鲁奇炉的介绍
鲁奇加压气化炉

2、 技术特点
采用碎煤加压式填料方式,即连接在炉体上部的煤锁将原料制成常温碎煤块,然后从进煤口经过气化炉的预热层,将温度提高至300℃左右。从气化剂入口吹进的助燃气体将煤点燃,形成燃烧层。燃烧层上方是反应层,产生的粗煤气从出口排出。炉篦上方的灰渣从底部出口排到下方连接的灰锁设备中,所以气化炉与煤锁﹑灰锁构成了一体的气化装置。
3、 典型代表产品
鲁奇炉的代表炉型即第三代MARK-IV/4型Ф3800mm加压气化炉, 炉体由内外壳组成,其间形成50mm的环形水冷夹套,是一种技术先进﹑结构更为合理的炉型。我公司为河南义马、大唐克旗等制做了多台鲁奇式气化炉。
煤气化技术是清洁利用煤炭资源的重要途径和手段。目前,国内自行开发和引进的煤气化技术种类很多,但总体上可以分为以下三大类:
鲁奇加压气化炉是由联邦德国鲁奇公司于1930年开发的,属第一代煤气化工艺,技术成熟可靠,是目前世界上建厂最多的煤气化技术。鲁奇气化炉是制取城市坑口煤气装置中的心脏设备。它适应的煤种广﹑气化强度大﹑气化效率高﹑粗煤气无需再加压即可远距离输送。
1999年 ,哈锅为河南义马制造了国内首台φ3800鲁奇技术加压气化炉。义马气化炉是国家“九五”重大技术装备科研攻关项目,该气化炉于2001年2月获科学技术部、财政部、国家计委、国家计贸委颁发的“九五”国家重点科技攻关计划优秀科技成果奖,2002年获中国机械工业科学技术三等奖。
一、移动床气化技术
以鲁奇为代表的加压块煤气化技术。鲁奇加压气化技术是由联邦德国鲁奇公司于1930年开发的,属第一代煤气化技术,技术成熟可靠,曾是世界上建厂最多的煤气化技术。鲁奇气化技术是制取城市煤气和合成气装置中的心脏设备。它适应的煤种广﹑气化强度较大﹑气化效率高。鲁奇气化技术的特点为:采用碎煤加压式供料方式,即连接在炉体上部的煤锁将煤块升压,加入气化炉的预热层,然后,下移至反应层,煤在反应层气化,反应热量取自于气化剂与燃烧形成的燃烧层。产生的粗煤气从出口排出。炉篦上方的灰渣从底部出口排到下方连接的灰锁中,所以气化炉与煤锁﹑灰锁构成了一体的气化装置。鲁奇炉的代表炉型即第三代MARK-IV型Ф3800mm加压气化炉, 炉体由内外壳组成,其间形成50mm的环形水冷夹套,用作保护炉的过热和产生蒸汽,结构更为合理的炉型。鲁奇公司为河南义马、大唐克旗等制做了多台鲁奇式气化炉。
鲁奇加压气化炉的运行与技术改进

鲁奇加压气化炉的运行与技术改进摘要:随着我国市场经济体制的深入发展,能源利用方式也面临着新的改革,不仅要满足市场需求,更要实现多样化创新以适应多方面需求。
煤化工业在此基础上得到了较快的发展,如合成氨、甲醇、煤制天然气、煤制油等产业,在不同程度上提出了碎煤加压气化工艺的需求。
鲁奇炉是在煤化工业中重要的设备,也被看作是煤气化炉中的发生器。
这种产自德国的工艺设备在世界范围内都得到了广泛地应用,上世纪五十年代,我国根据生产需求引入了鲁奇工艺,同时也开始了针对鲁奇工艺生产的探索和研究。
基于此,本文主要对鲁奇加压气化炉的运行与技术改进进行分析探讨。
关键词:鲁奇加压气化炉;运行;技术改进1、前言我国引入鲁奇工艺是在上世纪五十年代,第一代鲁奇炉从苏联引入之后在较长的一段时间内没有进行技术改造方面的探索。
这是因为建国初期的煤化工业几乎都是有苏联技术援建的,以碎煤加压气化为主要技术,国内几乎没有相关的技术人员。
经过长期的研究,碎煤加压气化技术得到了大幅度创新,但在工艺运行和技术改造方面都存在较大的空间。
2、鲁奇炉的设计结构和工艺原理目前,我国鲁奇加压炉的改造方向,主要用于氨气和煤气的生产,应用于化肥生产、城市煤气供应等方面。
