人教版初中九年级数学上册因式分解法解一元二次方程综合练习题8
人教版数学九年级上册解一元二次方程因式分解法同步练习题含答案与解析

21.2 解一元二次方程 21.2.3 因式分解法一、单项选择题1. 一元二次方程x 2-x +=0的根是( ) A ., B .x 1=2,x 2=-2 C .x 1=x 2= D .x 1=x 2=2. 方程3x 2=0与方程3x 2=3x 的解( )A .都是x=0B .有一个相同的解x=0C .都不相同D .无法确定3.解方程(x +5)2-3(x +5)=0,较为简便的方法是( )A .直接开平方法B .因式分解法C .配方法D .公式法4.方程x(x -4)=32-8x 的解是( )A .x =-8B .x 1=4,x 2=-8C .x 1=-4,x 2=8D .x 1=2,x 2=-85. 一个三角形的两边长为3和6,第三边的边长是方程(x-3)(x-4)=0的根,则这个三角形的周长( )A .13B .11或13C .11D .11和136、要使4452-+-x x x 的值为0,x 的值为( )A .4或1B .4C .1D .-4或-114112x =21=2x -12-127、已知x2-5xy+6y2=0,那么x与y的关系是()A.2x=y或3x=y B.2x=y或3y=xC.x=2y或x=3y D.x=2y或y=3x8、已知(a2+b2)2-2(a2+b2)+1=0,则a2+b2的值为()A.0 B.-1 C.1 D.±1二、填空题9.方程(x-1)(x+2)=2(x+2)的根是__________.10.如果代数式3x2-6的值为21,那么x的值为__________.11.已知x=2是一元二次方程(m-2)x2+4x-m2=0的一个根,则m的值是______.12. 一元二次方程x(x-1)=0的解是__________.13. 一元二次方程x2-3x=0的根是__________.14. 方程(x+1)(3x-2)=0的根是15. 请写出一个根为x=1,另一个根满足-1<x<1的一元二次方程:16. 已知一元二次方程(m-1)x2+7mx+m2+3m-4=0有一根为0,则m=y=17. 若2x2+9xy-5y2=0,则x三、解答题18. 用因式分解法解下列一元二次方程:(1)(x-1)(x+3)=-3;(2)(3x-1)2=4(2x+3)2.19. 如果方程x2+mx-2m=0的一个根为-1,求方程x2-6mx =0的根.20. 用因式分解法解方程x2-mx-7=0时,将左边分解后有一个因式为x+1,求m的值.21. 若m是关于x的方程x2+nx+m=0的根,切m≠0,则m+n的值是多少?22. 有一大一小两个正方形,小正方形的边长比大正方形边长的一半多4cm,大正方形的面积比小正方形面积的2倍少32cm2,求这两个正方形的边长.23. 阅读材料:为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1看作一个整体,然后设x 2-1=y ①,那么原方程可化为y 2-5y+4=0,解得y 1=1,y 2=4,当y=1时,x 2-1=1,∴x 2=2,∴x=±2;当y=4时,x 2-1=4,∴x 2=5,∴x=±5,故原 方程的解为x 1=2,x 2= -2,x 3=5,x 4= -5解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用 法达到了解方程的目的,体现了转化的数学思想。
【专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

【专题复习】九年级数学上册一元二次方程解法练习100题1.解方程:2x2﹣8x+3=0(用公式法). 2.解方程:(2x-1)(x+3)=43.解方程:4y2+4y-1=-10-8y.4.解方程:x(x-3)=105.解方程:(x-1)(x-3)=86.解方程:x2-2=-2 x7.解方程:4x(3x-2)=6x-4. 8.解方程:3x(7-x)=18-x(3x-15);9.解方程:5x2-8x+2=0. 10.解方程:x2+12x+27=0.11.解方程:2x2-4x+1=0(用配方法) 12.解方程:4(x-1)2=9(x-5)2 13.解方程:x2﹣6=﹣2(x+1) 14.解方程:x2+4x﹣5=0.15.解方程:2x2+5x﹣1=0.16.解方程:3(x-2)2=x(x-2):17.解方程:2x2-3x-2=0 18.解方程:2x2-7x+1=019.解方程:x2﹣6x﹣4=0(用配方法) 20.解方程:x2-4x-3=021.解方程:x²-5x+2=0 22.解方程:x2﹣4x+8=0;23.解方程:3x2-6x+4=0 24.解方程:(x-2)(x-3)=1225.解方程:(x﹣3)(x+7)=﹣9 26.解方程:3x2+5(2x+1)=0(公式法) 27.解方程:x2﹣12x﹣4=0;28.解方程:(x﹣5)(x﹣6)=x﹣5.29.解方程:x2﹣8x﹣10=0;30.解方程:x(x﹣3)=15﹣5x;31.解方程:5x(x﹣3)=(x+1)(x﹣3) 32.解方程:x2+8x+15=033.解方程:25x2+10x+1=0 34.解方程:x2﹣7=﹣6x.(配方法)35.解方程:x2+4x﹣5=0(配方法) 36.解方程:4(x+3)2﹣(x﹣2)2=0(因式分解法)37.解方程:2x2+8x﹣1=0(公式法) 38.解方程:2x2-4x-1=0.39.解方程:(2x﹣5)2﹣(x+4)2=0.40.解方程:(x+1)(x﹣2)=2x(x﹣2) 41.解方程:4x2﹣6x﹣3=0(运用公式法) 42.解方程:2x2﹣x﹣3=0.43.解方程:(x+3)(x-1)=12 44.解方程:x2+3=3(x+1)45.解方程:x2-2x-24=0. 46.解方程:4x2-7x+2=0.47.解方程:x2-2x=2x+1;48.解方程:2(t-1)2+t=1;49.解方程:(3x-1)2-4(2x+3)2=0. 50.解方程:x2-6x-4=0;51.解方程:x(x﹣3)=4x+6.52.解方程:y2+3y+1=0;53.解方程:3y2+4y-4=0 54.解方程:(x-3)2-2x(x-3)=055.解方程:x2﹣2x=4 56.解方程:3(x﹣1)2=x(x﹣1) 57.解方程:3x2﹣6x+1=0(用配方法) 58.解方程:3(x-5)2=2(5-x) 59.解方程:3x2+5(2x+1)=0 60.解方程:x2+6x=9.61.解方程:x2﹣2x=x﹣2.62.解方程:(2x﹣1)2=(3﹣x)2 63.解方程:2x2-10x=3. 64.解方程:(x﹣1)(x﹣3)=8.65.解方程:3x2+2x-5=0;66.解方程:(1-2x)2=x2-6x+9.67.解方程:5(3x-2)2=4x(2-3x).68.解方程:(2x+1)2+4(2x+1)+3=0.69.解方程:2x2+3=7x; 70.解方程:(2x+1)2+4(2x+1)+3=0.71.解方程:x2﹣2x﹣3=0.72.解方程:x﹣3=4(x﹣3)273.解方程:(x+1)(x-1)=2x;74.解方程:3x2-7x+4=0.75.解方程:(x+2)2﹣10(x+2)=0.76.解方程:x2+3x+2=0;77.解方程:(x-1)2-2(x2-1)=0 78.解方程:x2-4x+2=0;79.解方程:x2﹣5x+1=0;80.解方程:x2﹣2x=4.81.解方程:x2+3x-2=0. 82.解方程:x2-5x+1=0(用配方法)83.解方程:x2+5x﹣6=0(因式分解法) 84.解方程:x2+3x﹣4=0(公式法)85.解方程:x2﹣4x+1=0(配方法) 86.解方程:(x﹣5)2=16 (直接开平方法)87.解方程:(x﹣1)(x+2)=6. 88.解方程:2x2+3x+1=089.解方程:(3x+1)2=9x+3. 90.解方程:5x2﹣3x=x+191.解方程:(x﹣4)2=(5﹣2x)2. 92. 解方程:(2x+1)2+15=8(2x+1)93.解方程:x2+x﹣1=0. 94.解方程:2x2﹣3x﹣1=0.95.解方程:x2-2x-3=0 96.解方程:3x2-7x+4=0.97.解方程:(x+3)(x-1)=12 98.解方程:x2-x-6=099.解方程:2x2﹣4x=1(用配方法) 100.解方程:(x+8)(x+1)=-12参考答案1.答案为:x=,x2=.12.答案为:x=1,x2=-3.5.13.答案为:y=y2=-1.5.14.答案为:x=5,x2=-2.15.答案为:x=5,x2=-1.16.答案为:∴,7.答案为:x=1/2,x2=-2/3.18.答案为:x=39.答案为:10.答案为:x=-3,x2=-9.111.答案为:12.答案为:x=13,x2=-3.4.113.答案为:x=﹣1+,x2=﹣1﹣.114.答案为:x=1,x2=﹣5.115.答案为:x=.16.答案为:x=2,x2=3.117.答案为:x=-0.5,x2=-2.118.答案为:;19.答案为:x=-3+,x2=-3-120.答案为:x=2721.答案为:略;22.答案为:x=x2=2;123.方程无实根;24.答案为:x=-1,x2=6. ;125.答案为:x=﹣6,x2=2;126.答案为:∴x1=,x2=.27.答案为:x=6+2,x2=6﹣2;128.答案为:x=5,x2=7.129.答案为:x=4+,x2=4﹣;130.答案为:x=3,x2=﹣5131.答案为:x=3,x2=0.25.132.答案为:x=-3,x2=-5.133.答案为:x=x2=-0.2.134.答案为:x=1,x2=﹣7.135.答案为:x=﹣5,x2=1;136.答案为:x=﹣4/3,x2=﹣8;137.答案为:x=,x2=.138.答案为:x=+1,x2=1-139.答案为:x=1/3,x2=9.140.答案为:x=2,x2=1.141.答案为:,;42.答案为:x=1.5,x2=﹣1.143.答案为:44.答案略;45.答案为:x=0,x2=3;146.答案为:x=+,x2=-.147.答案为:x=2+,x2=2-.148.答案为:t=1,t2=.149.答案为:x=-,x2=-7.150.答案为:x=3+,x2=3-.151.答案为:x=,x2=.152.答案为:y=,y2=.153.答案为:54.答案为:x=3,x2=-3;155.答案为:∴x=1﹣,x2=1+;156.答案为:x=1,x2=1.5.157.答案为:x=1+,x2=1﹣;158.答案为:x=5,x2=13/3.159.答案为:60.答案为:x=﹣3+3,x2=﹣3﹣3.161.答案为:x=2,x2=1.162.答案为:63.答案为:x 1=,x 2=. 64.答案为:x 1=5,x 2=﹣1. 65.答案为:x 1=1,x 2=-. 66.答案为:x 1=,x 2=-2. 67.答案为:x 1=,x 2=.68.答案为:x 1=-1,x 2=-2.69.答案为:x 1=,x 2=3.70.答案为:x 1=-1,x 2=-2.71.答案为:x 1=3,x 2=﹣1.72.答案为:x 1=3,x 2=3.25;73.答案为:x 1=+,x 2=-74.答案为:x 1=,x 2=1 75.答案为:x 1=﹣2,x 2=8.76.答案为:x 1=-1,x 2=2.77.答案为:x 1=1,x 2=3.78.答案为:x 1=22 ,x 2=2-2. 79.答案为: 80.答案为:x 1=1+,x 2=1﹣.81.∵a=1,b=3,c=-2,∴Δ=32-4×1×(-2)=17,∴x=,∴x 1=,x 2=.82.答案为:,.83.x1=﹣6,x2=1.84.答案为:x=﹣4,x2=1;185.;86.x=1,x2=9;187.x=,x2=.188.x1=﹣0.5,x2=﹣1;89.x1=﹣,x2=.90.x=﹣0.2,x2=1;191.x=3,x2=1.192.x=1,x2=2.193.x=,x2=.194.x=,x2=.195.96.解:(3)x=,x2=1197.98.99.x=1+,x2=1﹣.1100.1=﹣4,x2=﹣5.。
