2020-2021学年湖南省长沙市浏阳市九年级上学期期末考试数学试卷及答案解析

合集下载

人教版2020-2021学年度上学期期末考试数学试卷(Word版 含解析)

人教版2020-2021学年度上学期期末考试数学试卷(Word版 含解析)

人教版2020-2021学年度上学期期末考试数学试卷(全册)一、选择题(本大题共10小题,共30.0分)1.下列关于事件发生可能性的表述,正确的是( )A. 事件:“在地面,向上抛石子后落在地上”,该事件是随机事件B. 体育彩票的中奖率为10%,则买100张彩票必有10张中奖C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D. 掷两枚硬币,朝上的一面是一正面一反面的概率为 132.下列四个银行标志中,既是轴对称图形又是中心对称图形的是( ). A. B. C. D.3.关于 x 的一元二次方程 x 2−5x +2p =0 的一个根为 1 ,则另一根为( ).A. -6B. 2C. 4D. 14.下列关于二次函数 y =2x 2+3 ,下列说法正确的是( ).A. 它的开口方向向下B. 它的顶点坐标是 (2,3)C. 当 x <−1 时, y 随 x 的增大而增大D. 当 x =0 时, y 有最小值是35.如图,AB 为⊙O 的直径,点D 是弧AC 的中点,过点D 作DE ⊥AB 于点E ,延长DE 交⊙OO 于点F ,若AC = 12,AE = 3,则⊙O 的直径长为( )A. 10B. 13C. 15D. 166.某校食堂每天中午为学生提供A 、 B 两种套餐,甲乙两人同去该食堂打饭,那么甲乙两人选择同款套餐的概率为( )A. 12B. 13C. 14D. 237.如图,某幢建筑物从2.25米高的窗口A 用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点M 离墙1米,离地面3米,则水流下落点B 离墙的距离OB 是( )A. 2.5米B. 3米C. 3.5米D. 4米8.小明同学是一位古诗文的爱好者,在学习了一元二次方程这一章后,改编了苏轼诗词《念奴娇·哧壁怀古》:“大江东去浪淘尽,千古风流人物。

而立之年督东吴,早逝英年两位数。

2020-2021学年湖南省长沙市浏阳市九年级上学期期末考试数学试卷

2020-2021学年湖南省长沙市浏阳市九年级上学期期末考试数学试卷

第 1 页 共 18 页
2020-2021学年湖南省长沙市浏阳市九年级上学期期末考试
数学试卷
一.选择题(共12小题,满分36分,每小题3分)
1.关于反比例函数y =2x ,下列说法不正确的是( )
A .点(﹣2,﹣1)在它的图象上
B .它的图象在第一、三象限
C .它的图象关于原点中心对称
D .y 的值随着 x 的值的增大而减小
【解答】解:∵反比例函数y =2x ,
∴当x =﹣2时,y =﹣1,即点(﹣2,﹣1)在它的图象上,故选项A 正确; 它的图象在第一、三象限,故选项B 正确;
它的图象关于原点中心对称,故选项C 正确;
在每个象限内,y 的值随着x 的值的增大而减小,故选项D 不正确;
故选:D .
2.如图,⊙O 的周长等于4πcm ,则它的内接正六边形ABCDEF 的面积是( )
A .√3
B .3√3
C .6√3
D .12√3
【解答】解:如图,连接OA 、OB ,作OG ⊥AB 于点G ,
∵⊙O 的周长等于4πcm ,
∴⊙O 的半径为:4π2π=2,
∵ABCDEF 是⊙O 的内接正六边形,。

湖南省长沙市浏阳市2023-2024学年九年级上学期期末数学试题

湖南省长沙市浏阳市2023-2024学年九年级上学期期末数学试题

湖南省长沙市浏阳市2023-2024学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题.....一元二次方程22023x x的两根之和是(-2022 2023.20242023.下列函数,y是的反比例函数的是(y=x2.20y=x的对称轴是直线(y-=3∠A.AC平分BAE=D.BC DE中,半径OA垂直于弦BC,点6.在O()A ..C ..9.若方程ax 2+bx +c =0(a ≠0)中,a +b +c =0和a ﹣b +c =0,则方程的根是()A .1,0B .﹣11,﹣1D .无法确定10.在平面直角坐标系xOy 中,点)23y ax =,,的图象如图所示,则值可以为()A.0.7B.0.9C.2D.2.1二、填空题15.反比例函数y=则k的值为.16.某商场在“元旦”白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是三、解答题=19.已知抛物线y ax(1)求a的值;x=时,求y的值.(2)当320.小明和小亮利用三张卡片做游戏,卡片上分别写有(1)求出两函数解析式;(2)根据图象,当x为何值时,对应的一次函数的函数值大于反比例函数的函数值.22.现代互联网技术的广泛应用,今年三月份与五月份完成投递的快件总件数分别是月投递的快件总件数的增长率相同.()1求该公司投递快件总件数的月平均增长率;()2如果平均每人每月可投递快递成今年6月份的快递投递任务?24.关于x 的方程()22mx m x ++(1)求m 的取值范围;(2)是否存在实数m ,使方程的两个实数根的倒数和等于存在,请说明理由.25.已知二次函数23y ax bx =+-物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 、DB ,判断BCD △(3)在对称轴右侧抛物线上找一点P ,使得求出点P 的坐标及此时四边形PBCD。

