—定积分的概念与性质

合集下载

6.1 定积分的概念与性质 课件 《高等数学》(高教版)

6.1 定积分的概念与性质 课件 《高等数学》(高教版)
可积的.
(2)定积分
是一个数值,它的大小仅与被积函数
和积分区间
关,而与积分区间的分法、点 的选取方法及积分变量的符号无关,即
(3)我们规定:
(4)“分割-近似-求和-取极限”是定积分的思想方法.

三、定积分的几何意义
在区间
1、如果函数
几何上表示由曲线
积A,即
2、如果函数
几何上表示由曲线
的相反数,即
数,且
是时间 在区间
上的连续函
,计算质点在这段时间内经过的路程 。
由于速度是变量,即速度
是随着时间
“速度×时间”来计算. 但是,若把时间区间
而变化,因此,路程s不能直接用
分成许多小时间段,因质点运动
的速度是连续变化的,则在每个小段时间内,速度变化不大,可以近似地看作是匀
速的. 于是,在时间间隔很短的条件下,可以用“匀速”近似地代替“变速”,从而
形分割成许多小曲边梯形,每个小区间上对应的小曲边梯形面积近似地看成小矩形,所有的小矩
形面积的和,就是整个曲边梯形面积的近似值. 显然分割越细,每个小曲边梯形的顶部越接近平
顶,即每个小曲边梯形越接近小矩形,从而误差就越小. 因此,将区间[, ]无限的细分,并使
每个小曲边梯形的底边长都趋近于零,则小矩形面积之和的极限就可定义为所要求曲边梯形的面
的近似值,即
为底,
.
为高的小矩
(3)求和(近似和):把n个小曲边梯形面积的近似值累加起来,就得到曲边梯形面积A
的近似值,即
(4)取极限:若记
, 则当
时,所有小区间的长度都趋于
零.如果上述和式的极限存在,这个极限值就是曲边梯形面积的精确值,即
实例2 变速直线运动的路程

高等数学-定积分的概念与性质

高等数学-定积分的概念与性质

= σ=1 ( ) .
→0
其中()称为被积函数,()称为被积表达式,称为积分变量,
[, ]称为积分区间,称为积分下限,称为积分上限.
15
02 定积分的定义


注(1)定积分‫)( ׬‬是一个数值,它只与被积函数()

和积分区间[, ]有关,而与积分变量的符号无关,即
(2)近似(“以直代曲”)
在区间 [−1 , ] 上任取一点 ,以 ( ) 为高,
y
y=()
以 为底,作小矩形.小矩形的面积为
( ) ,用该结果近似代替[−1 , ]上的小
O
a
x i -1 ξ i x i
b
x
曲边梯形的面积 ,即
≈ ( ) ( = 1, 2, ⋯ , ).

‫)( ׬‬
=

‫)( ׬‬
=

‫)( ׬‬.
(2)定积分存在,与区间的分法和每个小区间内 的取法无关.
Hale Waihona Puke (3)按照定积分的定义,记号‫)( ׬‬中的, 应满足关系
< ,为了研究的方便,我们补充规定:
① 当 =
② 当 >


时,‫ = )( ׬ = )( ׬‬0;
在区间 [1,2] 内, 0 ≤ < 2 < 1 ,
则( )3 < .由性质5.5的推论1,得
2
‫׬‬1
>
2
‫׬‬1 ( )3 .
28
极限,得 σ=1 ( ) .
→0
如果对于[, ]的任意分法及小区间[−1 , ]上点 的任意
取法,上述极限都存在,则称函数()在区间[, ]上可积,