九年级数学上册《解一元二次方程(因式分解法)》练习题

九年级数学上册《解一元二次方程(因式分解法)》练习题(含答案解析)学校:___________姓名:___________班级:______________一、单选题1.方程x 2﹣x =0的解是( )A .x =0B .x =1C .x 1=0,x 2=﹣1D .x 1=0,x 2=12.关于x 的方程x (x ﹣5)=3(x ﹣5)的根是( )A .x =5B .x =﹣5C .x 1=﹣5;x 2=3D .x 1=5;x 2=33.如图,在Rt △ABC 中,∠C =90°,放置边长分别为3,4,x 的三个正方形,则x 的值为( )A .12B .7C .6D .54.若m ,n 是方程x 2-x -2 022=0的两个根,则代数式(m 2-2m -2 022)(-n 2+2n +2 022)的值为()A .2 023B .2 022C .2 021D .2 0205.下列关于x 的一元二次方程()200++=≠ax bx c a 的命题中,真命题有( )∠若0a b c -+=,则240b ac -≥;∠若方程()200++=≠ax bx c a 两根为1和-2,则0a b -=;∠若方程()200++=≠ax bx c a 有一个根是()0c c -≠,则1b ac =+A .∠∠∠B .∠∠C .∠∠D .∠∠6.若函数y =m 22m m x +++4是二次函数,则m 的值为( )A .0或﹣1B .0或1C .﹣1D .17.一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A .12B .9C .15D .12或158.下列式子运算正确的是( )A .(2a+b )(2a ﹣b )=2a 2﹣b 2B .(a+2)(b ﹣1)=ab ﹣2C .(a+1)2=a 2+1D .(x ﹣1)(x ﹣2)=x 2﹣3x+29.已知方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,则另一个方程(x +3)2+2(x +3)﹣3=0的解是( )A .x 1=﹣1,x 2=3B .x 1=1,x 2=﹣3C .x 1=2,x 2=6D .x 1=﹣2,x 2=﹣6 10.下列解方程变形:∠由3x +4=4x -5,得3x +4x =4-5;∠由1132x x +-=,去分母得2x -3x +3=6; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;∠由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个二、填空题11.一元二次方程()()120x x --=可化为两个一次方程为______________,方程的根是_________.12.方程2x 2+1=3x 的解为________.13.已知()()212x kx x a x b ++=++,()()215x kx x c x d ++=++,其中a b c d ,,,均为整数,则k =____________ 14.已知()()2222142x y x y ++-=,则22x y +的值是___________.15.若a ,b 是一元二次方程2220220x x +-=的两个实数根,则242a a b ++的值是_________.三、解答题16.已知关于x 的方程()()2222130k k x k x +-++-=(k 为常数).(1)该方程一定是一元二次方程吗?如果一定是,请说明理由;如果不一定是,请求出当方程不是一元二次方程时k 的值;(2)求1k =时方程的解;(3)求出一个()1k k ≠的值,使这个k 的值代人原方程后,所得的方程中有一个解与(2)中方程的一个解相同.(本小题只需求一个k 的值即可)17.为解方程(x 2﹣1)2﹣5(x 2﹣1)+4=0,我们可以将x 2﹣1视为一个整体,然后设x 2﹣1=y ,则原方程可化为y 2﹣5y +4=0,解此方程得y 1=1,y 2=4.当y =1时,x 2﹣1=1,所以x =当y =4时,x 2﹣1=4,所以x =所以原方程的根为1x =,2x =3x =4x =.以上解方程的方法叫做换元法,利用换元法达到了降次的目的,体现了数学的转化思想.运用上述方法解下列方程:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4;(2)x 4+x 2﹣12=0.参考答案与解析:1.D【分析】因式分解后求解即可.【详解】x 2﹣x =0,x (x -1)=0,x =0,或x -1=0,解得x 1=0,x 2=1,故选:D【点睛】此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:∠移项,使方程的右边化为零;∠将方程的左边分解为两个一次因式的乘积;∠令每个因式分别为零,得到两个一元一次方程;∠解这两个一元一次方程,它们的解就都是原方程的解.2.D【分析】利用因式分解法求解可得.【详解】解:∠x (x ﹣5)﹣3(x ﹣5)=0,∠(x ﹣5)(x ﹣3)=0,则x ﹣5=0或x ﹣3=0,解得x =5或x =3,故选:D .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3.B【分析】根据已知条件可以推出△CEF∠∠OME∠∠PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【详解】解:∠在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∠OM∠AB∠PN∠EF,EO∠FP,∠C=∠EOM=∠NPF=90°,∠∠CEF∠∠OME∠∠PFN,∠OE:PN=OM:PF,∠EF=x,MO=3,PN=4,∠OE=x-3,PF=x-4,∠(x-3):4=3:(x-4),∠(x-3)(x-4)=12,即x2-4x-3x+12=12,∠x=0(不符合题意,舍去)或x=7.故选:B.【点睛】本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x 的表达式表示出对应边.4.B【详解】解:∠m、n是方程x2-x-2022=0的两个根,∠m2-m-2022=0,n2-n-2022=0,mn=-2022,∠m2-m=2022,n2-n=2022,∠(m2-2m-2 022)(-n2+2n+2 022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故选:B.【点睛】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m 2-m -2022=0,n 2-n -2022=0,mn =-2022是解此题的关键.5.A【分析】把b =a +c 代入判别式中得到24b ac -=(a -c )2≥0,则可对∠进行判断;利用根与系数的关系得到2c a=-,根据根的定义可得0a b c ++=,于是可对∠进行判断;由方程的根的定义可得20ac bc c -+=,即可对∠进行判断.【详解】解:a -b +c =0,则b =a +c ,24b ac -=(a +c )2-4ac =(a -c )2≥0,所以∠正确;∠方程ax 2+bx +c =0两根为1和-2, ∠2c a=-,则2c a =-,0a b c ++= 20a b a ∴+-=∠0a b -=,所以∠正确;∠方程()200++=≠ax bx c a 有一个根是()0c c -≠,∠20ac bc c -+=0c ≠∠10ac b -+=∠1b ac =+所以∠正确.故选:A .【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,掌握以上知识是解题的关键.6.C【分析】利用二次函数定义可得m 2+m +2=2,且m ≠0,再解即可.【详解】解:由题意得:m 2+m +2=2,且m ≠0,解得:m =﹣1,故C 正确.故选:C .【点睛】本题主要考查了二次函数定义,关键是掌握形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.7.C【分析】利用因式分解法求出x 的值,再根据等腰三角形的性质分情况讨论求解【详解】解:∠ x 2﹣9x +18=0,∠(x﹣3)(x﹣6)=0,则x﹣3=0或x﹣6=0,解得x=3或x=6,当3是腰时,三角形的三边分别为3、3、6,不能组成三角形;当6是腰时,三角形的三边分别为3、6、6,能组成三角形,周长为3+6+6=15.故选:C.【点睛】本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论.8.D【分析】A、原式利用平方差公式计算即可得到结果;B、原式利用多项式乘以多项式法则计算得到结果,即可做出判断;C、原式利用完全平方公式计算得到结果,即可做出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可做出判断.【详解】解:A、原式=4a2-b2,错误;B、原式=ab-a+2b-2,错误;C、原式=a2+2a+1,错误;D、原式=x2-3x+2,正确.故选D.【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.9.D【分析】根据已知方程的解得出x+3=1,x+3=﹣3,求出两个方程的解即可.【详解】解:∠方程x2+2x﹣3=0的解是x1=1,x2=﹣3,∠方程(x+3)2+2(x+3)﹣3=0中x+3=1或﹣3,解得:x=﹣2或﹣6,即x1=﹣2,x2=﹣6,故选:D.【点睛】本题考查了解一元二次方程,换元法解一元二次方程,能根据方程的解得出x+3=1,x+3=﹣3,是解此题的关键.10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:∠由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;∠由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;∠由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是∠,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11. x ﹣1=0,x ﹣2=0 11x =,22x =【分析】两个因式的积为0,这两个因式都可以为0,得到两个一次方程,然后求出方程的根.【详解】解:(x ﹣1)(x ﹣2)=0∠x ﹣1=0或x ﹣2=0∠11x =,22x =.故答案分别是:x ﹣1=0,x ﹣2=0;11x =,22x =. 【点睛】本题考查的是用因式分解法解一元二次方程,因式分解得到两个因式的积为0,这两个因式分别为0,得到两个一次方程,然后求出方程的根.12.1211,2x x == 【分析】先移项,再利用因式分解法解答,即可求解.【详解】解:移项得:22310x x -+=,∠()()2110x x --=,∠210x -=或10x -=, 解得:1211,2x x ==, 故答案为:1211,2x x ==. 【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.13.8±.