2020-2021学年湖南省长沙市九年级(上)期末数学试卷及参考答案

2020-2021学年湖南省长沙市九年级(上)期末数学试卷及参考答案

2020-2021学年湖南省长沙市九年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列实数是无理数的是()A.B.C.3.1415D.﹣52.(3分)下列立体图形中,主视图是圆的是()A.B.C.D.3.(3分)近日,从探月工程在完成既定主任务后,嫦娥五号轨道器将开展拓展任务,启程飞往距离地球约1500000公里的日地拉格朗日L1点.将1500000用科学记数法表示为()A.0.15×107B.1.5×107C.1.5×106D.15×105 4.(3分)下列运算正确的是()A.a3•a3=a9B.a6÷a3=a2C.a3+a3=2a6D.(a2)3=a6 5.(3分)不等式组的整数解有()A.1个B.2个C.3个D.4个6.(3分)如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为()A.35°B.45°C.55°D.65°7.(3分)下列命题是真命题的是()A.内错角相等B.旋转改变图形的形状和大小C.等边三角形是中心对称图形D.平行四边形对角线互相平分8.(3分)一次函数y=kx﹣2(k≠0)的函数值y随x增大而减小,那么该函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为()A.x2﹣6=(10﹣x)2B.x2﹣62=(10﹣x)2C.x2+6=(10﹣x)2D.x2+62=(10﹣x)210.(3分)如图,正方形ABCD,点E,F分别在边AD,AB上,AF=DE,AF:FB=1:2,DF与CE交于点M,AC与DF交于点N,延长CB至G,使BC=2BG,连接GM.有如:S四边形CNFB=1:9;④∠ADF=∠GMF.上下结论:①CE⊥DF;②;③S△ANF述结论中,所有正确结论的序号是()A.①②B.①③C.①②④D.②③④二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)因式分解:2x2﹣8=.12.(3分)平面直角坐标系中,将点A(3,﹣2)向右平移2个单位长度,那么平移后对应的点A'的坐标是.13.(3分)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是.14.(3分)正十二边形每个内角的度数为.15.(3分)若圆锥的底面半径为4,高为3,则圆锥的侧面展开图的面积是.16.(3分)如图,一次函数y=k1x+b的图象过点A(0,4),且与反比例函数的图象相交于B、C两点.若AB=BC,则k1•k2的值为.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分,解答写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:.18.(6分)先化简,再求值:,其中.19.(6分)如图,A、B、D三点在同一水平线上,CD⊥AD,∠A=45°,∠CBD=75°,AB=60m.(1)求∠ACB的度数;(2)求线段CB的长度.20.(8分)为了解某校九年级全体男生100米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如图表所示,根据图表信息解答下列问题:成绩等级频数分布表成绩等级频数A24B10C xD2合计y(1)y=,扇形图中表示C的圆心角的度数为度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.21.(8分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若∠C=60°,,求菱形ABEF的周长.22.(9分)某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?23.(9分)如图,点B是⊙C上的一点,点A是直径ED延长线上的一点,连接AB,EB,BD,且∠ABD=∠E.(1)求证:直线AB是⊙C的切线;(2)当时,求tan E;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=4,求⊙C的半径.24.(10分)定义:形如y=|G|(G为用自变量表示的代数式)的函数叫做“翻折函数”.例如,函数y=|x+1|,y=||都是“翻折函数”.“翻折函数”本质是分段函数.例如,可以将“翻折函数”y=|x|写成分段函数的形式:y=|x|=.探索并解决下列问题:(1)将“翻折函数”y=|2x﹣1|写成分段函数的形式;(2)若“翻折函数”函数y=|﹣|的图象与直线y=x+m恰有2个公共点,求m的取值范围;(3)已知函数y=|﹣x2+2x+3|的图象与y轴交于F点,与x轴交于M,N两点(点M在点N的左边),点P在函数y=|﹣x2+2x+3|的图象上(点P与点F不重合),PH⊥x轴,垂足为H.若△PMH与△MOF相似,请直接写出所有符合条件的点P的坐标.25.(10分)如图,⊙O为等边△ABC的外接圆,AB=4.(1)如图1,若点D,点E分别是边BC,CA上的动点,且BD=CE,连接AD、BE交于点F,求证:△ABD≌△BCE;(2)在(1)问的基础上,当点D从点B运动到点C时,求点F的运动路径的长度;(3)如图2,点M在劣弧上运动(不与点A,B重合),四边形AMBC的面积S是线段MC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由.2020-2021学年湖南省长沙市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.【分析】根据无理数的定义求解即可.【解答】解:A、是无理数,故本选项符合题意;B、是分数,属于有理数,故本选项不合题意;C、3.1415是有限小数,属于有理数,故本选项不合题意;D、﹣5是整数,属于有理数,故本选项不合题意;故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、主视图是三角形,故不符合题意;B、主视图是矩形,故不符合题意;C、主视图是圆,故符合题意;D、主视图是正方形,故不符合题意;故选:C.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1500000用科学记数法表示为:1.5×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.【解答】解:A、a3•a3=a6,原式计算错误,故此选项不合题意;B、a6÷a3=a3,原式计算错误,故此选项不合题意;C、a3+a3=2a3,原式计算错误,故此选项不合题意;D、(a2)3=a6,正确;故选:D.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.5.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,找出整数解即可.【解答】解:解不等式x+1≥2x﹣1,得:x≤2,解不等式4x+5>2(x+1),得:x>﹣1.5,则不等式组的解集为﹣1.5<x≤2,所以不等式组的整数解为﹣1,0,1,2,一共4个.故选:D.【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【分析】先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.【解答】解:∵直尺的两边互相平行,∠1=35°,∴∠3=35°.∵∠2+∠3=90°,∴∠2=55°.故选:C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.7.【分析】根据平行的性质、旋转变换的性质、中心对称图形的概念、平行四边形的性质判断即可.【解答】解:A、两直线平行,内错角相等,故本选项说法是假命题,不符合题意;B、旋转不改变图形的形状和大小,故本选项说法是假命题,不符合题意;C、等边三角形不是中心对称图形,故本选项说法是假命题,不符合题意;D、平行四边形对角线互相平分,故本选项说法是真命题,符合题意;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.【分析】根据题意和一次函数的性质,可以得到该函数图象经过哪几个象限,不经过哪个象限.【解答】解:∵一次函数y=kx﹣2(k≠0)的函数值y随x增大而减小,∴k<0,∴一次函数y=kx﹣2(k≠0)的图象经过第二、三、四象限,不经过第一象限,故选:A.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.9.【分析】根据题意画出图形,设折断处离地面的高度为x尺,再利用勾股定理列出方程即可.【解答】解:如图,设折断处离地面的高度为x尺,则AB=10﹣x,BC=6,在Rt△ABC中,AC2+BC2=AB2,即x2+62=(10﹣x)2.故选:D.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合的思想的应用.10.【分析】①证明△ADF≌△DCE即可判断;②利用平行线分线段成比例定理,等腰直角三角形的性质解决问题即可;③设△ANF的面积为m,由AF∥CD,推出,△AFN∽△CDN,推出△ADN的面积为3m,△DCN的面积为9m,推出△ADC的面积=△ABC的面积=12m,由此即可判断;④作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,通过计算证明MH=CH即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AD=AB=CD=BC,∠CDE=∠DAF=90°,∵CE⊥DF,∴∠DCE+∠CDF=∠ADF+∠CDF=90°,∴∠ADF=∠DCE,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴∠ADF=∠DCE,∵∠ADF+∠CDF=90°,∴∠DCE+∠CDF=90°,∴CE⊥DF,故①正确;∵AB∥CD,∴,∵AF:FB=1:2,∴AF:AB=AF:CD=1:3,∴,∴,∵AC=AB,∴AN=AB,故②正确;设△ANF的面积为m,∵AF∥CD,∴,△AFN∽△CDN,∴△ADN的面积为3m,△DCN的面积为9m,∴△ADC的面积=△ABC的面积=12m,:S四边形CNFB=1:11,故③错误;∴S△ANF作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,由△CMD∽△CDE,可得CM=a,由△GHC∽△CDE,可得CH=a,∴CH=MH=CM,∵GH⊥CM,∴GM=GC,∴∠GMH=∠GCH,∵∠FMG+∠GMH=90°,∠DCE+∠GCM=90°,∴∠FMG=∠DCE,∵∠ADF=∠DCE,∴∠ADF=∠GMF,故④正确,故选:C.【点评】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是证明出以及MH=CH.二、填空题(本大题共6个小题,每小题3分,共18分)11.【分析】观察原式,找到公因式2,提出后,再利用平方差公式分解即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).【点评】本题考查提公因式法和公式法分解因式,是基础题.12.【分析】根据平移时,点的坐标变化规律“左减右加”进行计算即可.【解答】解:根据题意,从点A平移到点A′,点A′的纵坐标不变,横坐标是3+2=5,故点A′的坐标是(5,﹣2).故答案为:(5,﹣2).【点评】此题考查了点的坐标变化和平移之间的联系,平移时点的坐标变化规律是“上加下减,左减右加”.13.【分析】根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.即可得解.【解答】解:由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:=9.75.故答案为:9.75.【点评】本题考查了折线统计图、中位数,解决本题的关键是掌握中位数的定义.14.【分析】首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.【解答】解:正十二边形的每个外角的度数是:=30°,则每一个内角的度数是:180°﹣30°=150°.