虽然不同的生产企业对气化炉的结构改造不同,但在利用煤炭资源性质方面是相同,通过技术改造造成部件方面的差异,本文基于化肥生产过程进行研究。
2.1鲁奇炉简介鲁奇炉是德国鲁奇工程公司生产的煤气化装置,最早成形于十九世纪三十年代,鲁奇炉的是经过对多种煤炭资源测试试验后发明的煤气化装置。
在最初采用燃烧值较低的褐煤进行实验,并取得了成功,在十九世纪50年代到70年代,鲁奇工程公司进行了一系列的改造,其中鲁奇Ⅳ型汽化炉的技术已经相当成熟,目前在国内应用的鲁奇炉设备大多是这一型号。
MARK-Ⅳ型中设置了炉箅,对气化的强度提升高,残渣形成少,技术更加先进;MARK-Ⅳ型鲁奇炉结构其他主要部件包括炉体、煤锁、膨胀冷凝器、洗涤冷却器等。
鲁奇炉工作原理

鲁奇炉(Lurgi Gasifier)是一种用于煤炭气化的加压移动床反应器,它的主要工作原理可以概括如下:1.物料输入与预处理:o煤炭首先经过破碎和干燥处理,然后通过煤锁(Coal Lock)按批次定量送入炉体内部。
煤锁通过充气加压与炉内压力保持一致,防止气体泄漏。
2.炉体结构与过程分区:o鲁奇炉为立式圆筒形结构,炉体内壁有水夹套,可利用高温煤气产生的热量生产蒸汽。
煤炭自上而下通过炉膛,依次经过干燥区、干馏区、气化区、部分氧化区和燃烧区。
3.气化过程:o在炉内的不同高度,煤炭与气化剂(通常包括氧气、水蒸气以及其他可能的还原气体)逆流接触。
o干燥区去除煤炭中的水分;干馏区发生热解作用,释放挥发分;气化区煤炭在一定的温度和压力下与气化剂反应生成合成气(主要成分为氢气H2、一氧化碳CO以及其他烃类和惰性气体)。
o部分氧化区煤炭与氧气进一步反应,提供热量维持气化反应所需的高温条件;燃烧区则是剩余未完全反应的煤炭和气体被充分燃烧。
4.排渣过程:o固态排渣鲁奇炉中,煤灰在气化完成后形成固态灰渣,通过炉底的炉箅排出到灰斗。
o液态排渣鲁奇炉在下部增设了喷嘴,高速喷入氧气和蒸汽,使煤灰在高温下熔融形成液态渣,通过调整急冷室与炉缸的压力差,控制液态渣以适宜的速度排出,避免排渣口堵塞。
5.能量回收与环境保护:o鲁奇炉的设计考虑了能源的高效利用和环保要求,炉壁夹套产生的蒸汽可用于发电或者作为工艺蒸汽循环使用。
o产生的煤气经过冷却、净化处理,分离出的产品包括清洁煤气、硫磺等,同时对废水和废气进行处理,以达到环保排放标准。
总的来说,鲁奇炉通过一系列复杂的化学反应将固体煤炭转化为便于运输和使用的合成气,实现了煤炭资源的有效转化和利用,同时也是洁净煤技术的重要组成部分,在煤化工产业中具有重要地位。
鲁奇炉气体成分

鲁奇炉气体成分
鲁奇炉是一种用于冶炼铝的重要设备,它是由一个特殊的炉体和一组高温燃烧器组成的。
鲁奇炉中产生的气体是非常重要的冶炼中间产物,因此对其成分的分析是非常必要的。
鲁奇炉气体成分主要包括氢气、一氧化碳、二氧化碳、氢氟酸、氟氢化气体和水蒸气等。
其中,氢气是最主要的气体成分,占总体积的80%~90%,它的生成来源于由铝矿石还原而来的铝金属和氧化铝的反应。
一氧化碳是由铝矿石中含有的碳质物或燃烧器中不完全燃烧产生的,它是铝的还原剂之一,也可以被再次转化成CO2。
二氧化碳占总炉气的
5%~10%,主要源于空气中的氧与氢氟酸发生反应。
氢氟酸是铝矿石中含有的氟元素在高温下和水蒸气发生反应而产生的。
它在鲁奇炉的炉内中是极为重要的,因为它可以帮助还原铝矿石中的氧化铁和氧化硅等杂质物质,从而提高冶炼质量。
同时,氢氟酸也可以被用来冷却鲁奇炉内的高温冶炼金属。
氟氢化气体是由氢氟酸在高温下被分解而来的,它主要用于改善冶炼金属的流动性和流动状态。