【分析】根据等式两边对应相等的关系,可得到ab 和cd 的值,以及a+b 和c+d 的关系,再根据a 、b 、c 、d 是整数,即可得到结果.【详解】解:由题可得()()()2x a x b x a b x ab ++=+++,()()()2x c x d x c d x cd ++=+++12ab ∴=,15cd =,a b c d k +=+=又a b c d ,,,均为整数,∠2a =,6b =,3c =,5d =或2a =-,6b =-,3c =-,5d =-即8k =±.故答案为:±8.【点睛】本题考查多项式乘多项式,属基础知识.14.7【分析】换元法,令22x y t +=,将原方程化为t (t -1)=42(t 0≥), 求解一次方程即可.【详解】令22x y t +=(t 0≥),∠原方程化为t (t -1)=42,解得t =7,或t =-6(舍),∠227x y +=,故答案为:7.【点睛】本题考查用换元法求解方程.解题关键是要注意换元之后一定要考虑新未知数的取值范围,换元法的实际应用,是解题关键.15.2018【分析】先根据一元二次方程的解的定义得到222022a a +=,再根据根与系数的关系得到2a b +=-,然后利用整体代入的方法计算.【详解】解:∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2220220a a +-=∠222022a a +=∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2a b +=-,∠242a a b ++2222a a a b =+++()222a a a b=+++()202222=+⨯-2018=故答案为:2018.【点睛】本题考查的是一元二次方程的解的定义和根与系数的关系,还有整体的思想,熟练掌握一元二次方程的解的定义和根与系数的关系是解本题的关键.16.(1)不一定是,1k=-(2)x1=1,x2=-3;(3)4-或8 3 -【分析】(1)不一定,当2220k k+-=时该方程为一元一次方程,解得k的值即可;(2)把k=1代入方程计算即可;(3)把(2)中解得的x的值代入原方程解得k的值即可.(1)解:不一定是.当2220k k+-=时该方程为一元一次方程,解得:1k=-±答:方程不一定是一元二次方程,当方程不是一元二次方程时k的值为1-(2)解:当k=1代入得:2230x x+-=解得:x1=1,x2=-3;(3)解:x=1代入得k=-4,或x=-3代入得k=83 -,答:k的值为4-或83 -.【点睛】本题考查了一元二次方程的定义、一元二次方程的解以及解一元二次方程,掌握定义与解法是解题的关键.17.(1)x 1=2,x 2=﹣1;(2)12x x ==【分析】(1)设x 2﹣x =a ,原方程可化为a 2﹣4a +4=0,求出a 的值,再代入x 2﹣x =a 求出x 即可;(2)设x 2=y ,原方程化为y 2+y ﹣12=0,求出y ,再把y 的值代入x 2=y 求出x 即可.【详解】解:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4,设x 2﹣x =a ,则原方程可化为a 2﹣4a +4=0,解此方程得:a 1=a 2=2,当a =2时,x 2﹣x =2,即x 2﹣x ﹣2=0,因式分解得:(x ﹣2)(x +1)=0,解得:x 1=2,x 2=﹣1,所以原方程的解是x 1=2,x 2=﹣1;(2)x 4+x 2﹣12=0,设x 2=y ,则原方程化为y 2+y ﹣12=0,因式分解,得(y ﹣3)(y +4)=0,解得:y 1=3,y 2=﹣4,当y =3时,x 2=3,解得:x =当y =﹣4时,x 2=﹣4,无实数根,所以原方程的解是1x 2x =【点睛】本题考查了用换元法解一元二次方程和用因式分解法解一元二次方程,能正确换元是解此题的关键.。
专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

专题复习】九年级数学上册一元二次方程解法练习100题(含答案)1.解方程:$2x^2-8x+3=0$,使用公式法。
2.解方程:$(2x-1)(x+3)=43$。
3.解方程:$4y^2+4y-1=-10-8y$。
4.解方程:$(x-1)(x-3)=8$。
5.解方程:$5x^2-8x+2=0$。
6.解方程:$x(x-3)=10$。
7.解方程:$x^2-2=-2x$。
8.解方程:$3x(7-x)=18-x(3x-15)$。
9.解方程:$4x(3x-2)=6x-4$。
10.解方程:$x^2+12x+27=0$。
11.解方程:$2x^2-4x+1=0$,使用配方法。
12.解方程:$4(x-1)^2=9(x-5)$。
13.解方程:$x^2-6=-2(x+1)$。
14.解方程:$x^2+4x-5=0$。
15.解方程:$2x^2+5x-1=0$。
16.解方程:$3(x-2)^2=x(x-2)$。
17.解方程:$2x^2-3x-2=0$。
18.解方程:$2x^2-7x+1=0$。
19.解方程:$x^2-6x-4=0$,使用配方法。
20.解方程:$x^2-4x-3=0$。
21.解方程:$x^2-5x+2=0$。
22.解方程:$x^2-4x+8=0$。
23.解方程:$3x^2-6x+4=0$。
24.解方程:$(x-2)(x-3)=12$。
25.解方程:$(x-3)(x+7)=-9$。
26.解方程:$3x^2+5(2x+1)=0$,使用公式法。
27.解方程:$x^2-12x-4=0$。
28.解方程:$(x-5)(x-6)=x-5$。
29.解方程:$x^2-8x-10=0$。
30.解方程:$x(x-3)=15-5x$。
31.解方程:$5x(x-3)=(x+1)(x-3)$。
32.解方程:$x^2+8x+15=0$。
33.解方程:$25x^2+10x+1=0$。
34.解方程:$x^2+6x-7=0$,使用配方法。
35.解方程:$x^2+4x-5=0$,使用配方法。
人教版九年级数学上册综合题练习卷:第21章 一元二次方程(包含答案)

第21章一元二次方程1.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?2.某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?3.关于x的一元二次方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0(1)求方程的解;(2)若方程的解为整数,求k值.4.某市为推进养老服务工作的深入开展,在扩大社区养老覆盖率、规范机构养老、科学规划养老服务布局等方面作了大量工作.该市的养老机构拥有的养老床位数从2016年底的2万个增长到2018年底的2.88万个.(1)求该市这两年养老床位数的年平均增长率:(2)该市2018年底正在筹建一社区养老中心,按照规划拟建造三类养老专用房间(一个养老床位的单人间、两个养老床位的双人间、三个养老床位的三人间)共100间,若按规划需要建造的单人间的房间数为m(12≤m≤15),双人间的房间数是单人间的2倍,求该养老中心建成后最多可提供养老床位多少个?最少提供养老床位多少个?5.为进一步弘扬“爱国、进步、民主、科学”的五四精神,倡导“我运动、我健康、我快乐”的生活方式,某县团委准备组织一次共青团员青年足球赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排9天,每天安排5场比赛,则该县团委应邀请多少个足球队参赛?6.已知关于x的一元二次方程x2﹣5x+2m=0有实数根.(1)求m的取值范围;(2)当m=时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.7.(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:8.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.9.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.10.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.11.已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=3,求k的值及方程的根.12.已知关于x的方程x2﹣2x+2k﹣1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1、x2,且+=x1•x2,试求k的值.13.HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.14.(1)关于x,y的方程组满足x+y=5,求m的值.(2)关于x的一元二次方程x2﹣(m﹣1)x﹣m=0的两个根x1,x2满足x12+x22=5,求的值.15.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,求实数m的取值范围.16.已知关于x的一元二次方程x2﹣(m+3)x+m+2=0,(1)求证:无论实数m取得何值,方程总有两个实数根;(2)若方程有一个根的平方等于1,求m的值.17.(1)解方程:x2﹣2x﹣1=0.(2)解不等式组:18.已知关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0.(1)求证:不论m为何值,方程必有实数根.(2)当m为整数时,方程是否有有理根?若有,求出m的值:若没有,请说明理由.19.建造一个面积为130m2的长方形养鸡场,鸡场的一边靠墙,墙长为a米,另三边用竹篱笆围成,如果篱笆总长为33米.(1)求养鸡场的长与宽各为多少米?(2)若10≤a<18,题中的解的情况如何?20.2019长春国际马拉松于5月26日上午在长春体育中心鸣枪开跑.某公司为赛事赞助了5000瓶矿泉水,计划以后每年逐年增加,到2021年达到7200瓶,若该公司每年赞助矿泉水数量增加的百分率相同.(1)求平均每年增加的百分率;(2)假设2022年该公司赞助矿泉水增加的百分率与前两年相同,请你预测2022年该公司赞助的矿泉水的数量.参考答案1.【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.2.【分析】(1)可设甲种商品的进价是x元,乙种商品的进价是y元,根据等量关系:①一件甲种商品和一件乙种商品的进价之和为30元;②购买8件甲种商品和6件乙种商品一共用了262元;列出方程组求解即可;(2)根据该经销商每天销售甲、乙两种商品获取的利润共2500元,列出方程求解即可.【解答】解:(1)设甲种商品的进价是x元,乙种商品的进价是y元,依题意有,解得.故甲种商品的进价是16元,乙种商品的进价是14元;(2)依题意有:(400﹣10a×7)(4+a)+(300﹣10a×8)(14×2﹣11﹣14+a)=2500,整理,得150a2﹣180a=0,解得a1=,a2=0(舍去).故当a为时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.3.【分析】(1)根据一元二次方程的定义,利用因式分解法可解;(2)根据(1),利用整数根可解.【解答】解:(1)∵该方程是关于x的一元二次方程,∴k≠6,k≠9∵(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0∴[(6﹣k)x﹣9][(9﹣k)x﹣6]=0解得x=或∴方程的解为x=或.(2)∵方程的解为x=或.