故答案为:150°.【点评】本题考查了多边形的计算,掌握多边形的外角和等于360度,正确理解内角与外角的关系是关键.15.【分析】先利用勾股定理计算出母线长,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式进行计算.【解答】解:因为圆锥的底面半径为4,高为3,所以圆锥的母线长==5,所以圆锥的侧面展开图的面积=•2π•4•5=20π.故答案为20π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.【分析】由A的坐标可知一次函数的解析式为y=k1x+4,根据相交得出k1x2+3x﹣k2=0,得到再由AB=BC,点C的横坐标是点B横坐标的2倍,不防设x2=2x1,列出x1,x2关系等式,据此可以求出k1•k2的值.【解答】解:∵一次函数y=k1x+b的图象过点A(0,4),令k1x+4=,整理得k1x2+4x﹣k2=0,∴x1+x2=﹣,x1x2=﹣,∵AB=BC,∴点C的横坐标是点B横坐标的2倍,不防设x2=2x1,∴x1+x2=3x1=﹣,x1x2=2x12=﹣,∴﹣=(﹣)2,整理得,k1k2=﹣.故答案为﹣.【点评】本题主要考查反比例函数的综合题的知识点,解答本题的关键是运用好AB=BC 这一条件,此题有一定的难度,需要同学们细心领会.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分,解答写出必要的文字说明、证明过程或演算步骤)17.【分析】先计算乘方,负指数幂,特殊角的三角函数值,然后计算加减法.【解答】解:原式=﹣1+﹣1﹣2×﹣4=﹣6+=﹣6.【点评】考查了三角函数,实数的运算,负指数幂等知识点,属于基础题,熟记相关计算法则和特殊值即可解答.18.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算即可.【解答】解:原式=(﹣)÷=•=x+2,当x=﹣2时,原式=﹣2+2=.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19.【分析】(1)利用三角形的外角的性质求解即可.(2)如图,过点B作BH⊥AC于H,利用等腰直角三角形的性质求出BH,再根据BC =2BH,可得结论.【解答】解:(1)∵∠CBD=∠A+∠ACB,∠A=45°,∠CBD=75°,∴∠ACB=75°﹣45°=30°.(2)如图,过点B作BH⊥AC于H.∵∠BHA=90°,AB=60m,∠A=45°,∴BH=AB•sin45°=60(m),∵∠BCH=30°,∴BC=2BH=120(m).【点评】本题考查解直角三角形,三角形的外角的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.20.【分析】(1)根据B等级的频数和所占的百分比求出y,再用360°乘以C所占的百分比即可得出答案;(2)根据题意画出树状图得出所有等情况数,找出同时抽到甲,乙两名学生的情况数,然后根据概率公式即可得出答案.【解答】解:(1)随机抽取男生人数:10÷25%=40(名),即y=40;C等级人数:40﹣24﹣10﹣2=4(名),即x=4;扇形图中表示C的圆心角的度数360°×=36°.故答案为:40,36;(2)画树状图如下:共有6种等可能的情况数,其中同时抽到甲,乙两名学生的有2种,则同时抽到甲,乙两名学生的概率是=.【点评】本题考查了统计图与概率,熟练掌握列表法与树状图求概率是解题的关键.21.【分析】(1)根据作图的过程可知EA平分∠BAD,根据平行四边形的性质可得BE=BA,根据作图可知BA=FA,得BE=FA,证明四边形ABEF是平行四边形,进而可得四边形ABEF是菱形;(2)连接BF交AE于点O,结合(1)根据菱形的性质和∠C=60°,,即可求菱形ABEF的周长.【解答】解:(1)证明:根据作图的过程可知:EA平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠BEA=∠DAE,∴∠BAE=∠BEA,∴BE=BA,∵BA=FA,∴BE=FA,∵BE∥FA,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;(2)如图,连接BF交AE于点O,∵四边形ABEF是菱形,∴BF⊥AE,BO=FO,AO=EO=4,∠BEF=∠C=60°,∴∠BEO=30°,∴OB=OE=4,∴BE=2OB=8,∴菱形ABEF的周长为4BE=32.【点评】本题考查了作图﹣复杂作图,平行四边形的性质,菱形的判定与性质,解决本题的关键是掌握平行四边形的性质,菱形的判定与性质.22.【分析】(1)设甲种玩具的进货单价为x元,则乙种玩具的进价为(x﹣1)元,根据数量=总价÷单价结合“用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的”,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进甲种玩具y件,则购进乙种玩具(2y+60)件,根据进货的总资金不超过2100元,即可得出关于y的一元一次不等式,解之取其中的整数,即可得出结论.【解答】解:(1)设甲种玩具的进货单价为x元,则乙种玩具的进价为(x﹣1)元,根据题意得:=×,解得:x=6,经检验,x=6是原方程的解,∴x﹣1=5.答:甲种玩具的进货单价6元,则乙种玩具的进价为5元.(2)设购进甲种玩具y件,则购进乙种玩具(2y+60)件,根据题意得:6y+5(2y+60)≤2100,解得:y≤112,∵y为整数,=112∴y最大值答:该超市用不超过2100元最多可以采购甲玩具112件.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.23.【分析】(1)连接CB,利用已知条件说明CB⊥AB即可;(2)过点D作DH⊥AB于点H,利用,设AB=4x,则BC=3x,则AC=5x,由于DH∥BC,利用平行线分线段成比例定理得到比例式,求得DH.AH,BH,则tan∠ABD可求,利用∠ABD=∠E,tan E可得;(3)过点F作FM⊥CE于M,利用角平分线的性质定理可得FE=BE;利用勾股定理分别在Rt△BDE和Rt△FME中用x表示出线段BD,BEFM,EM.最后在Rt△AFM中利用勾股定理列出关于x的方程,解方程求得x的值,⊙C的半径可求.【解答】证明:(1)连接CB,如图,∵ED为圆的直径,∴∠DBE=90°.∴∠CBD+∠CBE=90°.∵CB=CE,∴∠CBE=∠CEB,∴∠CBD+∠CEB=90°.∵∠ABD=∠E,∴∠CBD+∠ABD=90°,即∠ABC=90°,∴AB⊥BC.∴直线AB是⊙C的切线;(2)过点D作DH⊥AB于点H,如图,则DH∥BC.∵,∴设AB=4x,则BC=3x.∵AB⊥BC,∴AC==5x,∵CD=CB=3x,∴AD=AC﹣CD=2x.∵DH∥BC,∴=.∴,.∴DH=x,AH=x.∴BH=AB﹣AH=x,在Rt△BHD中,tan∠HBD=.∵∠ABD=∠E,∴tan E=tan∠HBD=.(3)过点F作FM⊥CE于M,如图,∵tan E=,∴.由(2)知:AB=4x,BC=3x,AC=5x,AD=2x,∵CE=CB=3x,∴AE=AD+CD+CE=8x.∵AF是∠BAC的平分线,∴.∴FE=BE.在Rt△BDE中,tan E==,则BE=2BD.∵BD2+BE2=DE2,∴BD2+(2BD)2=(6x)2.∴BD=,∴BE=2BD=x.∴FE=x.在Rt△BDE中,tan E==,则ME=2MF.∵FM2+ME2=FE2,∴.∴FM=x.∴ME=2FM=x,∴AM=AE﹣ME=(8﹣)x=x.在Rt△AFM中,∵AM2+FM2=AF2,∴.解得:x=±(负数不合题意,舍去).∴x=.∴⊙C的半径CE=3x=.【点评】本题是一道圆的综合题,主要考查了圆的切线的判定,圆周角定理及其推论,平行线的判定与性质,勾股定理,解直角三角形的应用,一元二次方程的解法.连接经过切点的半径和构造恰当的直角三角形是解题的关键.24.【分析】(1)根据题意,首先求出函数与x轴的交点坐标,确定取值范围,再写成分段函数形式;(2)结合函数图象,分析两个函数由三个或一个交点时的情况,求出临界值,确定m的取值范围;(3)结合函数图象,分情况讨论相似时的对应线段成比例,再根据x的取值范围,确定是否可以取到.【解答】解:(1)根据题意得,令y=|2x﹣1|=0,解得x=,∴y=|2x﹣1|=;(2)令函数y=|﹣|=0,解得x1=﹣1,x2=2,根据题意得y=|﹣|=,当函数y=|﹣|的图象与直线y=x+m恰有2个公共点时,直线y=x+m在l1上方或在l2与l3之间,当直线y=x+m与l1重合时,有三个交点,联立方程得﹣x2++1=x+m,整理得:x2+x+2(m﹣1)=0,有两个相等的实数根,Δ=1﹣4×2(m﹣1)=0,解得m=,故m,当直线y=x+m与l2重合时,有三个交点,将(﹣1,0)代入直线y=x+m解得m=1,当直线y=x+m与l3重合时,有一个交点,将(2,0)代入直线y=x+m解得m=﹣2,此时﹣2<m<1,综上所述,m的取值范围为﹣2<m<1或m;(3)当x=0时,y=|﹣x2+2x+3|=3,即F点(0,3);当y=0时,|﹣x2+2x+3|=0,解得x1=﹣1,x2=3,即点M(﹣1,0),点N(3,0),根据题意得y=|﹣x2+2x+3|=,设点P的横坐标为x,当x<﹣1时,根据题意得P(x,x2﹣2x﹣3),若△PMH∽△FMO,则==3,即=3,解得x1=﹣1,x2=0,均不符合题意舍去,若△PMH∽△MFO,则==,即=,解得x1=﹣1,x2=,均不符合题意舍去,当﹣1<x<3时,由题意得P(x,﹣x2+2x+3),若△PMH∽△MFO,则==,即=,解得x1=﹣1(舍去),x2=,∴点P(,),若△PMH∽△FMO,则==3,即=3,解得x1=﹣1(舍去),x2=0(舍去),当x>3时,根据题意点P(x,x2﹣2x﹣3),若△PMH∽△FMO,则==3,即=3,解得x1=﹣1(舍去),x2=6,∴点P(6,21),若△PMH∽△MFO,则==,即=,解得x1=﹣1(舍去),x2=,∴点P(,),综上所述,点P(,),(6,21),(,).【点评】本题是二次函数综合题,主要考查了学生对翻折函数的理解感悟能力,解题关键是能够结合函数图象,利用数形结合思想求解问题,在本题中也考查了三角形相似,二次函数与一元二次方程之间的关系,函数交点问题等,是一道好题.25.【分析】(1)利用边角边定理判定即可;(2)由(1)结论可得∠AFB=120°,可知点F的运动路径为以AB为弦,所含的圆周角为120°的弧,利用弧长公式可求结论;(3)延长MA到H,使AH=BM,连接CH,通过证明△CAH≌△CBM,可得四边形AMBC 的面积S等于△HMC的面积,△HMC为等边三角形,利用三角形的面积公式,结论可求.【解答】证明:(1)∵△ABC为等边三角形,∴AB=BC=4,∠ABC=∠BCA=60°.在△ABD和△BCE中,∴△ABD≌△BCE(SAS).解:(2)∵△ABD≌△BCE,∴∠BAD=∠EBC.∵∠ABE+∠EBC=∠ABC=60°,∴∠AFE=∠ABE+∠BAD=∠ABE+∠EBC=60°.∴∠AFB=180°﹣∠AFE=120°.∴点F的运动路径为以AB为弦,所含的圆周角为120°的弧.设这条弧的圆心为O′,如图,则∠AO′B=120°,过点O′作O′M⊥AB于点M,AM=BM=AB=2.∵O′A=O′B,∴∠AO′M=60°.在Rt△AO′M中,∵sin∠AO′M=,∴AO′=.∴点F的运动路径的长为.(3)四边形AMBC的面积S是线段MC的长x的函数.延长MA到H,使AH=BM,连接CH,如图,∵∠HAC为圆内接四边形AMBC的外角,∴∠HAC=∠MBC.∵△ABC为等边三角形,∴AC=BC=4.在△HAC和△MBC中,,∴△HAC≌△MBC(SAS).=S△MBC,∠HCA=∠MCB,CH=CM.∴S△HCA∴∠MBC+∠ACM=∠ACM+∠HCA=∠ACB=60°.∴△HMC为等边三角形.∴∠HMC=60°,MH=MC=x.过点C作CG⊥MH于点G,则CG=CM•sin∠HMC=x.∴=.=S△BMC+S△AMC,∵S四边形AMBC=S△HAC+S△AMC=S△HMC=.∴S四边形AMBC∴四边形AMBC的面积S是线段MC的长x的函数,函数解析式为S=.【点评】本题是圆的综合题,主要考查了圆的内接四边形,等边三角形的性质,三角形的全等的判定与性质,特殊角的三角函数值,解直角三角形,三角形的面积,圆的弧长公式.延长MA构造全等三角形是解题的关键.。

