缺陷化合物半导体晶体MX中,X占M位,或M占X位所形成的缺陷,记作M X ,X M 。 点缺陷的复合各种点缺陷常可形成更复杂的缺陷,空位或间隙原子常可聚集成团,这些团又可崩塌成位错环等。例如硅单晶中有:双空位、F中心(空位-束缚电子复合体),E中心(空位-P原子对),SiO 2团(空位-氧复合体),雾缺陷(点缺陷-金属杂质复合体)。 硅单晶中主要点缺陷有空位、自间隙原子、间隙氧、替位碳、替位硼、替位铜,间隙铜等。 化合物如GaAs单晶中点缺陷有镓空位(v Ga )、砷空位(V As )、间隙镓(G ai ),间隙砷(A Si )、镓占砷位(As Ga )、 砷占镓位(Ga As )等,这些缺陷与缺陷、缺陷与杂质之间发生相互作用可形成各种复合体。 GaAs中的深能级。砷占镓位一镓空位复合体(As Ga v Ga )、镓占砷位一镓空位复合体(Ga As v Ga )在GaAs中形 成所谓A能级(0.40eV)和B能级(0.71eV)分别称作HB 2、HB 5 ,它们与EL 2 是三个GaAs中较重要的深能级, 这些深能级与某类缺陷或缺陷之间反应产物有关,EL 2是反位缺陷AsGa或其复合体As Ga v Ga V As 所形成,为非 掺杂半绝缘GaAs单晶和GaAs VPE材料中的一个主要深能级,能级位置是导带下0.82eV(也可能由一族深能级所构成),其浓度为1016cm-3数量级,与材料的化学配比和掺杂浓度有关。 线缺陷(一维缺陷)半导体晶体中的线缺陷主要是位错。晶体生长过程中由于热应力(或其他外力)作用,使晶体中某一部分(沿滑移面)发生滑移,已滑移区与未滑移区的分界线叫位错线,简称为位错。以位错线与其柏格斯矢量的相对取向来区分位错的类型,两者相互垂直叫刃型位错,两者平行的叫螺型位错,否则叫混合位错。混合位错中较常见的有60℃位错,30℃位错。 滑移了一个原子间距所形成的位错又叫全位错,否则叫不全位错。 由于形成直线位错所需能量较高,因此晶体中的位错大都是位错环;位错环又分棱柱位错环和切变位错环两种。

第一章 晶体结构与晶体中的缺陷

第一章晶体结构与晶体中的缺陷 一、名词解释 1.正尖晶石与反尖晶石;2.弗伦克尔缺陷与肖特基缺陷; 3.刃位错与螺位错;4.固溶体;5.非化学计量化合物: 二、填空与选择 2.在硅酸盐结构分类中,下列矿物Ca[Al2Si2O8];CaMg[Si2O6];β-Ca2SiO4和Mg3[Si4O10](OH)2,分别属于;;;和四类。 3.在负离子作立方密堆的晶体中,为获得稳定的晶体结构,正离子将所有八面体空隙位置填满的晶体有,所有四面体空隙均填满的晶体有,填满一半八面体空隙的晶体有,填满一半四面体空隙的晶体有。 4.在尖晶石(MgAl2O4)型晶体中,O2-作面心立方最紧密堆积,Mg2+填入了;金红石晶体中,所有O2-作稍有变形的六方密堆,Ti4+填充了。(A全部四面体空隙;B 全部八面体空隙;C四面体空隙的半数;D八面体空隙的半数;E四面体空隙的八分之一;F八面体空隙的八分之一) 5.构成层状硅酸盐的[Si2O5]片中的Si4+,通常被一定数量的Al3+所取代,为满足鲍林第二规则(静电价规则),在层状结构中结合有(OH)-离子和各种二价正离子或三价正离子。这种以Al3+取代Si4+的现象,称为。( A同质多晶(同质多象);B类质同晶;C有序-无序转化;D同晶置换(同晶取代)) 6.高岭石与蒙脱石属于层状硅酸盐结构,前者的结构特征是,后者的结构特征是。(A二层型三八面体结构;B三层型三八面体结构;C二层型二八面体结构;D 三层型二八面体结构) 7.在石英的相变中,属于重建型相变的是,属于位移式相变的是。(A α-石英→α-鳞石英;B α-石英→β-石英;C α-鳞石英→α-方石英;D α方石英→β-方石英) 8.晶体结构中的热缺陷有和二类。 9.CaO掺杂到ZrO2中,其中置换了。由于电中性的要求,在上述置换同时产生一个空位。以上置换过程可用方程式表示。10.由于的结果,必然会在晶体结构中产生"组分缺陷",组分缺陷的浓度主要取决于:和。 11.晶体线缺陷中,位错线与和垂直的是位错;位错线与二者平行的是位错。