若方程的解为整数,①当6﹣k=±1,±3,±9时,x是整数,此时k=7、5、3、9、15、﹣3;②当9﹣k=±1,±2,±3,±6时,x是整数,此时k=10、8、11、7、12、6、15、3.综上可知,k=3、7、15时原方程的解为整数.【点评】本题考查了一元二次方程的定义及整数根的求解问题,难度中等.4.【分析】(1)设该市这两年(从2016年度到2018年底)拥有的养老床位数的平均年增长率为x,根据“2018年的床位数=2016年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于m的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.【解答】解:(1)设该市这两年拥有的养老床位数的平均年增长率为,由题意可列出方程:2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,三人间的房间数为100﹣3m,设该养老中心建成后能提供养老床位y个,由题意得:y=m+4m+3(100﹣3m)=﹣4m+300∵y随m的增大而减小∴当m=12时,y的最大值为252.当m=15时,y的最小值为240.答:该养老中心建成后最多提供养老床位252个,最少提供养老床位240个.【点评】本题考查了一次函数的应用、一元二次方程的应用,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.5.【分析】关系式为:球队总数×每支球队需赛的场数=9×5,把相关数值代入即可.【解答】解:该县团委应邀请x个足球队参赛.每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=9×5.整理,得x2﹣x﹣90=0.解得x1=﹣9(不合题意,舍去),x2=10.答:该县团委应邀请10个足球队参赛.【点评】本题考查了一元二次方程的应用,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.6.【分析】(1)由根的判别式列出不等式,解不等式可得m的取值范围;(2)由根与系数的关系可得x1+x2=5、x1x2=5,该矩形外接圆的直径是矩形的对角线AC,根据勾股定理可得结论.【解答】(本题6分)解:(1)∵方程有实数根,∴△=(﹣5)2﹣4×1×2m≥0,(1分)m≤,(2分)∴当m≤时,原方程有实数根;(3分)(2)当m=时,原方程可化为:x2﹣5x+5=0,设方程的两个根分别为x1、x2,则x1+x2=5,x1•x2=5,(4分)∵该矩形外接圆的直径是矩形的对角线AC,如图所示,∴AC====,(5分)∴该矩形外接圆的直径是.(6分)【点评】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握根与系数的关系和进行变形是解题的关键.7.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0,x﹣1=0,x1=﹣,x2=1;(2)∵解不等式①得:x>﹣4,解不等式②得:x≤3,∴不等式组的解集为﹣4<x≤3.【点评】本题考查了解一元二次方程和解一元一次不等式组,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集求出不等式组的解集是解(2)的关键.8.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.9.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.11.【分析】(1)由于关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,可知△>0,据此进行计算即可;(2)利用根与系数的关系得出x1+x2=2k+1,进而得出关于k的方程求出即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△>0,∴(2k+1)2﹣4(k2+1)>0,整理得,4k﹣3>0,解得:k>,故实数k的取值范围为k>;(2)∵方程的两个根分别为x1,x2,∴x1+x2=2k+1=3,解得:k=1,∴原方程为x2﹣3x+2=0,∴x1=1,x2=2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及根与系数的关系.12.【分析】(1)根据一元二次方程x2﹣2x+2k﹣1=0有两个不相等的实数根得到△=(﹣2)2﹣4(2k﹣1)≥0,求出k的取值范围即可;(2)根据根与系数的关系得出方程解答即可.【解答】(1)解:∵原方程有实数根,∴b2﹣4ac≥0∴(﹣2)2﹣4(2k﹣1)≥0∴k≤1(2)∵x1,x2是方程的两根,根据一元二次方程根与系数的关系,得:x1+x2 =2,x1 •x2 =2k﹣1又∵+=x1•x2,∴∴(x1+x2)2﹣2x1 x2 =(x1 •x2)2∴22﹣2(2k﹣1)=(2k﹣1)2解之,得:.经检验,都符合原分式方程的根∵k≤1∴.【点评】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.13.【分析】(1)设2018年甲类芯片的产量为x万块,由题意列出方程,解方程即可;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的熟练为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,得出丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,由题意得出400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),即可得出答案.【解答】解:(1)设2018年甲类芯片的产量为x万块,由题意得:x+2x+(x+2x)+400=2800,解得:x=400;答:2018年甲类芯片的产量为400万块;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,∴丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,则:400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,400(1+t)2+2×400(1+t﹣1)2+8000=28000×(1+10%),整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),∴t=4,∴m%=4,∴m=400;答:丙类芯片2020年的产量为8000万块,m=400.【点评】本题考查了一元二次方程的应用、一元一次方程的应用以及一元二次方程和一元一次方程的解法;弄清数量关系列出方程是解题的关键.14.【分析】(1)观察到方程组两方程相加,左边出现3(x+y),把x+y作为一个整体来计算.(2)根据韦达定理求出用m表示x1+x2和x1x2的值,利用完全平方公式的变形得到x12+x22的式子,进而得到关于m的方程.【解答】解:(1)根据题意把方程组两式相加得:2x+y+x+2y=m+3m+13(x+y)=4m+1∴x+y=又∵x+y=5∴解得:m=(2)∵a=1,b=﹣(m﹣1),c=﹣m∴△=[﹣(m﹣1)]2﹣4•(﹣m)=m2﹣2m+1+4m=m2+2m+1=(m+1)2≥0∴无论m为何值时,方程一定有实数根.∵x1+x2==m﹣1,x1x2==﹣m∴x12+x22=(x1+x2)2﹣2x1x2=(m﹣1)2+2m∵x12+x22=5∴(m﹣1)2+2m=5解得:m=±2当m=2时,==当m=﹣2时,==∴的值为或【点评】本题考查了解二元一次方程,一元二次方程根与系数的关系,完全平方公式,分式的加减.15.【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的两个实数根”是解题的关键.16.【分析】(1)求出△=[﹣(m+3)]2﹣4(m+2)=(m+1)2,再判断即可;(2)求出方程的根是±1,再代入方程,即可求出答案.)【解答】(1)证明:x2﹣(m+3)x+m+2=0,△=[﹣(m+3)]2﹣4(m+2)=(m+1)2≥0,所以无论实数m取得何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于1,∴此根是±1,当根是1时,代入得:1﹣(m+3)+m+2=0,即0=0,此时m为任何数;当根是﹣1时,1+(m+3)+m+2=0,解得:m=﹣3.【点评】本题考查了解一元二次方程和根的判别式,能熟记根的判别式的内容是解此题的关键.17.【分析】(1)利用配方法解方程;(2)分别解两个一次不等式得到x>﹣2和x≤2,然后根据确定不等式组的解集.【解答】解:(1)x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2,x﹣1=,所以x1=1+,x2=1﹣;(2)解①得x>﹣2,解②得x≤2,所以不等式组的解集为﹣2<x≤2.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了解一元一次不等式组.18.【分析】(1)根据方程的系数结合根的判别式,即可得出△=1>0,由此即可证出方程总有两个不相等的实数根;(2)先计算出△并且设△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4=n2(n为整数),整系数方程有有理根的条件是△为完全平方数.解不定方程,讨论m的存在性.变形为(2m﹣1)2﹣n2=4,(2m﹣1﹣n)(2m﹣1+n)=﹣4,利用m,n都为整数进行讨论即可.【解答】(1)证明:①当2m﹣1=0即m=时,此时方程是一元一次方程,其根为x=,符合题意;②当2m﹣1≠0即m≠时,△=[﹣(2m+1)]2﹣4(2m﹣1)=(2m﹣1)2+4>0,∴当m≠时,方程总有两个不相等的实数根;综上所述,不论m为何值,方程必有实数根.(2)当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.理由如下:①当m为整数时,假设关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0有有理根,则要△=b2﹣4ac为完全平方数,而△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4,设△=n2(n为整数),即(2m﹣1)2+4=n2(n为整数),所以有(2m﹣1﹣n)(2m﹣1+n)=﹣4,∵2m﹣1与n的奇偶性相同,并且m、n都是整数,所以或,解得m=,②2m﹣1=0时,m=(不合题意舍去).所以当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.【点评】考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式为△=b2﹣4ac.△=b2﹣4ac为完全平方数是方程的根为有理数的充要条件.同时考查了不定方程特殊解的求法.19.【分析】(1)设养鸡场的宽为x米,则长为(33﹣2x)米,利用厂房的面积公式结合养鸡场的面积为130m2,即可得出关于x的一元二次方程,解之即可得出结论;(2)由(1)的结论结合10≤a<18,可得出长方形的长为13米宽为10米.【解答】解:(1)设养鸡场的宽为x米,则长为(33﹣2x)米,依题意,得:(33﹣2x)x=130,解得:x1=6.5,x2=10,∴33﹣2x=20或13.答:养鸡场的长为20米宽为6.5米或长为13米宽为10米.(2)∵10≤a<18,∴33﹣2x=13,∴养鸡场的长为13米宽为10米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.【分析】(1)设平均每年增加的百分率为x,根据该公式2019年及2021年赞助矿泉水的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据2022年该公司赞助的矿泉水数量=2021年该公司赞助的矿泉水数量×(1+增长率),即可求出结论.【解答】解:(1)设平均每年增加的百分率为x,依题意,得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:平均每年增加的百分率为20%.(2)7200×(1+20%)=8640(瓶).答:预测2022年该公司赞助矿泉水8640瓶.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。
