高三物理一轮复习专题11电磁感应(含高考真题)
物理一轮复习 专题11.2 法拉第电磁感应定律、自感和涡流题精讲深剖

专题11。
2 法拉第电磁感应定律、自感和涡流题(一)真题速递1.(2017新课标Ⅱ 20)20.两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直。
边长为0。
1 m、总电阻为0.005 Ω的正方形导线框abcd位于纸面内,cd边与磁场边界平行,如图(a)所示。
已知导线框一直向右做匀速直线运动,cd边于t=0时刻进入磁场。
线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是A.磁感应强度的大小为0。
5 TB.导线框运动的速度的大小为0。
5m/sC.磁感应强度的方向垂直于纸面向外D.在t=0。
4 s至t=0。
6 s这段时间内,导线框所受的安培力大小为0。
1 N【答案】BC【名师点睛】此题是关于线圈过磁场的问题;关键是能通过给出的E—t图像中获取信息,得到线圈在磁场中的运动情况,结合法拉第电磁感应定律及楞次定律进行解答。
此题意在考查学生基本规律的运用能力以及从图像中获取信息的能力.2.(2017天津卷,3)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R。
金属棒ab与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下.现使磁感应强度随时间均匀减小,ab 始终保持静止,下列说法正确的是A.ab中的感应电流方向由b到aB.ab中的感应电流逐渐减小C.ab所受的安培力保持不变D.ab所受的静摩擦力逐渐减小【答案】D【名师点睛】本题应从电磁感应现象入手,熟练应用法拉第电磁感应定律和楞次定律。
3.(2017海南,10)(多选)如图,空间中存在一匀强磁场区域,磁场方向与竖直面(纸面)垂直,磁场的上、下边界(虚线)均为水平面;纸面内磁场上方有一个正方形导线框abcd,其上、下两边均为磁场边界平行,边长小于磁场上、下边界的间距.若线框自由下落,从ab边进入磁场时开始,直至ab边到达磁场下边界为止,线框下落的速度大小可能A.始终减小 B.始终不变 C.始终增加 D.先减小后增加【答案】CD【解析】导线框开始做自由落体运动,ab边以一定的速度进入磁场,ab边切割磁场产生感应电流,根据左手定则可知ab边受到向上的安培力,当安培力大于重力时,线框做减速运动,当线框完全进入磁场后,线框不产生感应电流,此时只受重力,做加速运动,故先减速后加速运动,故A错误、D正确;当ab边进入磁场后安培力等于重力时,线框做匀速运动,当线框完全进入磁场后,线框不产生感应电流,此时只受重力,做加速运动,故先匀速后加速运动,故A错误;当ab边进入磁场后安培力小于重力时,线框做加速运动,当线框完全进入磁场后,线框不产生感应电流,此时只受重力,做加速增大的加速运动,故加速运动,故C正确;4.(2017海南,13)如图,两光滑平行金属导轨置于水平面(纸面)内,轨间距为l,左端连有阻值为R的电阻。
2025年高考人教版物理一轮复习专题训练—法拉第电磁感应定律自感和涡流 附答案解析

2025年⾼考⼈教版物理⼀轮复习专题训练—法拉第电磁感应定律、⾃感和涡流(附答案解析)1.(2023·北京卷·5)如图所⽰,L是⾃感系数很⼤、电阻很⼩的线圈,P、Q是两个相同的⼩灯泡,开始时,开关S处于闭合状态,P灯微亮,Q灯正常发光,断开开关( )A.P与Q同时熄灭B.P⽐Q先熄灭C.Q闪亮后再熄灭D.P闪亮后再熄灭2.(2023·江苏卷·8)如图所⽰,圆形区域内有垂直纸⾯向⾥的匀强磁场,OC导体棒的O端位于圆⼼,棒的中点A位于磁场区域的边缘。
现使导体棒绕O点在纸⾯内逆时针转动。
O、A、C点电势分别为φO、φA、φC,则( )A.φO>φC B.φC>φAC.φO=φA D.φO-φA=φA-φC3.(2023·⼭东德州市模拟)如图甲所⽰,正⽅形虚线框为匀强磁场区域的边界,取垂直纸⾯向⾥为正⽅向,磁感应强度B随时间t变化的规律如图⼄所⽰。
匝数为n、半径为r的导线圈恰好处于虚线框的外接圆上,导线圈与电阻箱R1、定值电阻R2组成回路,回路中的其他电阻不计。
以下说法正确的是( )A.R2中的电流⽅向先向左,再向右B.回路中的电动势为C.t=t0时刻,回路中的电流为零D.R1=R2时,R1消耗的电功率最⼤4.(2023·⼴东⼴州市⼀模)如图甲所⽰为探究电磁驱动的实验装置。
某个铝笼置于U形磁体的两个磁极间,铝笼可以绕⽀点⾃由转动,其截⾯图如图⼄所⽰。
开始时,铝笼和磁体均静⽌,转动磁体,会发现铝笼也会跟着发⽣转动,下列说法正确的是( )A.铝笼是因为受到安培⼒⽽转动的B.铝笼转动的速度的⼤⼩和⽅向与磁体相同C.磁体从图⼄位置开始转动时,铝笼截⾯abcd中的感应电流的⽅向为a→d→c→b→a D.当磁体停⽌转动后,如果忽略空⽓阻⼒和摩擦阻⼒,铝笼将保持匀速转动5.(多选)(2023·辽宁沈阳市模拟)电⼦感应加速器基本原理如图所⽰,图甲的上、下两个电磁铁线圈中电流的⼤⼩、⽅向可以变化,产⽣的感⽣电场使真空室中的电⼦加速。
高考一轮复习 专题11 电磁感应中的动力学能量和动量问题