2020-2021学年湖南省长沙市九年级上学期期末考试数学试卷

2020-2021学年湖南省长沙市九年级上学期期末考试数学试卷

2020-2021学年湖南省长沙市九年级上学期期末考试数学试卷一.选择题(共12小题,满分36分,每小题3分)1.下列各组数的大小关系正确的是()A.+0.3<﹣0.1B.0<﹣|﹣7|C.−√2<−1.414D.−13>−14【解答】解:A、+0.3>﹣0.1,故本选项不符合题意;B、0>﹣|﹣7|,故本选项不符合题意;C、∵1.4142=1.999396,∴−√2<−1.414,故本选项符合题意;D、−13<−14,故本选项不符合题意;故选:C.2.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣7【解答】解:0.00000065=6.5×10﹣7.故选:D.3.下列运算正确的是()A.a2+a3=a5B.(a3)2=a5C.(a•b)2=a2•b2D.√a+√b=√a+b【解答】解:A、原式不能合并,不符合题意;B、原式=a6,不符合题意;C、原式=a2b2,符合题意;D、原式不能合并,不符合题意,故选:C.4.下列说法正确的是()A.了解一批灯泡的使用寿命采用全面调查B.一组数据6,5,3,5,4 的众数是5,中位数是3C.“367 人中必有2 人的生日是同一天”是必然事件D.一组数据10,11,12,9,8 的平均数是10,方差是1.5【解答】解:A、要了解一批灯泡的使用寿命,因破坏性强,范围广,采用抽样调查方式,第1 页共20 页。