九年级上册数学解一元二次方程配方法、公式法同步练习及答案

九年级上册数学解一元二次方程配方法、公式法同步练习及答案1.方程(x -2)2=9的解是( )A .x 1=5,x 2=-1B .x 1=-5,x 2=1C .x 1=11,x 2=-7D .x 1=-11,x 2=72.把方程x 2-8x +3=0化成(x +m )2=n 的形式,则m ,n 的值是( )A .4,13B .-4,19C .-4,13D .4,193.方程x 2-x -2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .不能确定4.方程x 2+x -1=0的根是( )A .1- 5 B.-1+52C .-1+ 5 D.-1±525.(2012年广东广州)已知关于x 的一元二次方程x 2-2 3+k =0有两个相等的实数根,则k 值为________.6.用配方法解下列方程:(1)x 2+5x -1=0;(2)2x 2-4x -1=0;(3)2x 2+1=3x .7.用公式法解下列方程:(1)x 2-6x -2=0;(2)4y 2+4y -1=-10-8y .8.阅读下面的材料并解答后面的问题:小力:能求出x 2+4x +3的最小值吗?如果能,其最小值是多少?小强:能.求解过程如下:因为x 2+4x +3=x 2+4x +4-4+3=(x 2+4x +4)+(-4+3)=(x +2)2-1,而(x +2)2≥0,所以x 2+4x +3的最小值是-1.问题:(1)小强的求解过程正确吗?(2)你能否求出x 2-8x +5的最小值?如果能,写出你的求解过程.9.已知关于x 的一元二次方程x 2-mx -2=0.(1)若x =-1是这个方程的一个根,求m 的值和方程的另一根;(2)对于任意的实数m ,判断方程的根的情况,并说明理由.10.已知关于x 的方程x 2-2x -2n =0有两个不相等的实数根.(1)求n 的取值范围;(2)若n <5,且方程的两个实数根都是整数,求n 的值.答案1.A 2.C 3.B 4.D 5.D6.解:(1)移项,得x 2+5x =1.配方,得x 2+5x +254=294,⎝⎛⎭⎫x +522=294. ∴x +52=±292. ∴x 1=29-52,x 2=-29-52. (2)系数化为1,得x 2-2x -12=0.移项,得x 2-2x =12. 配方,得x 2-2x +1=32,(x -1)2=32. ∴x -1=±62.∴x 1=6+22,x 2=-6+22.(3)移项,得2x 2-3x =-1.系数化为1,得x 2-32x =-12.配方,得x 2-32x +⎝⎛⎭⎫342=-12+⎝⎛⎭⎫342,⎝⎛⎭⎫x -342=116,x -34=±14,∴x 1=1,x 2=12. 7.解:(1)∵a =1,b =-6,c =-2,∴b 2-4ac =(-6)2-4×1×(-2)=44>0.∴x =6±442=6±2 112=3±11.∴x 1=3+11,x 2=3-11.(2)原方程可化为4y 2+12y +9=0.∵a =4,b =12,c =9,∴b 2-4ac =122-4×4×9=0.∴y =-12±02×4=-32.∴y 1=y 2=-32. 8.解:(1)正确.(2)能.过程如下:x 2-8x +5=x 2-8x +16-16+5=(x -4)2-11,∵(x -4)2≥0,∴x 2-8x +5的最小值是-11.9.解:(1)因为x =-1是方程的一个根,所以1+m -2=0,解得m =1.方程为x 2-x -2=0,解得x 1=-1,x 2=2.所以方程的另一根为x =2.(2)b 2-4ac =m 2+8,因为对于任意实数m ,m 2≥0,所以m 2+8>0,所以对于任意的实数m ,方程有两个不相等的实数根.10.解:(1)∵关于x 的方程x 2-2x -2n =0,a =1,b =-2,c =-2n ,∴Δ=b 2-4ac =4+8n >0.解得n >-12. (2)由原方程,得(x -1)2=2n +1.∴x =1±2n +1.∵方程的两个实数根都是整数,且n <5,∴0<2n +1<11,且2n +1是完全平方形式.∴2n +1=1,2n +1=4或2n +1=9.解得,n =0,n =1.5或n =4.。
(完整版)初中数学用因式分解法解一元二次方程及答案
初中数学用因式分解法解一元二次方程一.选择题(共7小题)1.(2013秋?广州校级期中)用因式分解法解一元二次方程x (x- 1) -2 (1-x) =0,正确的步骤是()A .(x+1 )(x+2) =0 B. (x+1 )(x-2) =0C. (x-1)(x- 2)=0D. (x-1)(x+2)=02.(2012春?萧山区校级期中)解一元二次方程2x2+5x=0的最佳解法是()A.因式分解法B.开平方法C.配方法D.公式法3,解一元二次方程(y+2) 2-2 (y+2) - 3=0时,最简单的方法是()A.直接开平方法B.因式分解法C.配方法D.公式法4.(2015?东西湖区校级模拟)一元二次方A. 0B. 25.(2014?平顶山二模)一元二次方程一A . 3 B. - 36.(2011春?招远市期中)一元二次方程A. c4B. cv0 W x2 - 2x=0 的解是()C. 0, - 2D. 0, 2x2=3x的解是()C. 3, 0 D, - 3, 0x2+c=0实数解的条件是()C. c> 0D. c用7.(2011?北京模^若x= - 1是一元二次方程x2- ax=0的一个解,则a的值()A . - 1 B. 1 C. 0 D. 土二.填空题(共3小题)8.(2012秋?开县校级月考)一元二次方程3x2 -4x-2=0的解是.9.(2012?铜仁地区)一元二次方程x2-2x-3=0的解是.10.(2014秋?禹州市期中)一元二次方程(4-2x) 2—36=0的解是三.解答题(共10小题)11.(2006秋?阜宁县校级月考)用指定的方法解下列一元二次方程:(1)2x2- 4x+1=0 (配方法);(2)3x (x-1) =2-2x (因式分解法);(3)x2-x-3=0 (公式法).12.用因式分解法解下列关于x的一元二次方程.11) x2+x - k2x=0(2) x2-2mx+m 2-n2=0 .13. (2008?温州)(1)计算:曲-(b-1)(2)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.① x2—3x+1=0;②(x-1) 2=3;③ x2— 3x=0;④ x2-2x=4.14.用因式分解法解下列一元二次方程:(1)5x2=\/2x(2) 4 (2x+3) - ( 2x+3) 2=0(3)(x-2) 2= (2x+3) 2(4)一(x+1 ) 2=A (x- 1) 2.4 g15.因式分解法解方程:3x2-12x=-12.16.用因式分解法解方程:x2-9x+18=0 .17.用因式分解法解方程:12x2+x-6=0.18. (2013秋?黄陂区校级月考)用因式分解法解方程: 3 (x-5)2=2 (5-x)19. (2013秋?富顺县校级期中)用因式分解法解方程(x+3)2=5 (x+3)(3t-1 ) 2t C21-3) 20.因式分解法解一元二次方程. +1 —初中数学用因式分解法解一元二次方程参考答案与试题解析一.选择题(共7 小题)1.(2013秋?广州校级期中)用因式分解法解一元二次方程x (x- 1) -2 (1-x) =0,正确的步骤是( )A. (x+1 ) (x+2) =0B. (x+1 ) (x-2) =0C. (x-1)(x- 2)=0D. (x-1)(x+2)=0考点:解一元二次方程-因式分解法.专题:计算题.分析:将方程左边第二项提取-1变形后,提取公因式化为积的形式,即可得到结果.解答:解:方程x (x — 1) — 2 (1 — x) =0,变形得:x (x-1) +2 (x- 1) =0,分解因式得:(x- 1) (x+2) =0, 故选D点评:此题考查了解一元二次方程-因式分解法,熟练掌握此解法是解本题的关键.2.( 2012 春?萧山区校级期中)解一元二次方程2x2+5x=0 的最佳解法是( )A.因式分解法B.开平方法C.配方法D.公式法考点:解一元二次方程-因式分解法.专题:计算题.分析:方程左边缺少常数项,右边为0,左边可以提公因式x,运用因式分解法解方程.解答:解:方程2x2+5x=0左边可提公因式x,分解为两个一次因式的积,而右边为0,运用因式分解法.故选A.点评:本题考查了解一元二次方程的解法的运用.解方程时,要根据方程左右两边的特点,合理地选择解法,可使运算简便.3,解一元二次方程(y+2) 2-2 (y+2) - 3=0时,最简单的方法是( )A.直接开平方法B.因式分解法C.配方法D.公式法考点:解一元二次方程-因式分解法.分析:此题考查了数学思想中白^整体思想,把( y+2)看做一个整体,设(y+2)为x,则原方程可变为x2-2x-3=0 ,可以发现采用因式分解法最简单.解答:解:设( y+2) =x原方程可变为x2 - 2x - 3=0,(x - 3) (x+1 ) =0 采用因式分解法最简单.故选B点评:此题考查了数学思想中的整体思想,也就是换元思想,解题的关键是要充分理解一元二次方程各种解法的应用条件.4.(2015?东西湖区校级模拟)一元二次方程x2-2x=0的解是()A . 0 B. 2 C. 0, - 2 D. 0, 2考点:解一元二次方程-因式分解法.分析:先提公因式x,然后根据两式相乘值为0,这两式中至少有一式值为0 .”进行求解. 解答:解:原方程化为:x(X-2) =0,解得x i=0, x2=2.故选D.点评:本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0 后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0 的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.5.(2014?平顶山二模)一元二次方程- x2=3x的解是()A. 3B. -3C. 3, 0 D, - 3, 0考点:解一元二次方程-因式分解法.专题:计算题.分析:方程移项后,右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0 转化为两个一元一次方程来求解.解答:解:方程变形得:x2+3x=0,即x (x+3) =0,解得:x=0或x= - 3,故选D点评:此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.6.(2011 春?招远市期中)一元二次方程x2+c=0 实数解的条件是()A. c 码B. cv 0C. c> 0D. c 不考点:根的判别式.