定积分的概念与性质

定积分的概念与性质

x
区间长度为: xi xi xi 1 , i 1,2,
,n
将曲边 梯形AabB 分成 n 个小曲边梯形,
si 表示第 i 个小曲边梯形的面积, 用s 表示曲边梯形 AabB 的面积, 则有: n s s1 s2 sn si
i 1
(2)近似求和 在每个小区间[ xi 1 , xi ] 上任取一点 i ( xi 1 i xi ),
n
当 0 时,和 总有共同的极限 I ,则称 I 为函数 b f ( x ) 在 [a , b] 上的定积分, 记为 f ( x )dx , 即

b
a
f ( x )dx I lim f ( i )xi
0
i 1
n
a
积分上限
[a , b] 称为积分区间
a
积分下限
s
i 1
n
i
si v ( i )t i
并作和:
( i 1,2, , n)
i
sn
v( )t
i 1 i n
n
则有 s sn v ( i )t i
i 1
n
(3)求极限 记 max{t i }, 当 0 时, 1 i n 有: s lim v ( i )t i
匀速直线运动: s v t 变速直线运动:
O
v(t )
T1
.
T2
.
t
用类似的方法解决如下: (1)分割
OT
1
t0
t1 t 2
ti
t i 1 tn T2
t
用 si 表示第 i 个小时间段行驶的距离, 则 s (2)近似求和 在每个时间段 [t i 1 , t i ] 上任取一时刻 i ,

第5.1节 定积分的概念及性质

第5.1节  定积分的概念及性质

§5.1 定积分的概念及性质一、定积分的定义5.1.1 定积分: 设)(x f 是定义在],[b a 上的有界函数,在],[b a 上任取一组分点b x x x x x a n i i =<<<<<<=−L L 110,这些分点将],[b a 分为n 个小区间],[10x x ,],[21x x ,…,],[1n n x x −记每个小区间的长度为:),,2,1(1n i x x x i i i L =−=∆−,并记},,,max{21n x x x ∆∆∆=L λ再任取点),,2,1(],[1n i x x i i i L =∈−ξ,作和式:∑=∆ni i i x f 1)(ξ,若和式的极限∑=→∆ni i i x f 1)(lim ξλ存在,则称)(x f 在区间],[b a 上可积,并称该极限为)(x f 在区间],[b a 上的定积分,记为∫b adx x f )(,即∑∫=→∆=ni i i bax f dx x f 1)(lim )(ξλ其中)(x f 称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限,],[b a 称为积分区间。

注:(1)定积分∫b adx x f )(表示一个常数值,它与被积函数)(x f 和积分区间],[b a 有关;(2)定积分的本质是一个和式的极限,该极限与区间的划分以及点i ξ的取法无关;5.1.2 函数可积的条件:(1)若)(x f 在],[b a 上连续,则)(x f 在],[b a 上可积; (2)若)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在],[b a 上可积; (3)若)(x f 在],[b a 上单调有界,则)(x f 在],[b a 上可积; (4)有界不一定可积,可积一定有界,无界函数一定不可积。

5.1.3 定积分的几何意义:∫b adx x f )(表示以)(x f y =为曲边,以b x a x ==,为侧边,x 轴上区间],[b a 为底边的曲边梯形面积的代数和。

定积分的概念与性质

定积分的概念与性质

t = b所经过的路程 s.
15
定积分的概念与性质
四、关于函数的可积性
当函数
称()在区间 [, ]上
∈ [, ].
定理1
的定积分存在时
可积.或 ,黎曼可积,记为
()在区间 [, ]上
黎曼 德国数学家(1826–1866)
设()在[, ]上连续,
则()在[, ]上


25
定积分的概念与性质
性质5 如果在区间

性质5的推论1
如果在区间


[, ]上
[, ]上
න (); )
() ≤ (),
( < )
න () ≤ න ()
∵ () ≤ ()
∴ () − () ≥ 0
= − −1 , ( = 1,2, ⋯ , ),
在各小区间上任取
一点 ( ∈ ), 作乘积

(3)
并作和 = ෍ ( )
=1
(4)
= max 1 , 2 , ⋯ , ,

( ) ( = 1,2, ⋯ , )
在 x 轴上方的面积取正号; 在 x 轴下方的面积
取负号.