专题十一电磁感应中的动力学、能量和动量问题考点一电磁感应中的动力学问题师生共研例1 如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T.一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动.金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m.求(g取10 m/s2):(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小.【考法拓展1】在【例1】中,求金属棒从开始到刚离开磁场Ⅰ所经历的时间.【考法拓展2】在【例1】中,求金属棒由释放到ab连线滑过的距离x0.【考法拓展3】在【例1】中,求金属棒从开始到在磁场Ⅱ中达到稳定状态这段时间中电阻R产生的热量.练1 [2021·黑龙江大庆模拟](多选)在倾角θ=30°的斜面上固定两根足够长的平行金属导轨MN、EF,间距为L,导轨处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.有两根质量均为m、电阻均为R、长度均为L的金属棒ab、cd垂直导轨放置且与导轨接触良好,光滑的ab棒用平行于导轨的不可伸长的轻绳跨过光滑定滑轮与质量为2m的重物P连接,如图所示.初始时作用在ab棒上一个外力(题中未画出)使ab棒、重物P保持静止,cd棒也静止在导轨上且刚好不下滑.已知重力加速度大小为g,导轨电阻不计,最大静摩擦力等于滑动摩擦力.现撤去外力,ab棒和重物P从静止开始运动,到cd棒刚好要向上滑动的过程中,则( )A.重物P向下做加速度不断减小的加速运动B.cd棒刚好要向上滑动时,ab棒中的电流大小I=C.cd棒刚好要向上滑动时,重物P的速度大小为v=D.重物P减少的重力势能等于ab棒、重物P增加的动能与ab、cd棒产生的焦耳热之和练2 [2020·全国卷Ⅰ](多选)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直.ab、dc足够长,整个金属框电阻可忽略.一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行.经过一段时间后( )A.金属框的速度大小趋于恒定值B.金属框的加速度大小趋于恒定值C.导体棒所受安培力的大小趋于恒定值D.导体棒到金属框bc边的距离趋于恒定值练3 如图所示,间距为L的两根平行金属导轨弯成“L”形,竖直导轨面与水平导轨面均足够长,整个装置处于竖直向上大小为B的匀强磁场中.质量均为m、阻值均为R的导体棒ab、cd均垂直于导轨放置,两导体棒与导轨间动摩擦因数均为μ,当导体棒cd在水平恒力作用下以速度v0沿水平导轨向右匀速运动时,释放导体棒ab,它在竖直导轨上匀加速下滑.某时刻将导体棒cd所受水平恒力撤去,经过一段时间,导体棒cd静止,此过程流经导体棒cd的电荷量为q(导体棒ab、cd与导轨间接触良好且接触点及金属导轨的电阻不计,已知重力加速度为g),则下列判断错误的是( )A.导体棒cd受水平恒力作用时流经它的电流I=B.导体棒ab匀加速下滑时的加速度大小a=g-C.导体棒cd在水平恒力撤去后它的位移为s=D.导体棒cd在水平恒力撤去后它产生的焦耳热为Q=m-题后反思1.电磁感应中动力学问题的解题思路2.电磁感应中的动态分析导体受外力运动感应电动势感应电流导体受安培力―→合力变化加速度变化―→速度变化―→临界状态.考点二电磁感应中的能量问题多维探究1.能量转化2.求解焦耳热Q的三种方法3.解题的一般步骤(1)确定研究对象(导体棒或回路);(2)弄清电磁感应过程中哪些力做功,以及哪些形式的能量相互转化;(3)根据功能关系或能量守恒定律列式求解.题型1|由焦耳定律求解焦耳热例 2 小明设计的电磁健身器的简化装置如图所示,两根平行金属导轨相距l=0.50 m,倾角θ=53 °,导轨上端串接一个R=0.05 Ω的电阻.在导轨间长d=0.56 m的区域内,存在方向垂直导轨平面向下的匀强磁场,磁感应强度B=2.0 T.质量m=4.0 kg的金属棒CD水平置于导轨上,用绝缘绳索通过定滑轮与拉杆GH相连.CD棒的初始位置与磁场区域的下边界相距s=0.24 m.一位健身者用恒力F=80 N 拉动GH杆,CD棒由静止开始运动,上升过程中CD棒始终保持与导轨垂直.当CD棒到达磁场上边界时健身者松手,触发恢复装置使CD棒回到初始位置(重力加速度g取10 m/s2,sin 53°=0.8,不计其他电阻、摩擦力以及拉杆和绳索的质量).求:(1)CD棒进入磁场时速度v的大小.(2)CD棒进入磁场时所受的安培力F A的大小.(3)在拉升CD棒的过程中,健身者所做的功W和电阻产生的焦耳热Q.题型2|由安培力做功求解焦耳热例3 如图所示,足够长的粗糙斜面与水平面成θ=37°角放置,在斜面上虚线cc′和bb′与斜面底边平行,且两线间距为d=0.1 m,在cc′、bb′围成的区域内有垂直斜面向上的有界匀强磁场,磁感应强度为B=1 T;现有一质量为m=10 g,总电阻为R=1 Ω,边长也为d=0.1 m的正方形金属线圈MNPQ,其初始位置PQ边与cc′重合,现让金属线圈以一定初速度沿斜面向上运动,当金属线圈从最高点返回到磁场区域时,线圈刚好做匀速直线运动.已知线圈与斜面间的动摩擦因数为μ=0.5,取g=10 m/s2,不计其他阻力,求:(取sin 37°=0.6,cos 37°=0.8)(1)线圈向下返回到磁场区域时的速度大小;(2)线圈向上离开磁场区域时的动能;(3)线圈向下通过磁场区域过程中,线圈中产生的焦耳热.题型3|由能量守恒或功能关系求解焦耳热例4 [2021·广州市模拟]如图甲所示,空间存在B=0.5 T、方向竖直向下的匀强磁场,MN、PQ是水平放置的平行长直导轨,其间距L=0.2 m,R是连在导轨一端的电阻,ab是跨接在导轨上质量m=0.1 kg 的导体棒.从零时刻开始,对ab施加一个大小为F=0.45 N、方向水平向左的恒定拉力,使其从静止开始沿导轨滑动,滑动过程中棒始终保持与导轨垂直且接触良好,图乙是棒的v t图象,其中AO是图象在O 点的切线,AB是图象的渐近线.