专题:计算题.分析:由一元二次方程有实数根,得到根的判别式大于等于0,列出关于c的不等式,求出不等式的解集即可得到 c 的范围.解答:解:: 一元二次方程x2+c=0有实数解,2△ =b - 4ac= - 4c刃,解得:c旬.故选A点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.7.(2011?北京模^若x= - 1是一元二次方程x2- ax=0的一个解,则a的值()A.TB. 1C. 0D. 土考点:一元二次方程的解.分析:由方程的解的定义,将 x=- 1代入方程,即可求得 a 的值解答:解:- 1是关于x 的方程:x 2-ax=0的一个解,,1+a=0,解得a= - 1,故选A.点评:本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题. 二.填空题(共3小题)8. (2012秋?开县校级月考)一元二次方程考点:解一元二次方程-公式法.分析:利用公式法解此一元二次方程的知识,即可求得答案. 解答:解:--- a=3, b=—4, c= - 2,△ =b 2-4ac=(- 4) 2-4X3X ( -2) =40,.|4±y40j2±Vi0x=2a2X3 3故答案为:士屈. 3点评:此题考查了公式法解一元二次方程的知识.此题难度不大,注意熟记公式是关键.9. ( 2012?铜仁地区)一元二次方程 x2-2x - 3=0的解是 x 』=3. xg= - 1考点:解一元二次方程-因式分解法. 专题:计算题;压轴题.分析:根据方程的解x 1x 2=-3,x 1+x 2=2可将方程进行分解,得出两式相乘的形式,再根据 两 式相乘值为0,这两式中至少有一式值为 0”来解题.解答:解:原方程可化为:(x-3) (x+1) =0,x — 3=0 或 x+1=0 , x 1=3, x 2= — 1 .点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方 法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因 式分解法.10. (2014秋?禹州市期中)一元二次方程( 4-2x ) 2 — 36=0的解是 x j = — 1 : x 2=5 .考点:解一元二次方程-直接开平方法.分析:先移项,写成(x+a ) 2=b 的形式,然后利用数的开方解答. 解答:解:移项得,(4- 2x ) 2=36,开方得,4 - 2x= =6, 解得 x 1= - 1, x 2=5. 故答案为x 1= - 1, x 2=5.点评:本题考查了解一元二次方程-直接开平方法,注意:(1)用直接开方法求一元二次方程的解的类型有: x 2=a (a 涮);ax 2=b (a, b 同号且a^0); (x+a ) 2=b (b 用);a (x+b ) 2=c (a, c 同号且a 加).法则:要把方程化为 左3x2 - 4x- 2=0 的解是 2 土 力°一3平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.三.解答题(共10小题)11. (2006秋?阜宁县校级月考)用指定的方法解下列一元二次方程:(1) 2x 2-4x+1=0 (配方法);(2) 3x (x-1) =2-2x (因式分解法);(3) x 2-x-3=0 (公式法).考点:解一元二次方程-配方法;解一元二次方程-公式法;解一元二次方程 -因式分解法. 专题:计算题.分析:(1)用配方法,用配方法解方程,首先二次项系数化为1,移项,把常数项移到等号的右边,然后在方程的左右两边同时加上一次项系数的一半,即可使左边是完全平方 式,右边是常数,直接开方即可求解;(2)用因式分解法,用提公因式法解方程,方程左边可以提取公因式x-1,即可分解,转化为两个式子的积是0的形式,从而转化为两个一元一次方程求解;(3)利用公式法即可求解.解答:解:(1) 2x2 - 4x+1=0x2- 2x+—=0 2 (x T) 2=_!.…也■ - x1=1+——, x2=1 ---;2 2(2) 3x ( x T ) =2 - 2x 3x (x - 1) +2 (x- 1) =0 (x- 1) (3x+2) =0-2• - x 1=1 , x 2=—;J 本题考查了解一元二次方程的方法,因式分解法是解一元二次方程的一种简便方法, 要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任 何一元二次方程.12.用因式分解法解下列关于 x 的一元二次方程.(1) x 2+x - k 2x=0(2) x 2-2mx+m 2-n 2=0 .考点:解一元二次方程-因式分解法.专题:计算题.x=(3) x 2-x- 3=01 ±、氐 x 1 = 2----- ,x2= --- --2 2 点评:分析:两方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解答:解:(1)分解因式得:x (x+1 - k2) =0,解得:X1=0, x2=k2_ 1;(2)分解因式得:(x-m+n)(x-m-n) =0,解得:x i=m-n, x2=m+n .点评:此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.13. (2008?温州)(1)计算:展-(例-1)口+|-1|;(2)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.① x2—3x+1=0;②(x-1)2=3;③ x2— 3x=0 ;④ x2-2x=4.考点:实数的运算;解一元二次方程 -直接开平方法;解一元二次方程 -配方法;解一元二次方程-公式法;解一元二次方程-因式分解法.专题:计算题.分析:(1)本题涉及零指数哥还有绝对值,解答时要注意它们的性质.(2)①x2- 3x+1=0采用公式法;②(x-1) 2=3采用直接开平方法;③x2- 3x=0采用因式分解法;④x2- 2x=4采用配方法.解答:解:(1)场-[炳-1)(2)① x2- 3x+1=0 ,刎/日抖而Vs解得町二丁厂,¥.2二一^;②(xT) 2=3,x - 1=V^或x -1= - Vs解得x1 = 1 + \!, 3,x2=1 h/s③ x2-3x=0,x (x - 3) =0解得x1=0, x2=3;④ x2-2x=4,即x2 - 2x - 4=02- 2x=4x即x2- 2x+1=5(x T) 2=5解得x1=l-V^0二计听.点评:本题考查实数的综合运算能力,解决此类题目的关键熟记零指数哥和绝对值的运 算.解一元二次方程时要注意选择适宜的解题方法.14.用因式分解法解下列一元二次方程: (1) 5x 2=V2x(2) 4 (2x+3) - ( 2x+3) 2=0 (3) (x- 2) 2= (2x+3) 2(4)一(x+1 ) 2=1 (x- 1) 2.4 9考点:解一元二次方程-因式分解法. 分析:(1)移项后提公因式即可;(1) 移项后因式分解即可; (2) 移项后因式分解即可; (3) 直接开平方即可解答.解答:解:(1) 5x 2=/2x ,移项得 5x 2 - J^x=0 ,提公因式得x (5x-=0, 解得 x 1=0 x 2=Y2.5(4) 4 (2x+3) - ( 2x+3) 2=0,提公因式得,(2x+3) [4- (2x+3) ]=0, 解得,2x+3=0 , 1 - 2x=0 ,(5) (x — 2) 2= (2x+3) 2,移项得,(x-2) 2- ( 2x+3) 2=0,因式分解得,(x- 2 - 2x - 3) (x-2+2x+3) =0 , 则—x — 5=0, 3x+1=0 , 解得,x 1= - 5, x 2=- ';(6) — (x+1) 2」(x- 1) 2,4 9直接开平方得 J (x+1) =W(x-1), £ J解得x 1= - 5,点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方 法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.15.因式分解法解方程: 3x 2-12x=-12.则[(x+1) 2=4 (xT),(x+1)考点:解一元二次方程-因式分解法.分析:先移项,再两边都除以3,分解因式,即可得出两个一元一次方程,求出方程的解即可. 解答:解:3x2- 12x= -12,移项得:3x2- 12x+12=0 ,2- 4x+4=0 ,x(x-2) (x-2) =0,x-2=0, x-2=0, x i=x2=2.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元- 次方程,题目比较好,难度适中.16.用因式分解法解方程:x2-9x+18=0 .考点:解一元二次方程-因式分解法.分析:分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:x2 - 9x+18=0 ,(x - 3) (x - 6) =0,x — 3=0 , x — 6=0, x1=3, x2=6.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元- 次方程.17.用因式分解法解方程:12x2+x-6=0.考点:解一元二次方程-因式分解法.分析:分解因式,即得出两个一元一次方程,求出方程的解即可.解答:解:分解因式得:(3x-2) (4x+3) =0,3x - 2=0, 4x+3=0 ,点评:本题考查了解一元二次方程的应用, 解此题的关键是能把一元二次方程转化成一元次方程.18.(2013秋?黄陂区校级月考)用因式分解法解方程: 3 (x-5) 2=2 (5-x)考点:解一元二次方程-因式分解法.专题:因式分解.分析:先移项,然后提公因式,这样转化为两个一元一次方程,解一元一次方程即可.解答:解:移项,得3 (x-5) 2+2 (x-5) =0,(x-5) (3x-13) =0,•• x - 5=0 或3x - 13=0 ,所以x1=5, x2=-^y.第11页(共11页)点评:本题考查了利用因式分解法把一元二次方程转化为两个一元一次方程求解的能力.要熟练掌握因式分解的方法. 19. (2013秋?富顺县校级期中)用因式分解法解方程(x+3) 2=5 (x+3)考点:实数范围内分解因式.分析:利用因式分解法进行解方程得出即可.解答:解:(x+3) 2-5 (x+3) =0, (x+3) [ (x+3) — 5]=0,(x+3) =0 或(x+3) - 5=0,解得:x i = - 3, x 2=2.点评:此题主要考查了因式分解法解一元二次方程,正确分解因式是解题关键.考点:解一元二次方程-因式分解法.分析:首先移项,然后利用平方差公式使方程的左边进行因式分解,再进行去分母,最后解 两个一元一次方程即可."解:「『—况”、t (2L3) 5 52 .(t+3)2 (3fl ) 2 2?-3t-2 .. ------- = , 5 5 2(t+3- (t+3+3t-l) (2t+lJ (t-2)-4 (t-2) C2t11)(2t+D (t-2? - 8 (t-2) (2t+1) =5 (t —2) (2t+1), 13 (t —2) (2t+1) =0,. . t — 2=0 或 2t+1=0,t 1=2 , t 2=一点评:本题主要考查了因式分解法解一元二次方程的知识,解答本题的关键是熟练掌握平方差公式的应用,此题难度不大. 20.因式分解法解一元二次方程.32+1—(孕-1)二9” 5 52。
专题21.2.4 因式分解法解一元二次方程-2020-2021学年九年级数学上册(人教版)(解析)