()
+

+




14
定积分的概念与性质


y
求න

1 − 2
1 − 2 =

4
1
o
=
1
1 − 2
x
2. 物理意义
当() ≥ 0时,
= ()
定积分
න ()
表示以变速
作直线运动的物体从时刻 t = a 到时刻

定积分的概念及性质

定积分的概念及性质

定积分的概念、微积分基本定理及其简单应用一. 定积分的定义A )定义: 设函数f(x)在[a,b]上有界,在[a,b]中任意插入若干个分点,把区间[a,b]分成n 个小区间,记},......,,max{,,......2,1,211n i i i x x x n i x x x ∆∆∆==-=∆-λ在[i i x x ,1-]上任意取一点i ξ,作和式:)1.......()(1ini ix f ∆∑=ξ 如果无论[a,b]作怎样分割,也无论i ξ在[i i x x ,1-]怎样选取,只要0→λ有→∆∑=ini ixf 1)(ξI (I 为一个确定的常数),则称极限I 是f(x)在[a,b]上的定积分,简称积分,记做⎰b adx x f )(即I=⎰badx x f )(其中f(x)为被积函数,f(x)dx 为积分表达式,a 为积分下限,b 为积分上限,x 称为积分变量,[a,b]称为积分区间。

例:求曲边图形面积:3x y =的图像在[]1,0∈x 间与1=x 及x 轴围成的图形面积。

注:1、有定义知道⎰ba dx x f )(表示一个具体的数,与函数f(x)以及区间[a,b]有关,而与积分变量x 无关,即⎰badx x f )(=⎰badu u f )(=⎰badt t f )(2、定义中的0→λ不能用∞→n 代替3、如果ini ix f Lim∆∑=→1)(ξλ存在,则它就是f(x)在[a,b]上的定积分,那么f(x)必须在[a,b]上满足什么条件f(x)在[a,b]上才可积分呢?经典反例:⎩⎨⎧=中的无理点,为,中的有理点,为]10[0]10[,1)(x x x f 在[0,1]上不可积。

可见函数f(x)在什么情况下可积分并不是一件容易的事情。

以下给出两个充分条件。

定理1 设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2 设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定积分的概念、性质

定积分的概念、性质
*
三、定积分的性质
§5.1 定积分的概念与性质
一、定积分问题举例
演讲人姓名
二、定积分定义
一、定积分问题举例
曲边梯形 设函数yf(x)在区间[a, b]上非负、连续. 由直线xa、xb、y0及曲线yf (x)所围成的图形称为 曲边梯形, 其中曲线弧称为曲边.
曲边梯形的面积
*
观察与思考
定积分的定义
*
二、定积分定义
例1 用定积分表示极限 解 定积分的定义
*
二、定积分定义
定积分的定义
注: 设f (x)在[0, 1]上连续, 则有
*
定积分的几何意义
这是因为 曲边梯形面积 曲边梯形面积的负值
*
定积分的几何意义
各部分面积的代数和 曲边梯形面积 曲边梯形面积的负值
*
例2
在曲边梯形内摆满小的矩形, 当小矩形的宽度减少时, 小矩形面积之和与曲边梯形面积之间的误差将如何变化? 怎样求曲边梯形的面积?
*
(2)近似代替:
求曲边梯形的面积
(1)分割:
ax0< x1< x2< < xn1< xn b, Dxi=xi-xi1;
小曲边梯形的面积近似为f(xi)Dxi (xi1<xi<xi);
如果在区间[a b]上 f (x)g(x) 则
如果在区间[a b]上 f (x)0 则
性质5
推论2
性质6
设M及m分别是函数f(x)在区间[a b]上的最大值及最小值 则
例4 试证:
证明 设 则在 上, 有 即 故 即
*
性质7(定积分中值定理)
如果函数f(x)在闭区间[a b]上连 续 则在积分区间[a b]上至少存在一个点x 使下式成立 这是因为, 由性质6 ——积分中值公式 由介值定理, 至少存在一点x[a, b], 使 两端乘以ba即得积分中值公式.