水蒸气是由燃烧时产生的水蒸汽冷却后再被冶炼金属吸收。
从鲁奇炉炉气的成分分析可以看出,该设备在铝冶炼中发挥着极为重要的作用。
通过其高温高压的环境和气氛,可以帮助将铝矿石中的杂质物质还原,从而提高铝的品质,同时炉气中的热能也可以被回收利用,减少了资源的浪费。
然而,由于鲁奇炉炉气的成分复杂,需要在设备内部进行实时监测和调整,保证冶炼金属的品质和设备的正常运转。
鲁奇加压气化炉

鲁奇加压气化炉1、第三代鲁奇加压气化炉第三代加压气化炉为例,该炉子的内径为3.8m,最大外径为4.128m,高为12.5m,工艺操作压力为3MPa。
主要部分有炉体、夹套、布煤器和搅拌器、炉算、灰锁和煤锁等,现分述如下。
①炉体加压鲁奇炉的炉体由双层钢板制成,外壁按3.6MPa的压力设计,内壁仅能承受比气化炉内高O.25MPa的压力。
两个简体(水夹套)之间装软化水借以吸收炉膛所散失的一些热量产生工艺蒸汽,蒸汽经过液滴分离器分离液滴后送入气化剂系统,配成蒸汽/氧气混合物喷入气化炉内一水夹套内软化水的压力3MPa,这样筒内外两两侧的压力相同,因而受力小。
夹套内的给水由夹套水循环泵进行强制循环。
同时夹套给水流过煤分布器和搅拌器内的通道,以防止这些部件超温损坏。
第三代鲁奇炉取消了早期鲁奇炉的内衬砖.燃料直接与水夹套内壁相接触,避免了在较高温度下衬砖壁挂渣现象,造成煤层下移困难等异常现象,另一方面,取消衬砖后,炉膛截面可以增大5%~10%左右,生产能力相应提高。
②布煤器和搅拌器如果气化黏结性较强的煤,可以加设搅拌器。
布煤器和搅拌嚣安装在同一转轴上,速度为15r/h左右。
从煤箱降下的煤通过转动布煤器上的两个扇形孔,均匀下落在炉内,平均每转可以在炉内加煤150~200mm厚。
搅拌器是一个壳体结构,由锥体和双桨叶组成,壳体内通软化水循环冷却。
搅拌器深入到煤层里的位置与煤的结焦性有关,煤一般在400~500℃结焦,桨叶要深入煤层约l.3m。
③炉算炉箅分四层,相互叠合固定在底座上,顶盖呈锥体。
材质选用耐热的铬钢铸造,并在其表面加焊灰筋。
炉箅上安装刮刀,刮刀的数量取决于下灰量。
灰分低,装1~2把;对于灰分较高的煤可装3~4把。
炉箅各层上开有气孔,气化剂由此进入煤层中均匀分布。
各层开孔数不太一样,例如某厂使用的炉算开孔数从上至下为:第一层6个、第二层16个、第三层16个、第四层28个。
炉箅的转动采用液压传动装置,也有用电动机传动机构来驱动,液压传动机构有调速方便、结构简单、工作平稳等优点。
影响鲁奇炉连续稳定运行的原因及改进措施师彦平

影响鲁奇炉连续稳定运行的原因及改进措施师彦平发布时间:2021-08-18T06:17:38.895Z 来源:《中国科技人才》2021年第15期作者:师彦平[导读] 鲁奇炉是双层夹套式圆筒形气化炉,主要由炉体、煤锁、灰锁、炉篦、布煤装置,气化剂入口和煤气出口等设备组成。
伊犁新天煤化工有限责任公司新疆伊宁 835000摘要:鲁奇炉是双层夹套式圆筒形气化炉,主要由炉体、煤锁、灰锁、炉篦、布煤装置,气化剂入口和煤气出口等设备组成。
鲁奇气化炉经过不断的技术改进,虽然在性能方面不断地提升,但是长周期稳定运行仍是研究重点.关键词:鲁奇炉;稳定运行;影响原因;改进措施引言鲁奇炉的发展最开始是在国外研究和提出,并且投入使用的,我国经过不断的引进和改进,进而投入到我国的工业和生活中。
刚开始的鲁奇炉使用的资源是通过燃烧煤块实现煤气的供应,整个燃烧的过程和燃烧的产生煤气的效率较低,会影响煤矿资源的消耗,也会影响环境的安全。
历经几十年的改进和发展,鲁奇炉的建造手法越来越精细,建设工艺越来越简便,煤气产生的效率也逐渐提高。