晶体结构及缺陷

晶体结构与晶体中的缺陷 17、Li 2O 的结构是O2-作面心立方堆积,Li +占据所有四面体空隙位置,氧离子半径为0.132nm 。求: (1)计算负离子彼此接触时,四面体空隙所能容纳的最大阳离子半径,并与书末附表Li +半径比较,说明此时O 2-能否互相接触。 (2)根据离子半径数据求晶胞参数。 (3)求Li 2O 的密度。 解:(1)如图2-2是一个四面体空隙,O 为四面体中心位置。 -++=r r AO ,-=r BC 2, -=r CE 3, 3/323/2-==r CE CG 3/62-=r AG , OGC ?∽EFC ?,CF EF CG OG //=,6/6/-=?=r CG CF EF OG 2/6-=-=r OG AG AO ,301.0)12/6(=-=-=--+r r AO r 查表知Li r + +=0.68>0.301,∴O 2-不能互相接触; (2)体对角线=a 3=4(r ++r -),a=4.665;(3)ρ=m/V=1.963g/cm 3 图2-2 四面体空隙 28、下列硅酸盐矿物各属何种结构类型: Mg 2[SiO 4],K[AISi 3O 8],CaMg[Si 2O 6], Mg 3[Si 4O 10](OH)2,Ca 2Al[AlSiO 7]。 解:岛状;架状;单链;层状(复网);组群(双四面体)。 23、石棉矿如透闪石Ca 2Mg 5[Si 4O 11](OH)2具有纤维状结晶习性,而滑石Mg 2[Si 4O 10](OH)2却具有片状结晶习性,试解释之。 解:透闪石双链结构,链内的Si-O 键要比链5的Ca-O 、Mg-O 键强很多,所以很容易沿链间结合力较弱处劈裂成为纤维状;滑石复网层结构,复网层由两个 [SiO4]层和中间的水镁石层结构构成,复网层与复网层之间靠教弱的分之间作用力联系,因分子间力弱,所以易沿分子间力联系处解理成片状。 24、石墨、滑石和高岭石具有层状结构,说明它们结构的区别及由此引起的性质上的差异。

分子结构与晶体结构完美版

第六章分子结构与晶体结构 教学内容: 1.掌握杂化轨道理论、 2.掌握两种类型的化学键(离子键、共价键)。 3.了解现代价键理论和分子轨道理论的初步知识,讨论分子间力和氢键对物质性质的影响。 教学时数:6学时 分子结构包括: 1.分子的化学组成。 2.分子的构型:即分子中原子的空间排布,键长,键角和几何形状等。 3.分子中原子间的化学键。 化学上把分子或晶体中相邻原子(或离子)之间强烈的相互吸引作用称为化学键。化学键可 分为:离子键、共价键、金属键。 第一节共价键理论 1916年,路易斯提出共价键理论。 靠共用电子对,形成化学键,得到稳定电子层结构。 定义:原子间借用共用电子对结合的化学键叫做共价键。 对共价键的形成的认识,发展提出了现代价键理论和分子轨道理论。 1.1共价键的形成 1.1.1 氢分子共价键的形成和本质(应用量子力学) 当两个氢原子(各有一个自旋方向相反的电子)相互靠近,到一定距离时,会发生相互作用。每个H原子核不仅吸引自己本身的1s电子还吸引另一个H原子的1s电子,平衡之前,引力>排斥力,到平衡距离d,能量最低:形成稳定的共价键。 H原子的玻尔半径:53pm,说明H2分子中两个H原子的1S轨道必然发生重叠,核间形成一个 电子出现的几率密度较大的区域。这样,增强了核间电子云对两核的吸引,削弱了两核间斥力,体系能量降低,更稳定。(核间电子在核间同时受两个核的吸引比单独时受核的吸引要小,即位能低,∴能量低)。