第二十一章 一元二次方程因式分解法解一元二次方程一、基础巩固1、一元二次方程x 2﹣3x =0的两个根是( )A .0和﹣3B .0和3C .1和3D .1和﹣3【答案】B【解析】将一元二次方程因式分解得:x (x —3)=0解得:x 1=0,x 2=3故本题选B 。
【分析】考查因式分解法。
2、方程5x (x+3)=3(x+3)的解为( )A 、x 1= ,x 2=3B 、x=C 、x 1=— ,x 2=—3D 、x 1=,x 2=—3 【答案】D【解析】将方程进行移项:5x (x+3)—3(x+3)=0(x+3)(5x —3)=0解得:x 1=—3,x 2= 故本题选D 。
【分析】本题考查因式分解法。
将方程移项后发现可以因式分解求方程的解。
3、关于代数式﹣x 2+4x ﹣2的取值,下列说法正确的是( )A .有最小值﹣2B .有最大值2C .有最大值﹣6D .恒小于零【答案】B【解析】∵﹣x 2+4x ﹣2=﹣(x 2﹣4x +4)+4﹣2 53 53 535353=﹣(x﹣2)2+2,又∵(x﹣2)2≥0,∴(x﹣2)2≤0,∴﹣(x﹣2)2+2≤2,∴代数式﹣x2+4x﹣2有最大值2.故选:B.【分析】先利用配方法将代数式﹣x2+4x﹣2转化为完全平方与常数的和的形式,然后根据非负数的性质进行解答.4、一元二次方程x²+5x=0的较大的一个根设为m,x²—3x+2=0较小的根设为n,则m+n的值为()A、1B、2C、—4D、4【答案】A【解析】第一个一元二次方程解得:x1=0,x2=—5,故m=0;第二个一元二次方程解得:x1=1,x2=2,故n=1;∴m+n=1,即m+n的值是1。
【分析】考查因式分解法,把方程解出来找出m、n值。
5、已知三角形的两边长为4和7,第三边的长是方程x²—16x+55=0的一个根,则第三边长是()A、5B、5或11C、6D、11【答案】【解析】解此一元二次方程得:x1=5,x2=11∵4+7==11∴第三边长只能是5故本题选A。
人教版初中数学九年级上册同步测试 第21章 一元二次方程(共17页)及答案【新编辑】
第二十一章 一元二次方程测试1 一元二次方程的有关概念及直接开平方法学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题. 2.掌握一元二次方程的基本解法——直接开平方法.课堂学习检测一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______.4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______. 5.若x x m -m +-222)(-3=0是关于x 的一元二次方程,则m 的值是______. 6.方程y 2-12=0的根是______. 二、选择题7.下列方程中,一元二次方程的个数为( ).(1)2x 2-3=0 (2)x 2+y 2=5 (3)542=-x (4)2122=+xxA .1个B .2个C .3个D .4个8.在方程:3x 2-5x =0,,5312+=+x x 7x 2-6xy +y 2=0,322,052222--=+++xx x x ax =0, 3x 2-3x =3x 2-1中必是一元二次方程的有( ). A .2个 B .3个 C .4个 D .5个 9.x 2-16=0的根是( ). A .只有4 B .只有-4 C .±4 D .±8 10.3x 2+27=0的根是( ).A .x 1=3,x 2=-3B .x =3C .无实数根D .以上均不正确 三、解答题(用直接开平方法解一元二次方程) 11.2y 2=8. 12.2(x +3)2-4=0.13..25)1(412=+x 14.(2x +1)2=(x -1)2.综合、运用、诊断一、填空题15.把方程x x x +=-2232化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______. 17.若方程2kx 2+x -k =0有一个根是-1,则k 的值为______. 二、选择题18.下列方程:(x +1)(x -2)=3,x 2+y +4=0,(x -1)2-x (x +1)=x ,,01=+xx,5)3(21,42122=+=-+x x x 其中是一元二次方程的有( ).A .2个B .3个C .4个D .5个19.形如ax 2+bx +c =0的方程是否是一元二次方程的一般形式,下列说法正确的是( ).A .a 是任意实数B .与b ,c 的值有关C .与a 的值有关D .与a 的符号有关20.如果21=x 是关于x 的方程2x 2+3ax -2a =0的根,那么关于y 的方程y 2-3=a 的解是( ).A .5±B .±1C .±2D .2± 21.关于x 的一元二次方程(x -k )2+k =0,当k >0时的解为( ).A .k k +B .k k -C .k k -±D .无实数解 三、解答题(用直接开平方法解下列方程) 22.(3x -2)(3x +2)=8. 23.(5-2x )2=9(x +3)2.24..063)4(22=--x25.(x -m )2=n .(n 为正数)拓广、探究、思考26.若关于x 的方程(k +1)x 2-(k -2)x -5+k =0只有唯一的一个解,则k =______,此方程的解为______.27.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为( ).A .2或-2B .2C .-2D .以上都不正确 28.已知关于x 的一元二次方程(m -1)x 2+2x +m 2-1=0有一个根是0,求m 的值.29.三角形的三边长分别是整数值2cm ,5cm ,k cm ,且k 满足一元二次方程2k 2-9k -5=0,求此三角形的周长.测试2 配方法与公式法解一元二次方程学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程.课堂学习检测一、填空题1.+-x x 82_________=(x -__________)2.2.x x 232-+_________=(x -_________)2.3.+-px x 2_________=(x -_________)2.4.x abx -2+_________=(x -_________)2.5.关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根是______.6.一元二次方程(2x +1)2-(x -4)(2x -1)=3x 中的二次项系数是______,一次项系数是______,常数项是______. 二、选择题7.用配方法解方程01322=--x x 应该先变形为( ).A .98)31(2=-x B .98)31(2-=-xC .910)31(2=-x D .0)32(2=-x8.用配方法解方程x 2+2x =8的解为( ). A .x 1=4,x 2=-2 B .x 1=-10,x 2=8C .x 1=10,x 2=-8D .x 1=-4,x 2=29.用公式法解一元二次方程x x 2412=-,正确的应是( ). A .252±-=x B .252±=xC .251±=xD .231±=x10.方程mx 2-4x +1=0(m <0)的根是( ). A .41 B .m m-±42 C .mm -±422 D .mm m -±42 三、解答题(用配方法解一元二次方程) 11.x 2-2x -1=0. 12.y 2-6y +6=0.四、解答题(用公式法解一元二次方程)13.x 2+4x -3=0. 14..03232=--x x五、解方程(自选方法解一元二次方程) 15.x 2+4x =-3.16.5x 2+4x =1.综合、运用、诊断一、填空题17.将方程x x x 32332-=++化为标准形式是______________________,其中a =______,b =______,c =______.18.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______. 二、选择题19.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为( ).A .-2B .-4C .-6D .2或6 20.4x 2+49y 2配成完全平方式应加上( ).A .14xyB .-14xyC .±28xyD .0 21.关于x 的一元二次方程ax a x 32222=+的两根应为( ).A .22a±-B .a 2,a 22C .422a± D .a 2±三、解答题(用配方法解一元二次方程) 22.3x 2-4x =2. 23.x 2+2mx =n .(n +m 2≥0).四、解答题(用公式法解一元二次方程)24.2x -1=-2x 2. 25.x x 32132=+26.2(x -1)2-(x +1)(1-x )=(x +2)2.拓广、探究、思考27.解关于x 的方程:x 2+mx +2=mx 2+3x .(其中m ≠1)28.用配方法说明:无论x 取何值,代数式x 2-4x +5的值总大于0,再求出当x 取何值时,代数式x 2-4x +5的值最小?最小值是多少?测试3 一元二次方程根的判别式学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测一、填空题1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式为∆=b 2-4ac , (1)当b 2-4ac ______0时,方程有两个不相等的实数根; (2)当b 2-4ac ______0时,方程有两个相等的实数根; (3)当b 2-4ac ______0时,方程没有实数根.2.若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m =______. 3.若关于x 的方程x 2-2x -k +1=0有两个实数根,则k ______. 4.若方程(x -m )2=m +m 2的根的判别式的值为0,则m =______. 二、选择题5.方程x 2-3x =4根的判别式的值是( ). A .-7 B .25 C .±5 D .56.一元二次方程ax 2+bx +c =0有两个实数根,则根的判别式的值应是( ). A .正数 B .负数 C .非负数 D .零 7.下列方程中有两个相等实数根的是( ). A .7x 2-x -1=0 B .9x 2=4(3x -1) C .x 2+7x +15=0D .02322=--x x8.方程03322=++x x 有( ). A .有两个不等实根 B .有两个相等的有理根 C .无实根 D .有两个相等的无理根 三、解答题9.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.10.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值.11.求证:不论m 取任何实数,方程02)1(2=++-mx m x 都有两个不相等的实根.综合、运用、诊断一、选择题12.方程ax 2+bx +c =0(a ≠0)根的判别式是( ).A .242ac b b -±-B .ac b 42-C .b 2-4acD .abc13.若关于x 的方程(x +1)2=1-k 没有实根,则k 的取值范围是( ).A .k <1B .k <-1C .k ≥1D .k >1 14.若关于x 的方程3kx 2+12x +k +1=0有两个相等的实根,则k 的值为( ).A .-4B .3C .-4或3D .21或32-15.