初中数学知识归纳定积分的基本概念和性质

初中数学知识归纳定积分的基本概念和性质

初中数学知识归纳定积分的基本概念和性质定积分作为数学中的一个重要概念,是初中数学学习中必须掌握的内容之一。

本文将从定积分的基本概念和性质两个方面进行归纳,帮助初中生更好地理解和掌握这一知识点。

1. 定积分的基本概念定积分是对函数在一定区间上的积分,可以理解为曲线与x轴所夹的面积。

具体而言,定积分可以表示为∫ab f(x)dx,其中a和b分别表示积分的下限和上限,f(x)表示被积函数。

定积分的计算方法有多种,常见的有几何法和定积分的运算法则。

几何法是通过图形的面积进行计算,而定积分的运算法则则利用不定积分求解。

2. 定积分的性质定积分具有以下几个性质:(1)可加性:对于函数f(x)和g(x),定积分具有可加性,即∫ab[f(x) + g(x)] dx = ∫ab f(x) dx + ∫ab g(x) dx。

(2)线性性:对于任意实数k,定积分具有线性性质,即∫ab kf(x) dx = k∫ab f(x) dx。

(3)区间可加性:对于函数f(x)在区间[a, b]上的定积分,可以将该区间分割成若干小区间,然后进行分别计算再求和,即∫ab f(x) dx =∑(i=1 to n) ∫xi-1 xi f(x) dx,其中[xi-1, xi]表示分割后的小区间。

(4)定积分的性质与原函数相关:如果函数F(x)在区间[a, b]上是函数f(x)的原函数,则∫ab f(x) dx = F(b) - F(a)。

(5)无关紧要的加法常数:定积分无关紧要的加法常数,即∫abf(x) dx = ∫ab [f(x) + C] dx,其中C为任意常数。

3. 定积分的应用定积分不仅仅在数学理论中有重要应用,还广泛应用于物理、经济学等实际问题中。

以下是一些常见的应用场景:(1)面积计算:定积分可以用来计算曲线与x轴所夹的面积,从而解决几何学中的面积问题。

(2)求解平均值:对于某些变量随时间变化的过程,可以通过定积分计算平均值,如平均速度、平均密度等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)求和
y
y f (x) N
将所有矩形面积求和
An f (1)x1 f (2 )x2 L f (n )xn
n
f (i )xi i 1
M
oa
xi1i xi
bx
前页 后页 结束
则 An 即是曲边梯形面积的近似值.
(4)取极限