1.1.2 价键理论要点 ①要有自旋相反的未配对的电子 H↑+ H↓ -→ H↑↓H 表示:H:H或H-H ②电子配对后不能再配对即一个原子有几个未成对电子,只能和同数目的自旋方向相反的未成对电子成键。如:N:2s22p3,N≡N或NH3 这就是共价键的饱和性。 ③原子轨道的最大程度重叠 (重叠得越多,形成的共价键越牢固) 1.1.3 共价键的类型 ①σ键和π键(根据原子轨道重叠方式不同而分类) s-s :σ键,如:H-H s-p :σ键,如:H-Cl p-p :σ键,如:Cl-Cl π键, 单键:σ键 双键:一个σ键,一个π键 叁键:一个σ键,两个π键 例:N≡N σ键的重叠程度比π键大,∴π键不如σ键牢固。 σ键π键 原子轨道重叠方式头碰头肩并肩 能单独存在不能单独存在 沿轴转180O符号不变符号变 牢固程度牢固差 含共价双键和叁键的化合物的重键容易打开,参与反应。

晶体结构和晶体缺陷

第一部分晶体结构和晶体缺陷 1.原子的负电性的定义和物理意义是什么? 2.共价键的定义和特点是什么? 3.金刚石结构为什么要提出杂化轨道的概念? 4.V、VI、VII族元素仅靠共价键能否形成三维晶体? 5.晶体结构,空间点阵,基元,B格子、单式格子和复式格子之间的关系和区别。 6.W-S元胞的主要优点,缺点各是什么? 7.配位数的定义是什么? 8.晶体中有哪几种密堆积,密堆积的配位数是多少? 9.晶向指数,晶面指数是如何定义的? 10.点对称操作的基本操作是哪几个? 11.群的定义是什么?讨论晶体结构时引入群的目的是什么? 12.晶体结构、B格子、所属群之间的关系如何? 13.七种晶系和十四种B格子是根据什么划分的? 14.肖特基缺陷、费仑克尔缺陷、点缺陷、色心、F心是如何定义的? 15.棱(刃)位错和螺位错分别与位错线的关系如何? 16.位错线的定义和特征如何? 17.影响晶体中杂质替位几率的主要因素有哪些? 18.晶体中原子空位扩散系数D与哪些因素有关? 19.解理面是面指数低的晶面还是面指数高的晶面?为什么? 20.为什么要提出布拉菲格子的概念? 21.对六角晶系的晶面指数和晶向指数使用四指标表示有什么利弊? 第二部分倒格子 1.倒格子基矢是如何定义的? 2. 正、倒格子之间有哪些关系? 3.原子散射因子是如何表示的,它的物理意义如何? 4. 几何结构因子是如何表示的,它的物理意义如何? 5. 几何结构因子S h与哪些元素有关? 6.衍射极大的必要条件如何? 7.什么叫消光条件? 8.反射球是在哪个空间画的,反射球能起到什么作用,如何画反射球? 9.常用的X光衍射方法有哪几种,各有什么基本特点? 10.为什么要使用“倒空间”的概念?