若关于x 的一元二次方程(m -1)x 2+2mx +m +3=0有两个不等的实根,则m 的取值范围是( ).A .23<m B .23<m 且m ≠1C .23≤m 且m ≠1D .23>m16.如果关于x 的二次方程a (1+x 2)+2bx =c (1-x 2)有两个相等的实根,那么以正数a ,b ,c 为边长的三角形是( ). A .锐角三角形 B .钝角三角形 C .直角三角形 D .任意三角形 二、解答题17.已知方程mx 2+mx +5=m 有相等的两实根,求方程的解.18.求证:不论k 取任何值,方程(k 2+1)x 2-2kx +(k 2+4)=0都没有实根.19.如果关于x 的一元二次方程2x (ax -4)-x 2+6=0没有实数根,求a 的最小整数值.20.已知方程x 2+2x -m +1=0没有实根,求证:方程x 2+mx =1-2m 一定有两个不相等的实根.拓广、探究、思考21.若a ,b ,c ,d 都是实数,且ab =2(c +d ),求证:关于x 的方程x 2+ax +c =0,x 2+bx +d =0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根) 1.x (x -3)=0.______ 2.(2x -7)(x +2)=0.______ 3.3x 2=2x .______ 4.x 2+6x +9=0.______ 5..03222=-x x ______ 6..)21()21(2x x -=+______ 7.(x -1)2-2(x -1)=0.______. 8.(x -1)2-2(x -1)=-1.______ 二、选择题9.方程(x -a )(x +b )=0的两根是( ). A .x 1=a ,x 2=b B .x 1=a ,x 2=-b C .x 1=-a ,x 2=b D .x 1=-a ,x 2=-b 10.下列解方程的过程,正确的是( ).A .x 2=x .两边同除以x ,得x =1.B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0,.1,3221==∴x x 三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程) 11.3x (x -2)=2(x -2). 12..32x x =*13.x 2-3x -28=0. 14.x 2-bx -2b 2=0.*15.(2x -1)2-2(2x -1)=3. *16.2x 2-x -15=0.四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值.综合、运用、诊断一、写出下列一元二次方程的根18.0222=-x x .______________________. 19.(x -2)2=(2x +5)2.______________________. 二、选择题20.方程x (x -2)=2(2-x )的根为( ).A .-2B .2C .±2D .2,2 21.方程(x -1)2=1-x 的根为( ).A .0B .-1和0C .1D .1和022.方程0)43)(21()43(2=--+-x x x 的较小的根为( ).A .43-B .21C .85D .43三、用因式分解法解下列关于x 的方程23..2152x x =- 24.4(x +3)2-(x -2)2=0.25..04222=-+-b a ax x26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0)四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0.(1)求证:当m 取非零实数时,此方程有两个实数根; (2)若此方程有两个整数根,求m 的值.测试5 一元二次方程解法综合训练学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力.课堂学习检测一、填空题(写出下列一元二次方程的根) 1.3(x -1)2-1=0.__________________2.(2x +1)2-2(2x +1)=3.__________________ 3.3x 2-5x +2=0.__________________ 4.x 2-4x -6=0.__________________ 二、选择题5.方程x 2-4x +4=0的根是( ). A .x =2 B .x 1=x 2=2 C .x =4 D .x 1=x 2=4 6.5.27.0512=+x 的根是( ).A .x =3B .x =±3C .x =±9D .3±=x 7.072=-x x 的根是( ). A .77=xB .77,021==x x C .x 1=0,72=x D .7=x 8.(x -1)2=x -1的根是( ). A .x =2 B .x =0或x =1 C .x =1 D .x =1或x =2 三、用适当方法解下列方程 9.6x 2-x -2=0. 10.(x +3)(x -3)=3.11.x 2-2mx +m 2-n 2=0. 12.2a 2x 2-5ax +2=0.(a ≠0)四、解下列方程(先将你选择的最佳解法写在括号中) 13.5x 2=x .(最佳方法:______)14.x 2-2x =224.(最佳方法:______)15.6x 2-2x -3=0.(最佳方法:______)16.6-2x 2=0.(最佳方法:______)17.x 2-15x -16=0.(最佳方法:______)18.4x 2+1=4x .(最佳方法:______)19.(x -1)(x +1)-5x +2=0.(最佳方法:______)综合、运用、诊断一、填空题20.若分式1872+--x x x 的值是0,则x =______.21.关于x 的方程x 2+2ax +a 2-b 2=0的根是____________. 二、选择题22.方程3x 2=0和方程5x 2=6x 的根( ).A .都是x =0B .有一个相同,x =0C .都不相同D .以上都不正确 23.关于x 的方程abx 2-(a 2+b 2)x +ab =0(ab ≠0)的根是( ).A .ba x ab x 2,221== B .b ax a b x ==21,C .0,2221=+=x abb a xD .以上都不正确 三、解下列方程24.(x +1)2+(x +2)2=(x +3)2. 25.(y -5)(y +3)+(y -2)(y +4)=26.26..02322=+-x x 27.kx 2-(k +1)x +1=0.四、解答题28.已知:x 2+3xy -4y 2=0(y ≠0),求yx yx +-的值.29.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)拓广、探究、思考30.若方程3x 2+bx +c =0的解为x 1=1,x 2=-3,则整式3x 2+bx +c 可分解因式为______________________.31.在实数范围内把x 2-2x -1分解因式为____________________. 32.已知一元二次方程ax 2+bx +c =0(a ≠0)中的两根为,24,221aacb b x x -±-=请你计算x 1+x 2=____________,x 1·x 2=____________. 并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______.(2)方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______. (3)若方程x 2-4x +3k =0的一个根为2,则另一根为______,k 为______.(4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系求下列各式的值:①;1121x x + ②;2221x x + ③|x 1-x 2|;④;221221x x x x + ⑤(x 1-2)(x 2-2).测试6 实际问题与一元二次方程学习要求会灵活地应用一元二次方程处理各类实际问题.课堂学习检测一、填空题1.实际问题中常见的基本等量关系。
人教版九年级上册数学因式分解法解一元二次方程同步训练(含答案)
人教版九年级上册数学21.2.3因式分解法解一元二次方程同步训练一、单选题1.一元二次方程230x x -=的解为( )A .x =3B .x =0C .x =0 且x =3D .x =0或x =3 2.一元二次方程2x x =的解为( )A .1x -=B .121x x ==C .120,1x x ==D .120x x == 3.已知三角形的两边长为3和6,第三边的长是方程27120x x -+=的一个根,则这个三角形的周长是( )A .12B .13C .12或13D .15 4.方程(1)(3)0x x +-=的解是( )A .1213x x ==,B .1213x x =-=,C .1242x x ==-,D .1242x x =-=, 5.关于x 的方程x (x ﹣5)=3(x ﹣5)的根是( )A .x =5B .x =﹣5C .x 1=﹣5;x 2=3D .x 1=5;x 2=3 6.若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是( )A .0,2-B .0,0C .2-,2-D .2-,0 7.菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为( )A .40B .16C .16或20D .20 8.若等腰三角形三边的长分别是a ,b ,3,且a ,b 是关于x 的一元二次方程240x x m -+=的两个根,则满足上述条件的m 的值有( )A .1个B .2个C .3个D .3个以上二、填空题9.方程220x x -=的解为___________.10.一元二次方程()25410x x x -=-的根是__________.11.方程22131x x -=-()()的解是_______________. 12.三角形两边的长分别为2和7,第三边的长是方程210160x x -+=的根,则该三角形的周长为______.13.如果(a 2+b 2)2﹣(a 2+b 2)﹣2=0,则a 2+b 2=__.14.一元二次方程()()270x x -+=的根是_________.15.已知关于x 的一元二次方程230x mx m --+=有两个相等的实数根,那么m 的值为_______.16.已知a 、b 是一元二次方程2230x x +-=的两个根,则代数式22a b +的值为______.三、解答题17.用适当的方法解下列方程:(1)2(21)3(21)x x x -=- (2)23557x x -+=18.已知关于x 的一元二次方程x 2−mx +m −2=0.(1)求证:此方程总有两个不相等的实数根;(2)若此方程有一个根是0,求出m 的值和另一个根.19.已知三角形的两边长分别为3和7,第三边长是方程x(x-7)-10(x-7)=0的一个根,求这个三角形的周长.20.如果方程 260--=ax bx 与方程 22150ax bx +-=有一个公共根是3,求 a 、b 的值,并分别求出两个方程的另一个根.参考答案:1.D2.C3.B4.B5.D6.B7.D8.B9.10x=,22x=10.12x=,25 2x=11.11x=,25 2x= 12.1713.214.12x=或27x=-15.2或6-16.1017.(1)11 2x=,21x=-(2)11 3x=-,22x=18.(2)m=2,方程的另一个根是2.19.17.20.a=b=1;该方程的另一个根为-2;该方程的另一个根为-5.答案第1页,共1页。