2020-2021学年湖南省怀化市鹤城区九年级(上)期末数学试卷

2020-2021学年湖南省怀化市鹤城区九年级(上)期末数学试卷

2020-2021学年湖南省怀化市鹤城区九年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)1.(4分)将方程3x2=﹣6x+8化为一元二次方程的一般形式后,二次项系数、一次项系数、常数项分别为()A.3、6、8B.3、﹣6、﹣8C.3、﹣6、8D.3、6、﹣8 2.(4分)已知反比例函数y=的图象过点P(2,﹣3),则该反比例函数的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限3.(4分)关于x的一元二次方程3x2﹣6x+m=0有两个不相等的实数根,则m的取值范围是()A.m<3B.m≤3C.m>3D.m≥34.(4分)若A(3,y1),B(﹣2,y2),C(﹣1,y3)三点都在函数的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y1<y3<y2D.无法确定5.(4分)目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,则下面列出的方程中正确的是()A.438(1+x)2=389B.389(1+x)2=438C.389(1+2x)=438D.438(1+2x)=3896.(4分)为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间(每组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于()A.50%B.55%C.60%D.65%7.(4分)如图,若P为△ABC的边AB上一点(AB>AC),则下列条件不一定能保证△ACP ∽△ABC的有()A.∠ACP=∠B B.∠APC=∠ACB C.=D.=8.(4分)正方形网格中,△ABC如图放置,其中点A、B、C均在格点上,则()A.tan B=B.cos B=C.sin B=D.sin B=9.(4分)如图,在矩形ABCD中,点E是边BC的中点,垂足为F,则tan∠BDE的值是()A.B.C.D.10.(4分)如图,△ABC中,D、E两点分别在BC、AD上,AE:ED=2:1,则△BDE与△ABC的面积比为何?()A.1:6B.1:9C.2:13D.2:15二、填空题(本大题共6个小题,每小题4分,共24分)11.(4分)随机从甲、乙两块试验田中各抽取100株麦苗测试高度,计算平均数和方差的结果为=13,,s甲2=3.6,s乙2=4.2,则小麦长势比较整齐的是.12.(4分)已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且,则k的值为.13.(4分)如图,在△ABC中,∠A=30°,AC=,则AB的长为.14.(4分)如图所示,AB⊥BD,CD⊥BD,BO=4,BD=12.15.(4分)如图,小明周末晚上陪父母在锦江绿道上散步,他由灯下A处前进4米到达B 处时,已知小明身高1.6米,他若继续往前走4米到达D处米.16.(4分)如图,在平面直角坐标系中,点A在第二象限内,∠AOB=30°,AB=BO(x <0)的图象经过点A,若S△ABO=,则k的值为.三、解答题(本大题8个小题,共计86分)17.(10分)解一元二次方程:(1)4x2﹣121=0;(2)(x﹣2)(x﹣4)=5.18.(10分)计算:(1)cos30°﹣cos60°+sin245°;(2)(2020﹣π)0﹣()﹣1+|﹣2|+3tan30°.19.(10分)如图,一次函数y1=kx+b的图象与反比例函数的图象交于点A(﹣3,2),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.20.(10分)钓鱼岛位于我国东海,是我国自古以来的固有领土,有“花鸟岛”之美称.如图,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点21.(10分)如图,等腰三角形ABC中,AB=AC,E为BC延长线上一点,且满足AB2=DB•CE.(1)说明:△ADB∽△EAC;(2)若∠BAC=40°,求∠DAE的度数.22.(10分)某校为了解九年级男同学的中考体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?23.(12分)已知:如图所示,在△ABC中,∠B=90°,BC=7cm,点P从点A开始沿AB 边向点B以1cm/s的速度移动,则同时停止运动.(1)如果P,Q分别从A,B同时出发,△PBQ的面积等于4cm2?(2)如果P,Q分别从A,B同时出发,PQ的长度等于cm?(3)△PQB的面积能否等于7cm2?请说明理由.24.(14分)如图1,在矩形ABCD中,点E是CD边上的动点(点E不与点C,D重合),过点A作AF⊥AE交CB延长线于点F,连接EF,且点G在线段AB的左侧,连接BG.(1)求证:△ADE∽△ABF;(2)若AB=20,AD=10,设DE=x①求y与x的函数关系式;②当时,求x的值;(3)如图2,若AB=BC,设四边形ABCD的面积为S1,当时,求DC:DE的值.2020-2021学年湖南省怀化市鹤城区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分)1.(4分)将方程3x2=﹣6x+8化为一元二次方程的一般形式后,二次项系数、一次项系数、常数项分别为()A.3、6、8B.3、﹣6、﹣8C.3、﹣6、8D.3、6、﹣8【解答】解:将方程3x2=﹣7x+8化为一元二次方程的一般形式为:3x2+6x﹣8=7,其二次项系数、常数项分别为3、6.故选:D.2.(4分)已知反比例函数y=的图象过点P(2,﹣3),则该反比例函数的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【解答】解:∵反比例函数y=(k≠0)的图象经过点P(2,∴k=2×(﹣3)=﹣6<5,∴该反比例函数经过第二、四象限.故选:C.3.(4分)关于x的一元二次方程3x2﹣6x+m=0有两个不相等的实数根,则m的取值范围是()A.m<3B.m≤3C.m>3D.m≥3【解答】解:根据题意得Δ=(﹣6)2﹣3×3×m>0,解得m<6.故选:A.4.(4分)若A(3,y1),B(﹣2,y2),C(﹣1,y3)三点都在函数的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y1<y3<y2D.无法确定【解答】解:∵k=﹣1<0,∴反比例函数的两个分支在二、四象限,y随x的增大而增大,∵2>0,∴y1<4,∵﹣2<﹣1<8,∴0<y2<y6,∴y1<y2<y2,故选:A.5.(4分)目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,则下面列出的方程中正确的是()A.438(1+x)2=389B.389(1+x)2=438C.389(1+2x)=438D.438(1+2x)=389【解答】解:设每半年发放的资助金额的平均增长率为x,则去年下半年发放给每个经济困难学生389(1+x)元2元,由题意,得:389(6+x)2=438.故选:B.6.(4分)为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间(每组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于()A.50%B.55%C.60%D.65%【解答】解:该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数是:×100%=60%;故选:C.7.(4分)如图,若P为△ABC的边AB上一点(AB>AC),则下列条件不一定能保证△ACP ∽△ABC的有()A.∠ACP=∠B B.∠APC=∠ACB C.=D.=【解答】解:∵∠A=∠A,∴当∠APC=∠ACB或∠ACP=∠B或AC:AB=AP:AC或AC2=AB•AP时,△ACP∽△ABC.故选:D.8.(4分)正方形网格中,△ABC如图放置,其中点A、B、C均在格点上,则()A.tan B=B.cos B=C.sin B=D.sin B=【解答】解:由图可知,AC=2;AB==;根据三角函数的定义,A、tan B==;B、cos B===;C、sin B===;D、sin B===.故选:D.9.(4分)如图,在矩形ABCD中,点E是边BC的中点,垂足为F,则tan∠BDE的值是()A.B.C.D.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,由矩形的对称性得:AE=DE,∴EF=DE,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.10.(4分)如图,△ABC中,D、E两点分别在BC、AD上,AE:ED=2:1,则△BDE与△ABC的面积比为何?()A.1:6B.1:9C.2:13D.2:15【解答】解:∵AE:ED=2:1,∴AE:AD=6:3,∵∠ABE=∠C,∠BAE=∠CAD,∴△ABE∽△ACD,∴S△ABE:S△ACD=4:7,∴S△ACD=S△ABE,∵AE:ED=5:1,∴S△ABE:S△BED=2:4,∴S△ABE=2S△BED,∴S△ACD=S△ABE=S△BED,∵S△ABC=S△ABE+S△ACD+S△BED=8S△BED+S△BED+S△BED=S△BED,∴S△BDE:S△ABC=2:15,故选:D.二、填空题(本大题共6个小题,每小题4分,共24分)11.(4分)随机从甲、乙两块试验田中各抽取100株麦苗测试高度,计算平均数和方差的结果为=13,,s甲2=3.6,s乙2=4.2,则小麦长势比较整齐的是甲.【解答】解:∵s甲2=3.3,s乙2=4.8,∴s甲2<s乙2,∴小麦长势比较整齐的是甲,故答案为:甲.12.(4分)已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且,则k的值为﹣2.【解答】解:根据题意得:x1+x2=﹣7,x1x2=k﹣4,x12+x42﹣x1x2=(x1+x2)7﹣3x1x7=4﹣3(k﹣7)=13,∴k=﹣2,经检验,k=﹣2符合题意,故答案为:﹣5.13.(4分)如图,在△ABC中,∠A=30°,AC=,则AB的长为3+.【解答】解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+.故答案为:3+.14.(4分)如图所示,AB⊥BD,CD⊥BD,BO=4,BD=1210.【解答】解:∵AB⊥BD,CD⊥BD,∴∠D=∠B=90o,∵∠DOC=∠BOA,∴△AOB∽△COD,∴,∵AB=3,BO=4,∴,∴CD=5,在Rt△DOC中,OC===10,故答案为:10.15.(4分)如图,小明周末晚上陪父母在锦江绿道上散步,他由灯下A处前进4米到达B 处时,已知小明身高1.6米,他若继续往前走4米到达D处2米.【解答】解:由FB∥AP可得,△CBF∽△CAP,∴,即,解得AP=4,由GD∥AP可得,△EDG∽△EAP,∴,即,解得ED=5,故答案为:2.16.(4分)如图,在平面直角坐标系中,点A在第二象限内,∠AOB=30°,AB=BO(x <0)的图象经过点A,若S△ABO=,则k的值为﹣3.【解答】解:过点A作AD⊥x轴于点D,如图所示.∵∠AOB=30°,AD⊥OD,∴=cot∠AOB=,∵∠AOB=30°,AB=BO,∴∠AOB=∠BAO=30°,∴∠ABD=60°,∴=cot∠ABD=,∵OB=OD﹣BD,∴=,∴=,∵S△ABO=,∴S△ADO=|k|=,∵反比例函数图象在第二象限,∴k=﹣8故答案为:﹣3.三、解答题(本大题8个小题,共计86分)17.(10分)解一元二次方程:(1)4x2﹣121=0;(2)(x﹣2)(x﹣4)=5.【解答】解:(1)4x2﹣121=5,x2=,所以x8=﹣,x2=;(2)整理得,x2﹣6x=﹣8,x2﹣6x+3=﹣3+9,即(x﹣7)2=6,x﹣4=±,所以x1=5+,x2=8﹣.18.(10分)计算:(1)cos30°﹣cos60°+sin245°;(2)(2020﹣π)0﹣()﹣1+|﹣2|+3tan30°.【解答】解:(1)原式=﹣×+×()5=﹣+=;(2)原式=3﹣3+2﹣+3×=﹣2+2﹣+=0.19.(10分)如图,一次函数y1=kx+b的图象与反比例函数的图象交于点A(﹣3,2),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.【解答】解:(1)把A(﹣3,2)代入,∴反比例函数解析式为;把B(n,﹣6)代入,解得n=5,∴B点坐标为(1,﹣6),把A(﹣7,2),﹣6)代入y4=kx+b,得,解方程组得,∴一次函数解析式为y=﹣5x﹣4;(2)当x=0时,y=﹣7x﹣4=﹣4,﹣4),∴△AOB的面积=.20.(10分)钓鱼岛位于我国东海,是我国自古以来的固有领土,有“花鸟岛”之美称.如图,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点【解答】解:过点A作AD⊥BC于D,如图所示:根据题意得:∠ABC=90°﹣60°=30°,∠ACD=90°﹣30°=60°,∴∠BAC=∠ACD﹣∠ABC=30°,∴CA=CB,∵CB=50×2=100(海里),∴CA=100(海里),在Rt△ADC中,∠ACD=60°,∴CD=AC cos60°=100×=50(海里),答:船继续航行50海里与钓鱼岛A的距离最近.21.(10分)如图,等腰三角形ABC中,AB=AC,E为BC延长线上一点,且满足AB2=DB•CE.(1)说明:△ADB∽△EAC;(2)若∠BAC=40°,求∠DAE的度数.【解答】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∴∠ABD=∠ACE,∵AB2=DB•CE∴∴∴△ADB∽△EAC.(2)∵△ADB∽△EAC,∴∠BAD=∠E,∵∠DAE=∠BAD+∠BAC+∠CAE,∴∠DAE=∠D+∠BAD+∠BAC,∵∠BAC=40°,AB=AC,∴∠ABC=70°,∴∠D+∠BAD=70°,∴∠DAE=∠D+∠BAD+∠BAC=70°+40°=110°.22.(10分)某校为了解九年级男同学的中考体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?【解答】解:(1)抽取的学生数:16÷40%=40(人);抽取的学生中合格的人数:40﹣12﹣16﹣4=8,合格所占百分比:5÷40×100%=20%,优秀人数:12÷40×100%=30%,如图所示:(2)成绩未达到良好的男生所占比例为:20%+10%=30%,所以估计成绩未达到良好有600×30%=180(名).23.(12分)已知:如图所示,在△ABC中,∠B=90°,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,则同时停止运动.(1)如果P,Q分别从A,B同时出发,△PBQ的面积等于4cm2?(2)如果P,Q分别从A,B同时出发,PQ的长度等于cm?(3)△PQB的面积能否等于7cm2?请说明理由.【解答】解:(1)设经过x秒以后,△PBQ面积为4cm2(4<x≤3.5)此时AP=xcm,BP=(8﹣x)cm,由,得,整理得:x5﹣5x+4=4,解得:x=1或x=4(舍);答:8秒后△PBQ的面积等于4cm2;(2)设经过t秒后,PQ的长度等于2=BP2+BQ7,即40=(5﹣t)2+(2t)2,解得:t=﹣1(舍去)或4.则3秒后,PQ的长度为;(3)假设经过t秒后,△PBQ的面积等于5cm2,即,,整理得:t2﹣7t+7=0,由于b2﹣4ac=25﹣28=﹣3<8,则原方程没有实数根,所以△PQB的面积不能等于7cm2.24.(14分)如图1,在矩形ABCD中,点E是CD边上的动点(点E不与点C,D重合),过点A作AF⊥AE交CB延长线于点F,连接EF,且点G在线段AB的左侧,连接BG.(1)求证:△ADE∽△ABF;(2)若AB=20,AD=10,设DE=x①求y与x的函数关系式;②当时,求x的值;(3)如图2,若AB=BC,设四边形ABCD的面积为S1,当时,求DC:DE的值.【解答】(1)证明:∵AE⊥AF,∴∠EAF=90°,∵四边形ABCD是矩形,∴∠BAD=∠ABC=∠ABF=∠D=90°,∴∠EAF=∠BAD,∴∠F AB=∠DAE,∵∠ABF=∠D=90°,∴△ADE∽△ABF;(2)①如图1,过点G作GH⊥BF于H,∵∠GHF=∠C=90°,∴GH∥EC,∵点G为EF的中点,∴FG=GE,∴FH=HC,∴EC=2GH=7y,∵DE+EC=CD=AB=20,∴x+2y=20,∴;②∵,∴设EC=8k,BG=5k,∵EC=6GH,∴GH=4k,由勾股定理得:BH=3k,∴FH=CH=4k+10,∴FB=6k+10,∵△ADE∽△ABF,∴,∵,x=20﹣8k,∴,∴,∴;(3)如图2,连接BE,CD=BC=b.∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是正方形,∴AB=BC=CD=AD,设DE=a,CD=BC=b,∵∠F AB=∠EAD,AD=AB,∴△ADE≌△ABF,∴BF=DE=a,∴,∵S=b2,S=5S1,∴b2=4b2﹣a2﹣ab,∴b3﹣ab﹣a2=0,∴,解得:,∴.。