晶体结构缺陷

晶体结构缺陷 1、说明下列符号的含义: V Na ,V Na ’,V Cl ?,.(V Na ’V Cl ?),CaK?,CaCa,Cai?? 2、写出下列缺陷反应式: (1)NaCl溶入CaCl 2 中形成空位型固溶体; (2)CaCl 2 溶人NaC1中形成空位型固溶体; (3)NaCl形成肖脱基缺陷; (4)AgI形成弗仑克尔缺陷(Ag+进入间隙)。 3、MgO的密度是3.58克/厘米3,其晶格参数是0.42nm,计算单位晶胞MgO 的肖脱基缺陷数。 4、(a)MgO晶体中,肖脱基缺陷的生成能为6eV,计算在25℃和1600℃时热 缺陷的浓度。(b)如果MgO晶体中,含有百万分之一摩尔的A1 2O 3 杂质,则在1600℃ 时,MgO晶体中是热缺陷占优势还是杂质缺陷占优势,说明原因。 5、MgO晶体的肖特基缺陷生成能为84kJ/mol,计算该晶体在1000K和1500K 的缺陷浓度。 6、非化学计量化合物FexO中,Fe3+/Fe2+=0.1,求Fe x O中的空位浓度及x 值。 7、非化学计量缺陷的浓度与周围气氛的性质、压力大小相关,如果增大周 围氧气的分压,非化学计量化合物Fe 1-X O及Zn 1+X O的密度将发生怎么样的变化? 增大还是减小?为什么? 8、对于刃位错和螺位错,区别其位错线方向、柏氏矢量和位错运动方向的特点。

9、图2.1是晶体二维图形,内含有一个正刃位错和一个负刃位错。 (a)围绕两个位错柏格斯回路,最后得柏格斯矢量若干? (b)围绕每个位错分别作柏氏回路,其结果又怎样? 10、有两个相同符号的刃位错,在同一滑移面上相遇,它们将是排斥还是吸引? 11、晶界对位错的运动将发生怎么样的影响?能预计吗? 12、晶界有小角度晶界与大角度晶界之分,大角度晶界能用位错的阵列来描述吗? 13、试述影响置换型固溶体的固溶度的条件。 14、从化学组成、相组成考虑,试比较固溶体与化合物、机械混合物的差别。 15、试阐明固溶体、晶格缺陷和非化学计量化合物三者之间的异同点,列出简明表格比较。 16、在面心立方空间点阵中,面心位置的原子数比立方体顶角位置的原子数多三倍。原子 B溶入A晶格的面心位置中,形成置换型固溶体,其成分应该是 A 3B呢还是A 2 B?为什么? 17、Al 2 O 3 在MgO中形成有限固溶体,在低共熔温度1995℃时,约有18重量% Al 2O 3 溶入MgO中,假设MgO单位晶胞尺寸变化可忽略不计。试预计下列情况的

晶体结构缺陷习题答案

第二章晶体结构缺陷 1.(错)位错属于线缺陷,因为它的晶格畸变区是一条几何线。 2.(错)螺型位错的柏氏失量与其位错线垂直,刃型位错的柏氏失量与其位错线是平行。 3. (错)肖特基缺陷是由于外来原子进入晶体而产生的缺陷。 4.(错)弗伦克尔缺陷是由于外来原子进入晶体而产生的缺陷。 二选择题 1.非化学剂量化合物Zn1+x O中存在 A 。 A. 填隙阳离子 B. 阳离子空位 C. 填隙阴离子 D. 阴离子空位 2. 非化学计量化合物UO2+x中存在 C 。 A. 填隙阳离子 B. 阳离子空位 C. 填隙阴离子 D. 阴离子空位 3.非化学剂量化合物TiO2-x中存在 D 。 A. 填隙阳离子 B. 阳离子空位 C. 填隙阴离子 D. 阴离子空位 4.螺型位错的位错线是 A 。 A. 曲线 B. 直线 C. 折线 D. 环形线 5.非化学剂量化合物ZnO1-x中存在 D 。 A. 填隙阳离子 B. 阳离子空位 C. 填隙阴离子 D. 阴离子空位 6. 非化学计量化合物UO2+x中存在 C 。 A. 填隙阳离子 B. 阳离子空位 C. 填隙阴离子 D. 阴离子空位 三、名词解释 1. 弗仑克尔缺陷 原子离开其平衡位置二进入附近的间隙位置,在原来位置上留下空位所形成的缺陷,特点是填隙原子与空位总是成对出现。 2.固溶体: 物种数:凡在固体条件下,一种组分(溶剂)内“溶解”了其它组分(溶质)而形成的单一、均匀的晶态固体称为固溶体。