除R以外,其余部分的电阻均不计.设最大静摩擦力等于滑动摩擦力.已知当棒的位移为100 m时,其速度达到了最大速度10 m/s.求:(1)R的阻值;(2)在棒运动100 m过程中电阻R上产生的焦耳热.练4 [2020·济南模拟]如图所示,水平传送带上放置n个相同的正方形闭合导线圈,每个线圈的质量均为m,电阻均为R,边长均为L,线圈与传送带间的动摩擦因数均为μ,线圈与传送带共同以速度v0匀速向右运动.MN与PQ为匀强磁场的边界,平行间距为d(L<d),速度v0方向与MN垂直.磁场的磁感应强度为B,方向竖直向下.当线圈右侧边进入磁场时与传送带发生相对运动,线圈的右侧边到达边界PQ 时又恰好与传送带的速度相同.设传送带足够长,且线圈在传送带上始终保持右侧边平行于磁场边界.已知重力加速度为g,线圈间不会相碰.求:(1)线圈的右侧边刚进入磁场时,线圈的加速度大小;(2)线圈右侧边从MN运动到PQ经过的时间t;(3)n个线圈均通过磁场区域到恢复和传送带共速,线圈释放的焦耳热.练5 [2021·石嘴山模拟]如图所示,光滑且足够长的平行金属导轨MN、PQ固定在竖直平面内,两导轨间的距离为L=1 m,导轨间连接的定值电阻R=3 Ω,导轨上放一质量为m=0.1 kg的金属杆ab,金属杆始终与导轨接触良好,杆的电阻r=1 Ω,其余电阻不计,AB位置下方存在磁感应强度为B=1 T 的匀强磁场,磁场的方向垂直导轨平面向里.重力加速度g取10 m/s2.现让金属杆从AB水平位置由静止释放,忽略空气阻力的影响,求:(1)金属杆的最大速度.(2)若从金属杆开始下落到刚好达到最大速度的过程中,电阻R上产生的焦耳热Q=0.6 J,此时金属杆下落的高度为多少?(3)达到最大速度后,为使ab杆中不产生感应电流,从该时刻开始,磁感应强度B′应怎样随时间t 变化?推导这种情况下B′与t的关系式.考点三电磁感应与动量的综合问题多维探究题型1|动量定理在电磁感应中的应用在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B lΔt=mv2-mv1,q=t.(2)求时间:Ft=I冲=mv2-mv1,I冲=BIlΔt=Bl(3)求位移:-BIlΔt=-=0-mv0,即-x=m(0-v0).例5 [2020·山东潍坊期末] (多选)如图所示,水平金属导轨P、Q间距为L,M、N间距为2L,P与M相连,Q与N相连,金属棒a垂直于P、Q放置,金属棒b垂直于M、N放置,整个装置处在磁感应强度大小为B、方向竖直向上的匀强磁场中.现给棒a一大小为v0、水平向右的初速度,假设导轨都足够长,两棒质量均为m,在棒a的速度由v0减小到0.8v0的过程中,两棒始终与导轨接触良好.以下说法正确的是( )A.俯视时感应电流方向为顺时针B.棒b的最大速度为0.4v0C.回路中产生的焦耳热为0.1mD.通过回路中某一截面的电荷量为题型2|动量守恒定律在电磁感应中的应用例6 [2019·全国卷Ⅲ,19](多选)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图象中可能正确的是( )练6 [2020·山东阳谷二中期末](多选)如图所示,在高为h的桌面上固定着两根平行光滑金属导轨,导轨左段弯曲,右段水平,两部分平滑连接,导轨间距为L,电阻不计,在导轨的水平部分有竖直向上的匀强磁场,磁感应强度为B,ab、cd为两根相同的金属棒,质量均为m,长度均为L,电阻均为r.开始时cd静置于水平导轨上某位置,将ab从弯曲导轨上距离桌面高为h处由静止释放,cd离开导轨水平抛出,落地点ef距轨道末端的水平距离也为h,金属棒在运动过程中没有发生碰撞且与导轨接触良好,重力加速度为g.以下说法正确的是( )A.cd在导轨上的最大加速度为B.cd在导轨上的最大加速度为C.ab的落地点在ef的右侧D.电路中产生的热量为mgh练7 如图甲所示,两足够长且不计其电阻的光滑金属轨道,如图所示放置,间距为d=1 m,在左端弧形轨道部分高h=1.25 m处放置一金属杆a,弧形轨道与平面轨道以光滑圆弧连接,在平直轨道右端放置另一金属杆b.杆a、b电阻分别为R a=2 Ω,R b=5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度B=2 T.现杆b以大小5 m/s的初速度(设为v0)开始向左滑动,同时由静止释放杆a.杆a由静止滑到水平轨道的过程中,通过杆b的平均电流为0.3 A.从杆a下滑到水平轨道时开始计时,a、b杆运动图象如图乙所示(以杆a运动方向为正),其中m a=2 kg,m b=1 kg,g=10 m/s2,求:(1)杆a在弧形轨道上运动的时间;(2)杆a在水平轨道上运动过程中通过其截面的电荷量;(3)在整个运动过程中杆b上产生的焦耳热.专题十一 电磁感应中的动力学、能量和动量问题考点突破例1 解析:(1)金属棒进入磁场Ⅰ做匀速运动,设速度为v 0,由平衡条件得mgsin θ=F 安① 而F 安=B 0I 0L ,② I 0=B 0Lv 0R +r③代入数据解得v 0=2 m/s.④(2)金属棒滑过cd 位置时,其受力如图所示.由牛顿第二定律得 mgsin θ-F ′安=ma ,⑤ 而F ′安=B 1I 1L ,⑥ I 1=B 1Lv 0R +r,⑦代入数据可解得a =3.75 m/s 2.⑧(3)金属棒在进入磁场Ⅱ区域达到稳定状态时,设速度为v 1,则mgsin θ=F ″安,⑨ 而F ″安=B 1I 2L ○10 I 2=B 1Lv 1R +r,⑪代入数据解得v 1=8 m/s.