湖南省长沙市浏阳市九年级上学期期末考试数学试卷

湖南省长沙市浏阳市九年级上学期期末考试数学试卷

2019-2020学年湖南省长沙市浏阳市九年级上学期期末考试
数学试卷解析版
一.选择题(本大题共12小题,每小题3分,共36分)
1.(3分)已知反比例函数y=k
x,当x>0时,y随x的增大而增大,则k的取值范围是()
A.k>0B.k<0C.k≥1D.k≤1
【解答】解:∵反比例函数y=k
x中,当x>0时,y随x的增大而增大,
∴k<0,
故选:B.
2.(3分)边长等于6的正六边形的半径等于()
A.6B.3√3C.3D.3√2
【解答】解:正6边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,
∴边长为6的正六边形外接圆半径是6,
即正六边形的半径长为6.
故选:A.
3.(3分)在下列图形中,是中心对称图形的是()
A.B.
C.D.
【解答】解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、是中心对称图形,故此选项正确;
D、不是中心对称图形,故此选项错误;
故选:C.
第1 页共16 页。

2020-2021学年湖南省长沙市天心区长郡集团九年级(上)第三次限时训练数学试卷(解析版)

2020-2021学年湖南省长沙市天心区长郡集团九年级(上)第三次限时训练数学试卷(解析版)