为所有小区间中长度的最大者,即
ห้องสมุดไป่ตู้
max
1in
{xi
},
当 0 时,总和的极限就是曲边梯形面积A,即
根据定积分的定义,前面所讨论的两个引例就可 以用定积分概念来描述:
曲线 f ( x)( f ( x) 0)、x轴及两条直线x=a,x=b所围 成的曲边梯形面积A等于函数f(x)在区间[a,b]上的定积 分,即
b
A a f ( x)dx.
前页 后页 结束
质点在变力F(s)作用下作直线运动,由起始位置 a移动到b,变力对质点所做之功等于函数F(s)在[a,b] 上的定积分,即
第五章 定积分及其应用
§5—1 定积分的概念与性质
一、定积分问题举例(P253)
1、曲边梯形的面积:
如图,由连续曲线 y=f(x),直线 x=a,x=b 及x轴围成
的图形称为曲边梯形.
下面我们求曲边梯形的面积
y
(1)分割 在(a,b)内插入n–1个分点
y f (x)
a x0 x1 x2 xn1 xn b
所做的功,即
n
W
= lim 0
i 1
F (i ) si
前页 后页 结束
二、定积分的定义(P256) 定义 设函数f (x)在[a,b]上有界,在[a,b]中任意插入n 1
个分点: a x0 x1 x2 xn1 xn b
把区间[a,b]分成n个小区间: [x0 , x1],[x1, x2 ], ,[xi1, xi ], ,[xn1, xn ]
把区间[a,b]分成n个小区间
oa
bx
[ x0 , x1],[ x1, x2 ],...,[ xi1, xi ],,[ xn1, xn ]
记每一个小区间 [xi1, xi ] 的长度为 xi xi xi1 (i 1,2,L n)
前页 后页 结束
过每个分点 xi (i=1,2,…,n)作y轴的平行线,将曲边梯形 分割成n个小曲边梯形.
各个小区间的长度为
xi xi xi1
在每一个小区间[xi1, xi ]上任取一点i (xi1 i xi ),
作和式(简称积分和式)
n
f (i )xi
i 1
前页 后页 结束
记 max{xi , x2 ,..., xn},如果对区间[a, b]任一分法 和小区间[xi1, xi ]上点i任意取法,只要当 0时,上
述和式的极限都存在且相等,则称此极限为函 数f (x)
在区间[a, b]上的定积分(简称积分) ,记作
b
n
a
f ( x)dx lim 0 i1
f (i )xi ,
其中f(x)叫做被积函数,f(x)dx叫做被积表达式,x 叫
做积分变量,a叫做积分下限,b叫做积分上限,[a,b]
叫做积分区间.
前页 后页 结束
b
a
f
( x)dx是积分和式的极限,是一个数值,
定积分值只与被积函数f(x)及积分区间[a,b]有关,
而与积分变量的记法无关.即有
b
b
b
a f ( x)dx a f (t)dt a f (u)du.
(2)函数 f (x)在[a , b] 上可积的充分条件是:
定理1(P258)设函数 f (x)在区间[a , b] 上连续, 则f(x)在[a , b]上可积。
(2) 取近似 Ai 表示第i个小曲边梯形的面积,在小区间[xi1, xi ](i 1,2,L ,n)
内任取一点 i (xi1 i xi ) ,过点 i 作x轴的垂线与曲线
交于点 Pi (i , f (i )) ,以 xi 为底, f (i ) 为高做矩形,以此矩
形做为小曲边梯形面积的近似值,则 Ai xi f (i )
b
W a F(s)ds
如果函数 f (x) 在区间[a,b]上的定积分存在,则 称函数 f (x) 在区间[a,b]上可积.
可以证明:若函数f (x)在区间[a,b]上连续,或只有有 限个第一类间断点,则f (x)在区间[a,b]上可积.
前页 后页 结束
关于定积分的概念,还应注意两点:
(1)定积分
[s0 , s1],[s1, s2 ],L ,[si1, si ],L ,[sn1, sn]
小区间的长度
si si si1 (i 1, 2,L , n)
(2)取近似 在每一个小区间 [si1, si ] 上任取一点 i ,把 F(i ) 做为
质点在小区间上受力的近似值,于是,力F在小区间[si1, si ] 上对质点所做的功的近似值为
x轴所围成的曲边梯形的面积.
如果在[a,b]上 f ( x) ≤ 0,此时 o a
由曲线 y=f(x),直线x=a,x=b及 y a x轴所围成的曲边梯形位于x轴的 o
下方,则定积分
b
a
f
( x)dx
在几何
上表示上述曲边梯形的面积A的相反数.
bx b
x
y f (x)
前页 后页 结束
如果在[a,b]上 f(x)既可取正值又可取负值,则定
n
A lim 0 i1
f (i ) xi
2、变力沿直线所做的功
设某质点作直线运动,已知变力F (s)是位移s的
连续函数,质点的位移区间为a, b,求变力F做的功.
(1) 分割
在[a,b] 插入n个分点 a s0 s1 s2 L si L sn1 sn b
前页 后页 结束
将闭区间[a,b]分成n个小区间:
定理2(P258)设f (x)在区间[a , b] 上有界,且只有 有限个间断点,则f(x)在[a , b]上可积。
前页 后页 结束
定积分的几何意义:(P258)
如果在[a,b]上
f (x) 0
,则 b a
f ( x)dx 在几何上表
示由曲线y=f(x),直线x=a,x=b及 y
y f (x)
Wi F(i )si (i 1, 2,L , n)
前页 后页 结束
(3)求和 把各小区间上力F所做的功的近似值加起来,即得到
在区间 a,b 上所做功的近似值,即
(4)取极限
n
n
W Wi F ( i)Si
i 1
i 1
把所有小区间的最大长度记为 ,即 max(si ) ,
则当 0时,和式的极限即为变力在区间 a,b上对质点
相关文档
最新文档