⑫答案:(1)2 m/s (2)3.75 m/s 2 (3)8 m/s考法拓展1 解析:金属棒从静止开始到刚进入磁场Ⅰ的时间t 1=v 0gsin θ=0.4 s ,在磁场Ⅰ运动时间t 2=x 1v 0=0.5 s ,所以金属棒从开始到刚离开磁场Ⅰ所经历的时间为t =t 1+t 2=0.9 s.答案:0.9 s考法拓展2 解析:金属棒在未进入磁场前做初速度为0的匀加速直线运动a =gsin θ,由运动学公式得v 20=2ax 0,代入数据解得x 0=0.4 m. 答案:0.4 m考法拓展3 解析:金属棒从开始运动到在磁场Ⅱ中达到稳定状态过程中,根据能量守恒得 mg(x 0+x 1+x 2)sin θ=Q +12mv 21,Q R =R R +r Q =7.5 J.答案:7.5 J练1 解析:本题考查电磁感应中的楞次定律,通过分析安培力判断物体的运动状态,回路中的电流以及焦耳热.重物P 和ab 棒是一个系统,重物P 的重力不变,ab 棒的重力沿斜面向下的分力不变,而ab 棒切割磁感线的速度在增大,则沿斜面向下的安培力随之增大,则ab 与P 的加速度变小,所以重物P 向下做加速度不断减小的加速运动,A 正确;cd 棒刚开始恰好不下滑,则有mgsin θ=μmgcos θ,cd 棒刚好要向上滑动时,则有BIL =mgsin θ+μmgcos θ,联立解得I =mgBL ,B 正确;cd 棒刚好要向上滑动时,ab 棒切割磁感线产生的感应电动势E =BLv ,感应电流I =BLv 2R ,可得v =2mgRB 2L 2,C 正确;由能量守恒定律可知,重物P 减少的重力势能等于ab 棒、重物P 增加的动能、ab 棒增加的重力势能与ab 、cd 棒产生的焦耳热之和,D 错误.答案:ABC练2 解析:用水平恒力F 向右拉动金属框,bc 边切割磁感线产生感应电动势,回路中有感应电流i ,bc 边受到水平向左的安培力作用,设金属框的质量为M ,加速度为a 1,由牛顿第二定律有F -BiL =Ma 1;导体棒MN 受到向右的安培力,向右做加速运动,设导体棒的质量为m ,加速度为a 2,由牛顿第二定律有BiL =ma 2.设金属框bc 边的速度为v 时,导体棒的速度为v ′,则回路中产生的感应电动势为E =BL(v -v ′),由闭合电路欧姆定律i =E R =BL (v -v ′)R,F 安=BiL ,可得金属框bc 边所受安培力和导体棒MN 所受的安培力均为F 安=B 2L 2(v -v ′)R ,二者加速度之差Δa =a 1-a 2=F -F 安M -F 安m =F M -F 安⎝ ⎛⎭⎪⎫1M +1m ,随着所受安培力的增大,二者加速度之差Δa 减小,当Δa 减小到零时,F M =B 2L 2(v -v ′)R ·⎝ ⎛⎭⎪⎫1M +1m ,之后金属框和导体棒的速度之差Δv =v -v ′=FRmB 2L 2(m +M ),保持不变.由此可知,金属框的速度逐渐增大,金属框所受安培力趋于恒定值,金属框的加速度大小趋于恒定值,导体棒所受的安培力F 安=B 2L 2(v -v ′)R 趋于恒定值,选项A 错误,BC 正确;导体棒到金属框bc 边的距离x =⎠⎛0t (v -v ′)dt ,随时间的增大而增大,选项D 错误.答案:BC练3 解析:cd 切割磁感线产生感应电动势为E =BLv 0,根据闭合电路欧姆定律得I =E 2R =BLv 02R ,故A 项错误.对于ab 棒:根据牛顿第二定律得mg -F f =ma ,又F f =μF N ,F N =BIL ,联立解得,加速度大小为a =g -μB 2L 2v 02mR ,故B 项正确.对于cd 棒,由公式q =ΔΦR 总得q =BLs 2R ,则得,s =2Rq BL,故C 项正确.设导体棒cd 在水平恒力撤去后产生的焦耳热为Q ,由于ab 的电阻与cd 相同,两者串联,则ab 产生的焦耳热也为Q.根据能量守恒得2Q +μmgs =12mv 20,又s =2Rq BL ,解得Q =14mv 20-μmgRqBL ,故D 项正确.综上所述,应选择A.答案:A例2 解析:(1)由牛顿第二定律a =F -mgsin θm =12 m/s 2进入磁场时的速度v =2as =2.4 m/s. (2)感应电动势E =Blv 感应电流I =BlvR安培力F A =IBl代入得F A =(Bl )2vR =48 N.(3)健身者做功W =F(s +d)=64 J 由牛顿第二定律F -mgsin θ-F A =0 CD 棒在磁场区域做匀速运动 在磁场中运动的时间t =dv焦耳热Q =I 2Rt =26.88 J.答案:(1)2.4 m/s (2)48 N (3)64 J 26.88 J例3 解析:(1)金属线圈向下匀速进入磁场时,有mgsin θ=μmgcos θ+F 安 其中F 安=BId ,I =ER,E =Bdv解得v =(mgsin θ-μmgcos θ)RB 2d2=2 m/s. (2)设最高点离bb ′的距离为x ,线圈从最高点到开始进入磁场过程做匀加速直线运动,有v 2=2ax ,mgsin θ-μmgcos θ=ma 线圈从向上离开磁场到向下进入磁场的过程,根据动能定理有E k1-E k =μmgcos θ·2x ,其中E k =12mv 2得E k1=12mv 2+v 2μmgcos θgsin θ-μgcos θ=0.1 J.(3)线圈向下匀速通过磁场区域过程中, 有mgsin θ·2d -μmgcos θ·2d +W 安=0 Q =-W 安解得Q =2mgd(sin θ-μcos θ)=0.004 J. 答案:(1)2 m/s (2)0.1 J (3)0.004 J例4 解析:(1)由图乙得ab 棒刚开始运动瞬间a =2.5 m/s 2, 则F -F f =ma , 解得F f =0.2 N.ab 棒最终以速度v =10 m/s 匀速运动,则所受到拉力、摩擦力和安培力的合力为零,F -F f -F 安=0.F 安=BIL =BL Blv R =B 2L 2vR .