2020-2021学年湖南省长沙市天心区长郡集团九年级第一学期第三次限时训练数学试卷一、选择题(共12小题,满分36分,每小题3分)1.在实数﹣,﹣3.14,0,π,中,无理数有()A.1个B.2个C.3个D.4个2.8月上映的战争题材影片《八佰》取材自“八百壮士”奉命坚守上海四行仓库的真实历史,呈现出平凡的中国军民共同奋勇抗战的热血情怀.截止10月17日,累计票房达到了30.81亿,登顶2020年度票房全球冠军.其中,30.81亿用科学记数法表示为()A.30.81×108B.30.81×109C.3.081×109D.3.081×1083.点M(3,﹣2)与Q(a,b)关于y轴对称,则a+b的值为()A.5B.﹣5C.1D.﹣14.下列说法:①若一个数的倒数等于它本身,则这个数是1或﹣1;②若2a2与3a x+1的和是单项式,则x=1;③若|x|=|﹣7|,则x=﹣7;④若a、b互为相反数,则a、b的商为﹣1.其中正确的个数为()A.1B.2C.3D.45.一种饮料有两种包装,2大盒、4小盒共装88瓶,3大盒、2小盒共装84瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组()A.B.C.D.6.抛物线y=﹣(x﹣2)2+3,下列说法正确的是()A.开口向下,顶点坐标(2,3)B.开口向上,顶点坐标(2,﹣3)C.开口向下,顶点坐标(﹣2,3)D.开口向上,顶点坐标(2,﹣3)7.如图,转盘中四个扇形的面积都相等,小明随意转动转盘1次,指针指向的数字为偶数的概率为()A.B.C.D.8.已知抛物线y=x2+2x﹣k﹣2与x轴没有交点,则函数y=的图象大致是()A.B.C.D.9.如图,点E是▱ABCD的边AD上的一点,且,连接BE并延长交CD的延长线于点F,若DE=3,DF=4,则▱ABCD的周长为()A.21B.28C.34D.4210.如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(2,4).点A在y轴的正半轴上,点C在x轴的正半轴上,点P是BC的中点.以坐标原点O为位似中心,将矩形OABC放大为原图形的1.5倍,记点P的对应点为P1,则P1的坐标为()A.(3,3)B.(3,2)或(﹣3,﹣2)C.(3,3)或(﹣3,﹣3)D.(2,3)或(﹣2,﹣3)11.如图,在地面上的点A处测得树顶B的仰角为α,AC=2,则树高BC为()(用含α的代数式表示)A.2sinαB.2tanαC.2cosαD.12.如图,直线y=x+1与x轴、y轴分别相交于A、B两点,P是该直线上的任一点,过点D(3,0)向以P为圆心,AB为半径的⊙P作两条切线,切点分别为E、F,则四边形PEDF面积的最小值为()A.B.C.2D.二、填空题(共4小题,满分12分,每小题3分)13.小明用s2=[(x1﹣6)2+(x2﹣6)2+…+(x10﹣6)2]计算一组数据的方差,那么x1+x2+x3+…+x10=.14.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=.15.如图,第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,,BC、AD垂直于x轴于C、D,则k的值为.16.如图,在矩形ABCD中,BC=6,AB=2,Rt△BEF的顶点E在边CD或延长线上运动,且∠BEF=90°,EF=BE,DF=,则BE=.三、解答题(共9小题,满分72分)17.计算:+()﹣1﹣|﹣5|+sin45°.18.先化简,再求值:,其中x满足方程x2﹣x﹣6=0.19.解不等式组:并把解集在数轴上表示出来.20.某校组织八年级部分学生开展庆“五•四”演讲比赛,赛后对全体参赛学生成绩按A、B、C、D四个等级进行整理,得到下列不完整的统计图表.等级频数频率A40.08B20aC b0.3D110.22请根据所给信息,解答下列问题:(1)参加此次演讲比赛的学生共有人,a=,b=.(2)请计算扇形统计图中B等级对应的扇形的圆心角的度数;(3)已知A等级四名同学中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加县级比赛,请用列表法或树状图,求甲、乙两名同学都被选中的概率.21.为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)22.如图,在平面直角坐标系xOy中,直线y=mx+1与双曲线y=(k>0)相交于点A,B,已知点B(a,﹣2),点C在x轴正半轴上,点D(2,﹣3),连接OA,OD,DC,AC,四边形AODC为菱形.(1)求k和m的值;(2)请直接写出:当x取何值时,反比例函数值大于一次函数值?(3)设P是y轴上一动点,且△OAP的面积等于菱形OACD的面积,求点P的坐标.23.如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC 于D,交⊙O于E,过E作EF∥AC交BA的延长线于F.(1)求证:EF是⊙O切线;(2)若AB=15,EF=10,求AE的长.24.定义:若一次函数y=ax+b与反比例函数y=同时经过点P(x,y)则称二次函数y =ax2+bx﹣k为一次函数与反比例函数的“关联函数”,称点P为关联点.例如:一次函数y=x+2与反比例函数y=,都经过(2,4),则y=x2+2x﹣8就是两个函数的“关联函数”.(1)判断y=2x﹣1与y=是否存在“关联函数”,如果存在,请求出“关联点”和相应“关联函数”.如果不存在,请说明理由;(2)已知:整数a,b,c满足条件c<b<8a,并且一次函数y=(1+b)x+2a+2与反比例函数y=存在“关联函数”y=(a+c)x2+(10a﹣c)x﹣2021,求a的值.(3)若一次函数y=x+m和反比例函数y=在自变量x的值满足的m≤x≤m+6的情况下,其“关联函数”的最小值为6,求其“关联函数”的解析式.25.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A、B,与y轴相于点C,连接BC,已知点A(﹣2,0),BO=4AO,tan∠OCB=2.(1)求抛物线的解析式;(2)设点P是抛物线上在第一象限内的动点(不与C、B重合),过点P做PD⊥BC,垂足为点D.①点P在运动过程中,线段PD的长度是否存在最大值?若存在,求出此时点P和点D 的坐标;若不存在,请说明理由;②当以P、D、C为顶点的三角形与△COA相似时,求点P的坐标.参考答案一、选择题(共12小题,满分36分,每小题3分)1.在实数﹣,﹣3.14,0,π,中,无理数有()A.1个B.2个C.3个D.4个【分析】分别根据无理数、有理数的定义即可判定选择项.解:﹣3.14是有限小数,属于有理数;0是整数,属于有理数;,是整数,属于有理数;无理数有,π共2个.故选:B.2.8月上映的战争题材影片《八佰》取材自“八百壮士”奉命坚守上海四行仓库的真实历史,呈现出平凡的中国军民共同奋勇抗战的热血情怀.截止10月17日,累计票房达到了30.81亿,登顶2020年度票房全球冠军.其中,30.81亿用科学记数法表示为()A.30.81×108B.30.81×109C.3.081×109D.3.081×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:30.81亿=3081000000=3.081×109.故选:C.3.点M(3,﹣2)与Q(a,b)关于y轴对称,则a+b的值为()A.5B.﹣5C.1D.﹣1【分析】利用关于y轴对称的点的坐标特点可得a、b的值,进而可得答案.解:∵点M(3,﹣2)与Q(a,b)关于y轴对称,∴a=﹣3,b=﹣2,∴a+b=﹣5,故选:B.4.下列说法:①若一个数的倒数等于它本身,则这个数是1或﹣1;②若2a2与3a x+1的和是单项式,则x=1;③若|x|=|﹣7|,则x=﹣7;④若a、b互为相反数,则a、b的商为﹣1.其中正确的个数为()A.1B.2C.3D.4【分析】分别根据倒数的定义,单项式的定义,绝对值的定义以及相反数的定义逐一判断即可.解:①若一个数的倒数等于它本身,则这个数是1或﹣1,说法正确;②若2a2与3a x+1的和是单项式,则x=1,说法正确;③若|x|=|﹣7|,则x=±7,故原说法错误;④若a、b互为相反数,则a、b的商为﹣1,说法错误,0的相反数是0.所以其中正确有①②共2个.故选:B.5.一种饮料有两种包装,2大盒、4小盒共装88瓶,3大盒、2小盒共装84瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组()A.B.C.D.【分析】根据题意可以列出相应的二元一次方程组,本题得以解决.解:由题意可得,,故选:A.6.抛物线y=﹣(x﹣2)2+3,下列说法正确的是()A.开口向下,顶点坐标(2,3)B.开口向上,顶点坐标(2,﹣3)C.开口向下,顶点坐标(﹣2,3)D.开口向上,顶点坐标(2,﹣3)【分析】根据二次函数的性质对各小题分析判断即可得解.解:∵抛物线y=﹣(x﹣2)2+3中a=﹣1<0,∴抛物线的开口向下,顶点为(2,3)故选:A.7.如图,转盘中四个扇形的面积都相等,小明随意转动转盘1次,指针指向的数字为偶数的概率为()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解:∵共4个数,数字为偶数的有2个,∴指针指向的数字为偶数的概率为=.故选:D.8.已知抛物线y=x2+2x﹣k﹣2与x轴没有交点,则函数y=的图象大致是()A.B.C.D.【分析】根据抛物线y=x2+2x﹣k﹣2与x轴没有交点,得方程x2+2x﹣k﹣2=0没有实数根,可以得到Δ<0,从而可以得到k的取值范围,然后即可得到函数y=的图象在哪个象限.解:∵抛物线y=x2+2x﹣k﹣2与x轴没有交点,∴方程x2+2x﹣k﹣2=0没有实数根,∴△=22﹣4×1×(﹣k﹣2)=4k+12<0,解得k<﹣3,∴函数y=的图象在二、四象限,故选:B.9.如图,点E是▱ABCD的边AD上的一点,且,连接BE并延长交CD的延长线于点F,若DE=3,DF=4,则▱ABCD的周长为()A.21B.28C.34D.42【分析】根据平行四边形的性质得AB∥CD,再由平行线得相似三角形,根据相似三角形求得AB,AE,进而根据平行四边形的周长公式求得结果.解:∵四边形ABCD是平行四边形,∴AB∥CF,AB=CD,∴△ABE∽△DFE,∴,∵DE=3,DF=4,∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴平行四边形ABCD的周长为:(8+9)×2=34.故选:C.10.如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(2,4).点A在y轴的正半轴上,点C在x轴的正半轴上,点P是BC的中点.以坐标原点O为位似中心,将矩形OABC放大为原图形的1.5倍,记点P的对应点为P1,则P1的坐标为()A.(3,3)B.(3,2)或(﹣3,﹣2)C.(3,3)或(﹣3,﹣3)D.(2,3)或(﹣2,﹣3)【分析】根据矩形的性质求出点P的坐标为(2,2),根据位似变换的性质计算,得到答案.解:∵矩形OABC的顶点B的坐标为(2,4),点P是BC的中点,∴点P的坐标为(2,2),以坐标原点O为位似中心,将矩形OABC放大为原图形的1.5倍,则P1的坐标为(2×1.5,2×1.5)或(﹣2×1.5,﹣2×1.5),即(3,3)或(﹣3,﹣3),故选:C.11.如图,在地面上的点A处测得树顶B的仰角为α,AC=2,则树高BC为()(用含α的代数式表示)A.2sinαB.2tanαC.2cosαD.【分析】根据题意可知BC⊥AC,在Rt△ABC中,AC=7米,∠BAC=α,利用锐角三角函数的定义即可求出BC的高度.解:∵BC⊥AC,AC=2,∠BAC=α,∴tanα=,∴BC=AC•tanα=2tanα,故选:B.12.如图,直线y=x+1与x轴、y轴分别相交于A、B两点,P是该直线上的任一点,过点D(3,0)向以P为圆心,AB为半径的⊙P作两条切线,切点分别为E、F,则四边形PEDF面积的最小值为()A.B.C.2D.【分析】连接DP,根据直线y=x+1与x轴、y轴分别相交于A、B两点,求得AB的长,即可得出⊙P的半径,证△PED≌△PFD,可得四边形PEDF面积=2S△PED=2×PE ×DE,当DP⊥AP时,四边形PEDF面积的最小,利用锐角三角函数求出DP的长,即可得出四边形PEDF面积的最小值.解:如图,连接DP,∵直线y=x+1与x轴、y轴分别相交于A、B两点,当x=0时,y=1,当y=0时,x=﹣2,∴A(﹣2,0),B(0,1),∴AB=,∵过点D(3,0)向以P为圆心,AB为半径的⊙P作两条切线,切点分别为E、F,∴DE=DF,PE⊥DE,∵PE=PF,PD=PD,∴△PED≌△PFD(SSS),∵⊙P的半径为,∴DE=,当DP⊥AP时,DP最小,此时DP=AD•sin∠BAO=5×,∵四边形PEDF面积=2S△PED=2×PE×DE=DE,∴四边形PEDF面积的最小值为.故选:A.二、填空题(共4小题,满分12分,每小题3分)13.小明用s2=[(x1﹣6)2+(x2﹣6)2+…+(x10﹣6)2]计算一组数据的方差,那么x1+x2+x3+…+x10=60.【分析】根据方差的计算公式得出这组数据的平均数,再由平均数的定义求解可得答案.解:由s2=[(x1﹣6)2+(x2﹣6)2+…+(x10﹣6)2]知这10个数据的平均数为6,所以x1+x2+x3+…+x10=6×10=60,故答案为:60.14.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=8cm.【分析】先根据垂径定理可得出CE的长度,再在Rt△OCE中,利用勾股定理可得出OE 的长度,然后利用AE=AO+OE即可得出AE的长度.解:∵弦CD⊥AB于点E,CD=8cm,∴CE=CD=4(cm)在Rt△OCE中,OC=5cm,CE=4cm,∴OE===3(cm),∴AE=AO+OE=5+3=8(cm).故答案为:8cm.15.如图,第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,,BC、AD垂直于x轴于C、D,则k的值为﹣.【分析】利用反比例函数系数的几何意义得到S△AOD=2,接着证明Rt△AOD∽Rt△OBC,利用相似三角形的性质得S△OBC=S△AOD=,所以•|k|=,然后根据反比例函数的性质确定k的值.解:如图,∵第一象限内的点A在反比例函数y=上,BC、AD垂直于x轴于C、D,∴S△AOD=×4=2,∵OA⊥OB,∴∠AOD+∠BOC=90°,∴∠AOD+∠OAD=90°,∴∠BOC=∠OAD,∵∠BCO=∠ODA=90°,∴Rt△AOD∽Rt△OBC,∵,∴=()2=,∴S△OBC=S△AOD=×2=,∴•|k|=,而k<0,∴k=﹣.