不仅是在我国得到了发展,在国际地位的发展中也得到了进步,为整体实力的发展奠定基础。
1煤种和煤质对鲁奇炉生产工艺的影响煤炭与纯净物不一样,它不像纯净物一样有固定的熔点,所以灰熔点的概念就出来了,灰熔点即煤灰的熔融性,它没有固定的数值,而是在一定的范围内。
当煤炭中的无机物分解,并且煤炭发生变形融化,那么就达到了其熔点。
熔点不同鲁奇炉内的温度也是不同的,所以鲁奇炉的温度要根据煤炭的灰熔点进行调节,其温度的调节是至关重要的,一般情况下温度是控制在煤灰变形和变软之间。
温度过高或者温度过低都会对鲁奇炉产生不好的影响。
如果煤炭的灰熔点高的话,就要采取降低汽氧比的措施来提高鲁奇炉内的温度,这时候如果温度超过炉所承受温度的极限,那么就会对炉内的设备有影响,甚至会损坏气化炉,鲁奇炉所能承受的最高温度一般是1300℃。
如果煤炭的灰熔点比较低,那么要采取提高汽氧比的方法来降低炉内温度,这时候如果掌控不好温度,煤炭残渣就会由于温度低而粘在炉内部。
鲁奇炉介绍及附属设备简介

气化炉内外壳生产期间温度不同,热膨胀量不同, 为降低温度差应力,在内套下部设计制造了波形膨胀节 如图13所示,用于吸收热膨胀量。正常生产期间,波形 膨胀节不但可吸收大约25-35mm的内壳热膨胀量,而且在 此还可以起到支撑灰渣的作用,这样可使灰渣在刮刀的 作用下均匀地排到灰锁中去。
2. 鲁奇第二代加压气化炉
在综合了第一 ④取消了衬砖, ①在炉内部设臵了传动 代气化炉的运行情 提高了气化炉的 的搅拌装臵和布煤器, ③入炉气 况后,鲁奇公司于 生产能力,也避 搅拌装臵有两个搅拌桨 免了由于在内衬 20化剂管与 世纪50年代推出 叶,其高度在炉内的干 ⑤灰锁设臵在炉底 传动轴分 上挂渣给生产操 了 φ2.6m,中间除 馏层,随着叶片的转动, 正中位臵,气化后 开,单独 作带来的不利影 灰的第二代气化炉, 在干馏层的煤焦受到了 产生的灰渣从炉篦 固定在炉 响; ②炉篦由单层平型改为 底侧壁上; 如图 8所示。 搅动,破坏了煤的黏结, 的周边环隙落下落 多层塔节型结构,气化
德士古气化炉(结构见图3)属于 湿法进料气流床的一种,最早引进该技 术的是山东鲁南化肥厂,1993年投产。 目前,我国已有山东鲁南、上海焦化、 )装臵投运,有些已 具有10多年运行经验,到目前为止运行 基本良好,显示了水煤浆气化技术的先 进性。但是,德士古气化炉对煤质限制 比较严格,成浆性差和灰分较高,还存 在耐火砖成本高、寿命短和煤浆泵磨损 大、维修成本高等问题。
气流床:粉煤与气化剂( O2 、水蒸 气)一起从喷嘴高速吹入炉内,快速 气化。特点是不副产焦油,生成气中 甲烷含量少。主要以德士古气化炉和 壳牌气化炉为代表;
二、3种先进的煤气化工艺
我国引进并被广泛采用的三种先进煤气化
工艺分别是:壳牌气化炉、德士古气化炉、鲁 奇气化炉。
鲁奇气化炉

鲁奇气化炉鲁奇加压气化炉1、第三代鲁奇加压气化炉第三代加压气化炉为例,该炉子的内径为3.8m,最大外径为4.128m,高为12.5m,工艺操作压力为3MPa。
主要部分有炉体、夹套、布煤器和搅拌器、炉算、灰锁和煤锁等,现分述如下。
①炉体加压鲁奇炉的炉体由双层钢板制成,外壁按3.6MPa的压力设计,内壁仅能承受比气化炉内高O.25MPa的压力。
两个简体(水夹套)之间装软化水借以吸收炉膛所散失的一些热量产生工艺蒸汽,蒸汽经过液滴分离器分离液滴后送入气化剂系统,配成蒸汽/氧气混合物喷入气化炉内一水夹套内软化水的压力3MPa,这样筒内外两两侧的压力相同,因而受力小。