联立可得R =B 2L 2vF -F f=0.4 Ω.(2)由功能关系可得(F -F f )x =12mv 2+Q ,解得Q =20 J.答案:(1)0.4 Ω (2)20 J练4 解析:(1)线圈刚进入磁场时有:E =BLv 0 根据闭合电路欧姆定律:I =ER所以安培力F =B 2L 2v 0R根据牛顿第二定律:F -μmg =ma. a =B 2L 2v 0mR -μg ,方向向左(2)根据动量定理,对线圈: μmgt -I 安=0. 其中安培力的冲量:I 安=F 安t ′=B I -L ·t ′=BLq q =ΔΦR =BL 2R .综上解得t =B 2L 3μmgR.(3)自线圈进入磁场到线圈右侧边到达PQ 过程中,对于单个线圈,根据动能定理得 μmgd -W 安=0,所以克服安培力做功W 安=μmgd单个线圈离开磁场的运动情况和进入磁场相同,W ′安=W 安=μmgd , 所以对于n 个线圈有Q =2n μmgd答案:(1)B 2L 2v 0mR -μg (2)B 2L3μmgR(3)2n μmgd练5 解析:(1)设金属杆的最大速度为v m ,安培力与重力平衡,则有:F 安=mg 又F 安=BIL ,I =ER +r,E =BLv m 联立得:F 安=B 2L 2v mR +r解得:v m =4 m/s(2)电路中产生的总焦耳热: Q 总=R +r R Q =3+13×0.6 J =0.8 J由能量守恒定律得:mgh =12mv 2m +Q 总解得:h =1.6 m(3)为使ab 杆中不产生感应电流,应使穿过回路平面的磁通量不发生变化, 在该时刻穿过回路平面的磁通量为: Φ1=BLht 时刻的磁通量为: Φ2=B ′L ⎝ ⎛⎭⎪⎫h +v m t +12gt 2 由Φ1=Φ2得:B ′=Bhh +v m t +12gt2代入数据解得:B ′= 1.65t 2+4t +1.6T答案:(1)4 m/s (2)1.6 m (3)B ′= 1.65t 2+4t +1.6T例5 解析:本题考查电磁感应中的电荷量、能量等物理量的计算.棒a 向右运动,回路面积减小,根据楞次定律可知,俯视时感应电流方向为逆时针,A 错误;在棒a 的速度由v 0减小到0.8v 0的过程中,棒a 减速,棒b 加速,对棒a ,由动量定理可得B I -·Lt =BqL =mv 0-0.8mv 0,对棒b ,由动量定理可得B I -·2Lt =mv ,联立可得v =0.4v 0,q =mv 05BL ,B 正确,D 错误;根据能量守恒定律可得Q =12mv 20-12m(0.8v 0)2+12m(0.4v 0)2=0.1mv 20,C 正确.答案:BC例6 解析:由楞次定律可知ab 棒做减速运动,cd 棒做加速运动,即v 1减小,v 2增加.回路中的感应电动势E =BL(v 1-v 2),回路中的电流I =E R =BL (v 1-v 2)R ,回路中的导体棒ab 、cd 的加速度大小均为a =F m =BIL m =B 2L 2(v 1-v 2)mR ,由于v 1-v 2减小,可知a 减小,所以ab 与cd 的v t 图线斜率减小,I 也非线性减小,所以A 、C 正确,B 、D 错误.答案:AC练6 解析:本题从动量和能量两个角度考查双棒问题.当cd 受到的安培力最大时,cd 在导轨上的加速度最大,即ab 刚进入磁场时,cd 在导轨上的加速度最大,设此时ab 的速度为v ,根据机械能守恒定律可得12mv 2=mgh ,解得v =2gh ,此时回路中的感应电流I =BLv 2r ,cd 在导轨上的最大加速度a =BIL m =B 2L 22gh2mr,故A 正确,B 错误; 设cd 离开导轨时的速度为v 1,根据平抛运动规律可知,下落时间t =2h g ,则v 1=h t=gh2,设cd 离开导轨时ab 的速度为v ′,根据动量守恒定律可得mv =mv ′+mv 1,解得v ′=v 1=gh2,所以ab 的落地点也在ef 处,故C 错误;电路中产生的热量Q =mgh -12mv ′2-12mv 21=12mgh ,故D 正确.答案:AD练7 解析:(1)设杆a 刚滑到水平轨道时,杆b 的速度为v b ,杆a 在弧形轨道上运动的时间与杆b 从开始滑动到杆a 刚滑到水平轨道时所用时间相等,对杆b 应用动量定理有Bd I -t 1=m b v b -m b v 0其中v 0=-5 m/s ,v b =-2 m/s 解得t 1=5 s.(2)设杆a 下滑到水平轨道时的速度为v a ,由杆a 下滑的过程中机械能守恒有 m a gh =12m a v 2a解得v a =5 m/s设两杆最后共同的速度为v ,两杆在水平轨道上运动过程中动量守恒,有 m a v a +m b v b =(m a +m b )v 解得v =83m/s对杆a 在水平轨道上运动过程应用动量定理有 -Bd I -t 2=m a v -m a v a 又q =I -t 2解得q =73C.(3)由能量守恒定律得,两杆产生的总焦耳热Q 总=m a gh +12m b v 20-12(m a +m b )v 2=1616 J杆a 、b 串联,电流相等,则相同时间内产生的焦耳热与电阻成正比 故杆b 上产生的焦耳热Q =R b R a +R b Q 总=1156J. 答案:(1)5 s (2)73 C (3)1156 J。
人教版高考总复习一轮物理精品课件 第11单元 电磁感应 作业29法拉第电磁感应定律、自感和涡流

不亮,故C错误,D正确。
1 2 3 4 5 6 7 8 9 10 11
本 课 结 束