四、解答题 1.完成下列缺陷方程式,并且写出相应的化学式 (1)NaCl 溶入CaCl 2中形成空位型固溶体; (2)CaCl 2溶人NaC1中形成空位型固溶体; 解:(1)NaCl Na Ca ’+ Cl Cl + V Cl · Ca 1-x Na x Cl 2-x (2)CaCl 2 Ca Na · + 2Cl Cl + V Na ’ Na 1-2x Ca X Cl 2完成下列缺陷方程式,并且写出相应的化学式(6分) (1)M gCl 2固溶在LiCl 晶体中形成填隙型 Li 1-x Mg x Cl 1+x (2) SrO 固溶在Li 2O 晶体中形成空位型 Li 2-2x Sr x O 3.写出下列缺陷反应式 ①.NaCl 形成肖脱基缺陷。 ②.AgI 形成弗伦克尔缺陷(Ag +进入间隙)。 ③KCl 溶入CaCl 2中形成空位型固溶体。 解:1、O→VNa ′+VCl˙ 2、Ag Ag+Vi →A g i ˙+V Ag′ ③ KCl K Ca ’+ Cl Cl + V Cl · Ca 1-x K x Cl 2-x 4 对于MgO 、Al 2O 3和Cr 2O 3,其正、负离子半径比分别为,和。Al 2O 3和Cr 2O 3形成连续固溶体。(4分) (a )这个结果可能吗为什么 (b )试预计,在MgO -Cr 2O 3系统中的固溶度是有限还是很大的为什么 答(a )可能,Al 2O 3和Cr 2O 3的正离子半径之比小于15%。晶体结构又相同。 所以可能 O Li Li O Li O V Sr S SrO +'+??→??. 2)(Cl i Li LiCl Cl Cl Mg S MgCl ++?? →??')(.2

第二章晶体结构与晶体中的缺陷

内容提要:通过讨论有代表性的氧化物、化合物和硅酸盐晶体结构, 用以掌握与本专业有关的各种晶体结构类型。介绍了实际晶体中点缺陷分 类;缺陷符号和反应平衡。固熔体分类和各类固熔体、非化学计量化学化 合物的形成条件。简述了刃位错和螺位错。 硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式为孤岛状、组群状、链状、层装和架状五类。这五类的[SiO4]四面体中,桥氧的数目也依次由0增加到4, 非桥氧数由4减至0。硅离子是高点价低配位的阳离子。因此在硅酸盐晶体中,[SiO4] 只能以共顶方式相连,而不能以共棱或共面方式相连。表2-1列出硅酸盐晶体结构类型及实例。 表2-1 Array硅酸 盐晶 体的 结构 类型

真实晶体在高于0K的任何温度下,都或多或少地存在着对理想晶体结构的偏离,即存在着结构缺陷。晶体中的结构缺陷有点缺陷、线缺陷、面缺陷和复合缺陷之分,在无机材料中最基本和最重要的是点缺陷。 点缺陷根据产生缺陷的原因分类,可分为下列三类: (1)热缺陷(又称本征缺陷) 热缺陷有弗仑克儿缺陷和肖特基缺陷两种基本形式。 弗仑克儿缺陷是指当晶格热震动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗仑克儿缺陷。 肖特基缺陷是指如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,而在原正常格点上留下空位,这种缺陷称为肖特基缺陷。 (2)杂质缺陷(非本征缺陷) (3)非化学计量化学化合物 为了便于讨论缺陷反应,目前广泛采用克罗格-明克(Kroger-Vink)的点缺陷符号(见表2-2)。 表2-2 Kroger-Vink缺陷符号(以M2+X2-为例)

相关文档
最新文档