夹套内的给水由夹套水循环泵进行强制循环。
同时夹套给水流过煤分布器和搅拌器内的通道,以防止这些部件超温损坏。
第三代鲁奇炉取消了早期鲁奇炉的内衬砖.燃料直接与水夹套内壁相接触,避免了在较高温度下衬砖壁挂渣现象,造成煤层下移困难等异常现象,另一方面,取消衬砖后,炉膛截面可以增大5%~10%左右,生产能力相应提高。
②布煤器和搅拌器如果气化黏结性较强的煤,可以加设搅拌器。
布煤器和搅拌嚣安装在同一转轴上,速度为15r/h左右。
从煤箱降下的煤通过转动布煤器上的两个扇形孔,均匀下落在炉内,平均每转可以在炉内加煤150~200mm厚。
搅拌器是一个壳体结构,由锥体和双桨叶组成,壳体内通软化水循环冷却。
搅拌器深入到煤层里的位置与煤的结焦性有关,煤一般在400~500℃结焦,桨叶要深入煤层约l.3m。
③炉算炉箅分四层,相互叠合固定在底座上,顶盖呈锥体。
材质选用耐热的铬钢铸造,并在其表面加焊灰筋。
炉箅上安装刮刀,刮刀的数量取决于下灰量。
灰分低,装1~2把;对于灰分较高的煤可装3~4把。
炉箅各层上开有气孔,气化剂由此进入煤层中均匀分布。
各层开孔数不太一样,例如某厂使用的炉算开孔数从上至下为:第一层6个、第二层16个、第三层16个、第四层28个。
炉箅的转动采用液压传动装置,也有用电动机传动机构来驱动,液压传动机构有调速方便、结构简单、工作平稳等优点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 炉篦材质为16Mo5铸钢件,因其在转动过程中与灰渣产生磨擦, 为提高硬度,增强耐磨能力,在其表明堆焊有硬质合金E20-50-zct
❖ 炉篦内壁下部,在操作期间,此处充满了灰渣,为了减弱炉 篦转动时灰渣对内壳的磨损,延长设备使用寿命,在内壳下部与 炉篦接触处和波纹段上部高为600mm范围内相应加大壁厚至 40mm,并且沿圆周在此处焊有高300mm,厚度为40mm的耐磨 筋条24根,在波纹节处装有耐磨板。耐磨材料为Gx35CrMoV104-II。
1、壳体 气化炉外壳是一双层夹套筒体式外壳,夹套在生产时由锅炉给水 保持液位,并在此锅炉水吸热汽化产生饱和蒸汽,此蒸汽并入气化 剂管线返回气化炉内。夹套内压力比气化炉内压力约高0.05MPa,以 克服系统阻力。 气化炉外壁厚50mm,是由WSTE36材料所制,其可承受较高的
2 气液分离器 9 水夹套
1 煤锁 3 炉体
4 洗涤冷却器
10 气化剂管线
7 灰锁 Mark-IV鲁奇炉结构图
5 转动炉篦 6 炉篦传动轴 8 膨胀冷凝器
❖ 外压(设计压力3.6MPa), 内壁是厚度为30mm的HII锅 炉钢所制,其可承受较高的温 度。
❖ 夹套宽度为46mm,总容积 为13M3,夹套内产的饱和蒸 汽,无单独的集汽包,而是利 用夹套上部空间起汽液分离作 用,为了提高分离效果,在内 外壳体上焊有挡板。
❖ 炉篦的传动机构是由一个大齿轮和两个小齿轮组成,小齿轮 Z= 25,大齿轮Z=72,速比i=4.8,大齿轮与炉篦转轴之间采用多 齿键连接,小齿轮固定在输出轴上,由炉外变速电机经减速机带 动。大齿轮材质为 x38Cr-MoV51,其硬度为xc=38。由于齿轮位于排灰区,周围条件 差,多灰,为减小灰进入齿轮传动部分,在气化炉底部下灰室的 大齿轮外挂有保护板,用于档灰保护齿轮传动部分。
❖ 炉篦整体由下部的止推盘支撑,止推盘下盘通过有水冷的支 撑筋板固定在炉体内壳上。炉篦是通过两个对称布置的传动小齿 轮带动的。炉外两个与小齿轮联结的轴是由变速电机通过减速机 传动而带动的,整个传动装置为四级传动,总速比i=900,传动功 率为45KW扭矩为2x400000N.m,设计转速为1——12转/h。