解析 当细铜棒切割磁感线的有效长度最大时,铜棒两端的感应电动势最大。
当“L”形铜棒速度方向垂直铜棒两端连线时,切割磁感线的有效长度为 2l,
此时铜棒两端电势差最大,最大值为 E= 2Blv,故 B 正确。
1 2 3 4 5 6 7 8 9 10 11
4.如图所示,固定在水平面上的半径为r的金属圆环内存在方向竖直向上,
解析 电磁制动的原理是当导体在通电线圈产生的磁场中运动时,会产生涡
流,电流流过导体时会产生热量,A错误;如果导体反向转动,此时产生的涡
流方向也相反,电流和运动方向同时反向,安培力方向相反,故还是使导体
受到阻碍运动的制动力,B错误;线圈中电流越大,则产生的磁场越强,则转
盘转动产生的涡流越强,则制动装置对转盘的制动力越大,C错误;线圈电流
1 2 3 4 5 6 7 8 9 10 11
R
UR= ·
E=2
R+r
E
I=R+r=1
V,故 B 错误;金属
A,产生的焦耳热为
微练三
涡流、自感、电磁阻尼、电磁驱动的理解及应用
6.如图所示,关于涡流的下列说法错误的是( B )
A.真空冶炼炉是利用涡流来熔化金属的装置
B.家用电磁炉锅体中的涡流是由恒定磁场产生的
=
NBSθ
,由楞次定律可判断出感应电流方向为逆
t
时针方向。故选A。
1 2 3 4 5 6 7 8 9 10 11
11.如图所示,线圈L的自感系数极大,直流电阻忽略不计;D1、D2是两个二
2023年高考物理一轮复习提升核心素养11

11.5电磁感应综合练一、单选题1.(2017·天津·高考真题)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R。
金属棒ab与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下。
现使磁感应强度随时间均匀减小,ab始终保持静止,下列说法正确的是()A.ab中的感应电流方向由b到a B.ab中的感应电流逐渐减小C.ab所受的安培力保持不变D.ab所受的静摩擦力逐渐减小2.(2021·河北·高考真题)如图,两光滑导轨水平放置在竖直向下的匀强磁场中,磁感应强度大小为B,导轨间距最窄处为一狭缝,取狭缝所在处O点为坐标原点,狭缝右侧两导轨与x轴夹角均为θ,一电容为C的电容器与导轨左端相连,导轨上的金属棒与x轴垂直,在外力F作用下从O点开始以速度v向右匀速运动,忽略所有电阻,下列说法正确的是()A.通过金属棒的电流为2BCvθ2tanBCvxθB.金属棒到达0x时,电容器极板上的电荷量为0tanC.金属棒运动过程中,电容器的上极板带负电D.金属棒运动过程中,外力F做功的功率恒定3.(2021·江苏·二模)如图所示,匀强磁场中有一等边三角形线框abc,匀质导体棒在线框上向右匀速运动。
导体棒在线框接触点之间的感应电动势为E,通过的电流为I。
忽略线框的电阻,且导体棒与线框接触良好,则导体棒()A.从位置①到②的过程中,E增大、I增大B.经过位置②时,E最大、I为零C.从位置②到③的过程中,E减小、I不变D.从位置①到③的过程中,E和I都保持不变4.(2017·江西南昌·二模)如图所示,由均匀导线制成的半径为R的圆环,以速度v匀速进入一磁感应强度大小为B的匀强磁场。
当圆环运动到图示位置(∠aOb=90°)时,a、b两点的电势差U ab为()A BC.D.5.(2021·江苏常州·一模)零刻度在表盘正中间的电流计,非常灵敏,通入电流后,线圈所受安培力和螺旋弹簧的弹力作用达到平衡时,指针在示数附近的摆动很难停下,使读数变得困难。
2023届高考物理一轮复习练习电磁感应Word版含解析

2023届高考物理:电磁感应一轮练习附答案高考:电磁感应(一轮)一、选择题。
1、电阻R、电容器C与一线圈连成闭合电路,条形磁铁位于线圈的正上方,N 极朝下,如图所示.在磁铁N极远离线圈上端的过程中,流过R的电流方向和电容器极板的带电情况是()A.从b到a,下极板带正电B.从a到b,下极板带正电C.从b到a,上极板带正电D.从a到b,上极板带正电2、(双选)如图甲所示,在倾斜角为θ的光滑斜面内分布着垂直于斜面的匀强磁场,以垂直于斜面向上为磁感应强度正方向,其磁感应强度B随时间变化的规律如图乙所示。
质量为m的矩形金属框从t=0时刻由静止释放,t3时刻的速度为v,移动的距离为L,重力加速度为g。
在金属框下滑的过程中,下列说法正确的是()甲乙A.t1~t3时间内金属框中的电流方向不变B.0~t3时间内金属框做匀加速直线运动C.0~t3时间内金属框做加速度逐渐减小的直线运动D.0~t3时间内金属框中产生的焦耳热为mgLsin θ-12m v23、(双选))如图甲所示是一种手摇发电的手电筒,内部有一固定的线圈和可来回运动的条形磁铁,其原理图如图乙所示.当沿图中箭头方向来回摇动手电筒过程中,条形磁铁在线圈内来回运动,灯泡发光.在此过程中,下列说法正确的是()A.增加摇动频率,灯泡变亮B.线圈对磁铁的作用力方向不变C.磁铁从线圈一端进入与从该端穿出时,灯泡中电流方向相反D.磁铁从线圈一端进入再从另一端穿出的过程中,灯泡中电流方向不变4、如图所示,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直。
金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面。