故答案为﹣.16.如图,在矩形ABCD中,BC=6,AB=2,Rt△BEF的顶点E在边CD或延长线上运动,且∠BEF=90°,EF=BE,DF=,则BE=3.【分析】过F作FG⊥CD,交CD的延长线于G,依据相似三角形的性质,即可得到FG =EC,GE=2=CD;设EC=x,则DG=x,FG=x,再根据勾股定理,即可得到CE2=9,最后依据勾股定理进行计算,即可得出BE的长.解:如图所示,过F作FG⊥CD,交CD的延长线于G,则∠G=90°,∵四边形ABCD是矩形,∴∠C=90°,AB=CD=2,又∵∠BEF=90°,∴∠FEG+∠BEC=90°=∠EBC+∠BEC,∴∠FEG=∠EBC,又∵∠C=∠G=90°,∴△BCE∽△EGF,∴==,即==,∴FG=EC,GE=2=CD,∴DG=EC,设EC=x,则DG=x,FG=x,∵Rt△FDG中,FG2+DG2=DF2,∴(x)2+x2=()2,解得x2=9,即CE2=9,即此时顶点E在边CD延长线上时,∴Rt△BCE中,BE===3,故答案为:3.三、解答题(共9小题,满分72分)17.计算:+()﹣1﹣|﹣5|+sin45°.【分析】直接利用特殊角的三角函数值以及负整数指数幂的性质和立方根的性质、绝对值的性质分别化简得出答案.解:原式=﹣2+2﹣5+×=﹣2+2﹣5+1=﹣4.18.先化简,再求值:,其中x满足方程x2﹣x﹣6=0.【分析】根据分式的减法和除法可以化简题目中的式子,然后根据方程x2﹣x﹣6=0,可以得到x的值,然后将使得原分式有意义的x的值代入化简后的式子即可解答本题.解:=()==x+3,由方程x2﹣x﹣6=0,可得x1=3,x2=﹣2,当x=3时,原分式无意义,∴x=﹣2,当x=﹣2时,原式=﹣2+3=1.19.解不等式组:并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式①,得:x<3,解不等式②,得:x≥﹣1,则不等式组的解集为﹣1≤x<3,将不等式组的解集表示在数轴上如下:20.某校组织八年级部分学生开展庆“五•四”演讲比赛,赛后对全体参赛学生成绩按A、B、C、D四个等级进行整理,得到下列不完整的统计图表.等级频数频率A40.08B20aC b0.3D110.22请根据所给信息,解答下列问题:(1)参加此次演讲比赛的学生共有50人,a=0.4,b=15.(2)请计算扇形统计图中B等级对应的扇形的圆心角的度数;(3)已知A等级四名同学中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加县级比赛,请用列表法或树状图,求甲、乙两名同学都被选中的概率.【分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)列树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;解:(1)参加演讲比赛的学生人数为4÷0.08=50人,a=20÷50=0.4,b=50×0.3=15,故答案为:50、0.4、15;(2)扇形统计图中B等级对应的扇形的圆心角的度数为360°×0.4=144°;(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,列树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.21.为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B 地比原来少走多少路程.解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×(千米),AC=(千米),AC+BC=80+40(千米),答:开通隧道前,汽车从A地到B地要走80+40千米;(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:(AC+BC)﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走的路程为27.2千米.22.如图,在平面直角坐标系xOy中,直线y=mx+1与双曲线y=(k>0)相交于点A,B,已知点B(a,﹣2),点C在x轴正半轴上,点D(2,﹣3),连接OA,OD,DC,AC,四边形AODC为菱形.(1)求k和m的值;(2)请直接写出:当x取何值时,反比例函数值大于一次函数值?(3)设P是y轴上一动点,且△OAP的面积等于菱形OACD的面积,求点P的坐标.【分析】(1)连接AD,与x轴交于点E,由四边形AODC为菱形,得到AE=DE,OE =CE,根据D坐标确定出DE的长,确定出AE与OE的长,进而求出A的坐标,将A 坐标代入直线解析式求出m的值,代入反比例解析式求出k的值.(2)联立两函数解析式求出B坐标,根据A与B横坐标,利用图象求出反比例函数值大于一次函数值时x的范围即可.(3)根据OC与AD的长,求出菱形ABCD的面积,设P(0,p),由OP为底,A横坐标为高表示出△OAP面积,根据△OAP的面积等于菱形OACD的面积,列出关于p的方程,求出方程的解即可得到p的值.解:(1)连接AD,与x轴交于点E,∵D(2,﹣3),∴OE=2,ED=3,∵菱形AODC,∴AE=DE=3,EC=OE=2,∴A(2,3),将A坐标代入直线y=mx+1得:2m+1=3,即m=1,将A坐标代入反比例y=得:k=6.(2)联立直线与反比例解析式得:,消去y得:x+1=,解得:x=2或x=﹣3,将x=﹣3代入y=x+1得:y=﹣3+1=﹣2,即B(﹣3,﹣2),则当x<﹣3或0<x<2时,反比例函数值大于一次函数值;(3)∵OC=2OE=4,AD=2DE=6,∴S菱形AODC=OC•AD=12,∵S△OAP=S菱形OACD,即OP•OE=12,∴设P(0,p),则×|p|×2=12,即|p|=12,解得:p=12或p=﹣12,则P的坐标为(0,12)或(0,﹣12).23.如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC 于D,交⊙O于E,过E作EF∥AC交BA的延长线于F.(1)求证:EF是⊙O切线;(2)若AB=15,EF=10,求AE的长.【分析】(1)要证EF是⊙O的切线,只要连接OE,再证∠FEO=90°即可;(2)先证明△FEA∽△FBE,根据相似三角形对应边成比例求出AF=5,BF=20,BE =2AE.再根据圆周角定理得出∠AEB=90°,利用勾股定理列方程,即可求出AE的长.【解答】(1)证明:连接OE,∵∠B的平分线BE交AC于D,∴∠CBE=∠ABE.∵EF∥AC,∴∠CAE=∠FEA.∵∠OBE=∠OEB,∠CBE=∠CAE,∴∠FEA=∠OEB.∵∠AEB=90°,∴∠FEO=90°.∴EF是⊙O切线.(2)解:在△FEA与△FBE中,∵∠F=∠F,∠FEA=∠FBE,∴△FEA∽△FBE,∴==,∴AF•BF=EF•EF,∴AF×(AF+15)=10×10,解得AF=5.∴BF=20.∴=,∴BE=2AE,∵AB为⊙O的直径,∴∠AEB=90°,∴AE2+BE2=152,∴AE2+(2AE)2=225,∴AE=3.24.定义:若一次函数y=ax+b与反比例函数y=同时经过点P(x,y)则称二次函数y =ax2+bx﹣k为一次函数与反比例函数的“关联函数”,称点P为关联点.例如:一次函数y=x+2与反比例函数y=,都经过(2,4),则y=x2+2x﹣8就是两个函数的“关联函数”.(1)判断y=2x﹣1与y=是否存在“关联函数”,如果存在,请求出“关联点”和相应“关联函数”.如果不存在,请说明理由;(2)已知:整数a,b,c满足条件c<b<8a,并且一次函数y=(1+b)x+2a+2与反比例函数y=存在“关联函数”y=(a+c)x2+(10a﹣c)x﹣2021,求a的值.(3)若一次函数y=x+m和反比例函数y=在自变量x的值满足的m≤x≤m+6的情况下,其“关联函数”的最小值为6,求其“关联函数”的解析式.【分析】(1)由题意联立y=2x﹣1与y=,解方程组即可得出“关联点”和“关联函数”;(2)由题意根据一次函数y=(1+b)x+2a+2与反比例函数y=,得到它们的关联函数,利用已知得出a,b,c的关系式,再利用整数a,b,c满足条件c<b<8a,列出不等式,即可得出结论;(2)先写出它们的关联函数,求得它的对称轴为直线x=﹣m,然后根据已知的自变量x的取值范围分三种情况讨论,即可求得.解:(1)存在“关联点”和“关联函数”,理由如下:由题意得:,解得:,.∴“关联点”为(﹣1,﹣3)或(,2),它们的“关联函数”为:y=2x2﹣x﹣3.(2)由“关联函数”的定义可知:一次函数y=(1+b)x+2a+2与反比例函数y=的“关联函数”为:y=(1+b)x2+(2a+2)x﹣2021,∵一次函数y=(1+b)x+2a+2与反比例函数y=存在“关联函数”y=(a+c)x2+(10a﹣c)x﹣2021,∴,∴.∵整数a,b,c满足条件c<b<8a,∴8a﹣2<9a﹣3<8a,∴1<a<3.∵a为整数,∴a=2.(3)由题意得:一次函数y=x+m和反比例函数y=的“关联函数”为:y=x2+mx ﹣m2﹣13.∴该函数的对称轴为直线x=﹣m.①当m+6<m,即m<﹣4时,当x=m+6时,函数取得最小值为6,即(m+6)2+m(m+6)﹣m2﹣13=6.解得:m=﹣17或m=﹣1(舍去).∴m=﹣17.∴其“关联函数”的解析式为:y=x2﹣17x﹣302.②当m<﹣m<m+6,即﹣4<m<0时,当函数在x=﹣m处取得最小值6,∴﹣13=6.此方程无解.③当m≥﹣m,即m≥0时,当x=m处函数取得最小值为6,∴m2+m•m﹣m2﹣13=6,解得:m=±(﹣舍去).∴m=.∴其“关联函数”的解析式为:y=x2+x﹣32.综上,其“关联函数”的解析式y=x2﹣17x﹣302或y=x2+x﹣32.25.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A、B,与y轴相于点C,连接BC,已知点A(﹣2,0),BO=4AO,tan∠OCB=2.(1)求抛物线的解析式;(2)设点P是抛物线上在第一象限内的动点(不与C、B重合),过点P做PD⊥BC,垂足为点D.①点P在运动过程中,线段PD的长度是否存在最大值?若存在,求出此时点P和点D的坐标;若不存在,请说明理由;②当以P、D、C为顶点的三角形与△COA相似时,求点P的坐标.【分析】(1)根据题意先求出点B、C的坐标,利用待定系数法即可求得答案;(2)①如图1,过点P作PK∥y轴交直线BC于点K,运用待定系数法求得直线BC解析式为y=﹣x+4,设P(t,t2+t+4),则K(t,﹣t+4),可得PK=t2+2t,由△PKD∽△BCO,可求得PD=﹣(t﹣4)2+,利用二次函数的性质可得最值及此时t的值,即可求出答案;②如图2,过点P作PK∥y轴交直线BC于点K,交x轴于点H,设P(t,t2+t+4),则H(t,0),K(t,﹣t+4),利用△KBH∽△CBO,求得CD=t2+t,再分两种情况:当△CPD∽△ACO时,当△CPD∽△ACO时,分别运用相似三角形性质即可求得答案.解:(1)∵点A(﹣2,0),∴AO=2,∵BO=4AO,∴OB=8,B(8,0),∵=tan∠OCB=2,∴OC=4,∴C(0,4),设抛物线解析式为y=a(x+2)(x﹣8),将C(0,4)代入,得:﹣16a=4,解得:a=﹣,∴y=﹣(x+2)(x﹣8)=x2+x+4,故该抛物线解析式为y=x2+x+4;(2)①存在.如图1,过点P作PK∥y轴交直线BC于点K,在Rt△BCO中,BC===4,设直线BC解析式为y=kx+d,∵B(8,0),C(0,4),∴,解得:,∴直线BC解析式为y=﹣x+4,设P(t,t2+t+4),则K(t,﹣t+4),∴PK=t2+t+4﹣(﹣t+4)=t2+2t,∵PK∥y轴,∴∠PKD=∠BCO,∵∠PDK=∠BOC=90°,∴△PKD∽△BCO,∴=,即=,∴PD=﹣t2+t=﹣(t﹣4)2+,∴当t=4时,PD取得最大值,∴P(4,6),∴PD=,设D(x,﹣x+4),∴(x﹣4)2+(﹣x+4﹣6)2=()2,解得:x1=x2=,∴D(,);②如图2,过点P作PK∥y轴交直线BC于点K,交x轴于点H,设P(t,t2+t+4),则H(t,0),K(t,﹣t+4),∴BH=8﹣t,KH=﹣t+4,∵∠BHK=∠BOC=90°,∠KBH=∠CBO,∴△KBH∽△CBO,∴=,即=,∴BK=(8﹣t),由①知,PK=t2+2t,PD=﹣t2+t,∵△PKD∽△BCO,∴==,∴DK=﹣t2+t,∴CD=BC﹣BK﹣DK=4﹣(8﹣t)﹣(﹣t2+t)=t2+t,当△CPD∽△ACO时,∴=,∴OC•CD=OA•PD,即4(t2+t)=2(﹣t2+t),解得:t=0(舍去)或t=3,∴P(3,);当△CPD∽△CAO时,∴=,∴OA•CD=OC•PD,即2(t2+t)=4(﹣t2+t),解得:t=0(舍去)或t=6,∴P(6,4);综上所述,点P的坐标为(3,)或(6,4).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年湖南省长沙市浏阳市九年级上学期期末考试
数学试卷
一.选择题(共12小题,满分36分,每小题3分)
1.关于反比例函数y=2
x,下列说法不正确的是()
A.点(﹣2,﹣1)在它的图象上
B.它的图象在第一、三象限
C.它的图象关于原点中心对称
D.y的值随着x的值的增大而减小
2.如图,⊙O的周长等于4πcm,则它的内接正六边形ABCDEF的面积是()
A.√3B.3√3C.6√3D.12√3 3.在下列四个图案中,不是中心对称图形的是()
A.B.
C.D.
4.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上
B.抛物线的对称轴是直线x=﹣1
C.抛物线对称轴左侧部分是下降的
D.抛物线顶点到x轴的距离是2
5.已知x1,x2是方程x2−√5x+1=0的两根,则x12+x22的值为()A.3B.5C.7D.4
第1 页共29 页
6.如图,P A、PB是⊙O的两条切线,点C在⊙O上,若∠APB=80°,则∠ACB的度数为()
A.40°B.45°C.50°D.55°
7.函数y=ax2﹣2x+1和y=ax+a(a是常数,且a≠0)在同一直角坐标系中的图象可能是()
A.B.
C.D.
8.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根
B.方程有两个不相等的实数根
C.没有实数根
D.无法确定
9.如图,将△AOB绕点O按逆时针方向旋转55°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()
第2 页共29 页。

相关文档
最新文档