❖ 2、炉篦
❖ 炉篦设在气化炉底部,其是气化炉的关键部件,设置其作用 是:
❖ (1)将气化剂均匀地分布在气化炉内;
❖ (2)排灰,破碎大块灰渣;
❖ (3)使燃料床移动,稳定炉内工况。
❖ Mark-IV型气化炉采用塔形炉篦,分四层布气,气化剂由炉底 进入炉篦中心管,然后由布气孔出去通过炉篦各层间隙分布进入 气化炉内,达到沿气化炉横断面均匀布气的效果。
鲁奇炉设备的构造
Mark-IV型气化炉
鲁奇炉设备的构造
鲁奇炉第三代炉及附属装置介绍
鲁奇三代Mark IV型加压气化炉,与其相配套的传动装置用的是 榆次液压制造的液压传动系统,下面就这套装置对设备作一介绍。 一、气化炉炉体
Mark-IV型气化炉炉体外径为φ3848毫米,炉体高度12500毫米, 炉内燃料堆放高度4000毫米,炉体容积为119M3,炉体总重量169.5 吨(包括内件重量40吨),操作重量大约250吨,操作压力大约 3.05MPa(表压),操作温度大约1100℃.炉体除外壳外,还包括 内件(煤分布器、搅拌器)炉篦。
❖ 炉篦的总高度为1200mm,气化剂在各层炉篦通道进入炉内的
❖ 气量分布大致为:I——10%,II——20%,III——30%,IV—— 40%。炉篦共有五层,为便于从炉顶上孔放入炉内进行安装,除 一、二层是整体一块外,其它层均是有几块组成:第三层2块, 第四层4块,第五层4块。各块之间采用螺栓连接。各层炉篦均固 定在中心托板上,采用插入式咬合连接,中心托板上有档块带动 各层炉篦转动。
❖ 支撑炉篦的是形如圆盘的止推盘(止推轴承),其接触面为 圆球形,对中性好。上下两滑动接触面由内外配合的轴承大筒固 定,用螺栓固定在套上,下止推盘与底板采用两个键固定,上止 推盘 与大齿轮连接采用键和螺栓固定。止推盘接触面由65﹟ 高 温汽缸油润滑,润滑油由配套的柱塞式多点润滑泵加压经8根油 管 从炉外穿过炉底部压人轴承面上。止推轴承选用材料为铸钢 Gx165CrMoV12,经机械加工后淬火处理,其硬度达Rc=50~70.
❖ 气化炉内外壳体生产期间 温度不同,热膨胀量不同,为 降低温度差应力,在内套下部 设计制造成波形膨胀节,用于 吸收热膨胀量。
❖ 正常生产期间,波形膨胀 节不但可吸收大约25~35mm
46mm
夹套上部空间
40mm
50mm
30mm
波形膨胀区
❖ 的内壳热膨胀量,而且在此还可以起到支撑灰渣的作用,这样可 使灰渣在刮刀的作用下均匀地排到灰锁中去。
❖ 基层堆焊1.4576不锈钢,同时在其表明上焊了一些硬质合金耐磨条。
❖ 在炉篦第五层下设有用于排灰的排灰刮刀,其可将大块灰渣挤 压破碎,并从炉内排至灰锁内。
❖ 安装好的刮刀与气化炉内壁波形段的间隙为30~60mm,间隙 过小,受热膨胀后将会出现卡塞现象。刮刀的数量是依据煤的灰 分大小而决定。一般采用两把刮刀,刮刀是用耳块及销钉与炉篦 下刮刀座连接的,其厚度为30~40mm,选用材料为: 35CrMoV10-4-II。
❖ 大、小齿轮的间隙对于炉 篦长周期稳定运行是致关重
二、煤斗与灰斗, 煤锁与灰锁
要的。冷态安装时齿轮间隙 1、煤斗
为4~5mm,在操作条件下, 由于其受热膨胀,间隙将成 为1~2mm.齿轮的这一间隙 是靠固定小齿轮的偏心轴套 来调整的,转到偏心轴套使 大小齿轮间隙达标,用螺栓 将轴套固定。
煤斗是安装在气化炉顶部的原 料煤储仓,煤经筛分处理后,块 煤由皮带输送进入煤斗,然后再 从煤斗经煤溜槽间歇地加入煤锁。 在煤斗与煤溜槽之间设有一软性 连接节,用于吸收气化炉向上的 膨胀量。