现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是()A.PQRS中沿顺时针方向,T中沿逆时针方向B.PQRS中沿顺时针方向,T中沿顺时针方向C.PQRS中沿逆时针方向,T中沿逆时针方向D.PQRS中沿逆时针方向,T中沿顺时针方向5、(双选)如图所示,灯泡A、B与定值电阻的阻值均为R,L是自感系数较大的线圈,当S1闭合、S2断开且电路稳定时,A、B两灯亮度相同,再闭合S2,待电路稳定后将S1断开,下列说法中正确的是()A.B灯立即熄灭B.A灯将比原来更亮一下后熄灭C.有电流通过B灯,方向为c→dD.有电流通过A灯,方向为b→a6、如图所示,一个有界匀强磁场区域,磁场方向垂直纸面向外,一个矩形闭合导线框abcd沿纸面由位置1匀速运动到位置2。
人教版高考总复习一轮物理精品课件 第11单元 电磁感应 生活中的电磁感应问题(科学态度与责任)
1 2 3 4
m/s。
m/s2。
(3)由上述分析可知,每一个线圈进入磁场的过程中,减震器速度减小量
Δv=0.4 m/s
5
线圈的个数为 N= =12.5
0.4
则需要13个线圈,只有进入磁场的线圈产生热量,线圈产生的热量等于动能
的减少量。
第一个线圈恰好完全进入磁场时v1=v-Δv=4.6 m/s
最后一个线圈刚进入磁场时v13=0.2 m/s
即断开,故C正确,D错误。
1 2 3 4
2.(2023浙江宁波模拟)电磁减震器是利用电磁感应原理的一种新型智能化
汽车独立悬架系统。某同学也设计了一个电磁阻尼减震器,图为其简化的
原理图。该减震器由绝缘滑动杆及固定在杆上的多个相互紧靠的相同矩
形线圈组成,滑动杆及线圈的总质量m=1.0 kg。每个矩形线圈abcd匝数
·
L=
安=nBIL=nB·
R
R
F安
刚进入磁场减速瞬间减震器的加速度大小为 a=
m
=
n2 B2 L2 v
=4
mR
(2)设向右为正方向,对减震器进行分析,由动量定理 I=Δp 可得
2 2
2
n B L v
F 安 t=解得
R
n2 B2 L2
·
t=·
2d=mv'-mv0
R
2n2 B2 L2 d
v'=v0- mR =0.2
1mv2 -1mv 2
1
2
2
因此 k= 1
=96。
mv13 2
2
1 2 3 4
3.(2023浙江宁波开学考试)基于电磁阻尼设计的电磁缓冲器是应用于车辆
上以提高运行安全性及乘坐舒适程度的辅助制动装置。其电磁阻尼作用
高考物理一轮复习11.1电磁感应--电磁感应现象和楞次定律(原卷版+解析)
考点35电磁感应现象楞次定律新课程标准1.知道磁通量。
通过实验,了解电磁感应现象,了解产生感应电流的条件。
知道电磁感应现象的应用及其对现代社会的影响。
2.探究影响感应电流方向的因素,理解楞次定律。
命题趋势高考对本专题的考查内容有电磁感应现象的分析与判断,主要体现对物理规律的理解,例如楞次定律,试题情境生活实践类真空管道超高速列车、磁悬浮列车、电磁轨道炮等各种实际应用模型学习探究类电磁感应的图像问题.考向一电磁感应现象考向二楞次定律考向三楞次定律推广应用考向四二次感应现象考向一电磁感应现象1.磁通量(1)定义:匀强磁场中,磁感应强度B与垂直磁场方向的面积S的乘积叫作穿过这个面积的磁通量,简称磁通。
我们可以用穿过这一面积的磁感线条数的多少来形象地理解。
(2)公式:Φ=BS。
(3)公式的适用条件:①匀强磁场;②S是垂直磁场方向的有效面积。
(4)单位:韦伯(Wb),1 Wb=1T·m2。
(5)标量性:磁通量是标量,但有正负之分。
磁通量的正负是这样规定的:任何一个平面都有正、反两面,若规定磁感线从正面穿出时磁通量为正,则磁感线从反面穿出时磁通量为负。
(6)物理意义:相当于穿过某一面积的磁感线的条数.如图所示,矩形abcd、abb′a′、a′b′cd的面积分别为S1、S2、S3,匀强磁场的磁感应强度B与平面a′b′cd垂直,则:①通过矩形abcd 的磁通量为BS 1cos θ或BS 3. ②通过矩形a ′b ′cd 的磁通量为BS 3. ③通过矩形abb ′a ′的磁通量为0. 2.磁通量的变化量(1)在某个过程中,穿过某个平面的磁通量的变化量等于末磁通量Φ2与初磁通量Φ1的差值,即ΔΦ=Φ2-Φ1。
(2)磁通量变化的常见情况变化情形 举例磁通量变化量 磁感应强度变化永磁体靠近或远离线圈、电磁铁(螺线管)内电流发生变化ΔΦ=ΔB·S有效面积变化有磁感线穿过的回路面积变化闭合线圈的部分导线做切割磁感线运动,如图ΔΦ=B·ΔS回路平面与磁场夹角变化线圈在磁场中转动,如图磁感应强度和有效面积同时变化弹性线圈在向外拉的过程中,如图ΔΦ=Φ2-Φ1磁通量的变化量与发生此变化所用时间的比值,即ΔΦΔt 。
2025版高考物理一轮复习专题十一电磁感应第28练电磁感应中的动力学能量动量问题pptx课件
物块A速度始终大于棒G滑行速度,绳子始终松弛(1分)
在2~3 s内对棒G分析,由动量定理可得
−
B LΔt=m 2 −3 (1分)
由法拉第电磁感应定律和闭合电路欧姆定律可得
−
−
Δt=
+
1
1
2
2
则有Q2=( mv′m - mv' ) (1分)
2
2
+
t3时间内有v'=at3(1分)
1
2
x'3= a32 (1分)
Q3=I2rt3(1分)
又x'1+x'2+x'3=7 m
Q总=Q1+Q2+Q3
联立解得Q总=0.4 J(1分)
7.[2022福建·
15,16分,难度★★★★☆]
联立解得 vH-vG=6.5 m/s(1分)
由于两棒的速度差保持不变,这说明两棒具有相同的加速度且均为a,对棒H由牛顿第二定
律有F-FA=ma(1分)
解得 F=1.7 N(1分)
由v-t图象可知t=1.5 s时,棒G的速度大小为vG=3 m/s,则此刻棒H的速度大小为vH=9.5 m/s
拉力F的瞬时功率 PF=FvH=16.15 W(1分)
平行.从t=0开始,H在水平向右拉力
作用下向右运动;t=2 s时,H与挡板
M、N相碰后立即被锁定.G在t=
1 s后的速度-时间图线如图(b)所示
,其中1~2 s段为直线.
已知磁感应强度大小B=1 T,L=0.2 m,G、H和A的质量均为0.2 kg,G、H的电阻均为0.1 Ω;
2023年高考物理一轮考点复习第十一章电磁感应第1讲电磁感应现象、楞次定律
练案[29] 第十一章电磁感应第1讲电磁感应现象楞次定律一、选择题(本题共14小题,1~10题为单选,11~14题为多选)1.(2023·江苏模拟预测)电吉他的工作原理是在琴身上装有线圈,线圈附近被磁化的琴弦振动时,会使线圈中的磁通量发生变化,从而产生感应电流,再经信号放大器放大后传到扬声器。
其简化示意图如图所示。
则当图中琴弦向右靠近线圈时( C )A.穿过线圈的磁通量减小B.线圈中不产生感应电流C.琴弦受向左的安培力D.线圈有扩张趋势[解析]琴弦向右靠近线圈时,穿过线圈的磁通量增大,线圈中产生感应电流,由“来拒去留”可知琴弦受到向左的安培力,由“增缩减扩”可知线圈有收缩趋势,故ABD错误,C正确。
2.(2023·北京通州模拟预测)安装在公路上的测速装置如图,在路面下方间隔一定距离埋设有两个通电线圈,线圈与检测抓拍装置相连,车辆从线圈上面通过时线圈中会产生脉冲感应电流,检测装置根据两个线圈产生的脉冲信号的时间差计算出车速大小,从而对超速车辆进行抓拍。
下列说法正确的是( B )A.汽车经过线圈上方时,两线圈产生的脉冲电流信号时间差越长,车速越大B.汽车经过通电线圈上方时,汽车底盘的金属部件中会产生感应电流C.当汽车从线圈上方匀速通过时,线圈中不会产生感应电流D.当汽车从线圈上方经过时,线圈中产生感应电流属于自感现象[解析]汽车经过线圈上方时产生脉冲电流信号,车速越大,汽车通过两线圈间的距离所用的时间越小,即两线圈产生的脉冲电流信号时间差越小,故A错误;汽车经过通电线圈上方时,汽车底盘的金属部件通过线圈所产生的磁场,金属部件中的磁通量发生变化,在金属部件中产生感应电流,金属部件中的感应电流产生磁场,此磁场随汽车的运动,使穿过线圈的磁通量变化,所以线圈中会产生感应电流,故B正确,C错误;当汽车从线圈上方经过时,线圈中产生的感应电流并不是线圈自身的电流变化所引起的,则不属于自感现象,故D错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题11 电磁感应1.(2012福建卷).如图甲,一圆形闭合铜环由高处从静止开始下落,穿过一根竖直悬挂的条形磁铁,铜环的中心轴线与条形磁铁的中轴始终保持重合.若取磁铁中心O 为坐标原点,建立竖直向下正方向的x 轴,则图乙中最能正确反映环中感应电流i 随环心位置坐标x 变化的关系图像是答案:B解析:闭合铜环由高处静止下落,首先是向上穿过铜环的磁通量增大,根据楞次定律知铜环N O 点的过程中,穿过铜环的合磁通量向上且增大,则感应电流仍为顺时针方向;从O SS减小,感应电流仍为逆时针方向;因铜环速度越来越大,所以逆时针方向感应电流的最大值B .2.(2012全国新课标).如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率tB ∆∆的大小应为A.πω04B B.πω02B C.πω0B D.πω20B 答案:C解析:匀速转动时感应电动势与磁场变化时感应电动势相同即可.匀速转动时感应电动势ω221BR E =式中R 为半径.磁场变化时感应电动势22R t B E π⋅∆∆=.二者相等可得答案.3.(2012北京高考卷).物理课上,老师做了一个奇妙的“跳环实验”.如图,她把一个带铁芯的线圈L 、开关S 和电源用导线连接起来后,将一金属套环置于线圈L 上,且使铁芯穿过套环,闭合开关S 的瞬间,套环立刻跳起.某同学另找来器材再探究此实验.他连接好电路,经重复实验,线圈上的套环均未动,对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是A .线圈接在了直流电源上B .电源电压过高C .所选线圈的匝数过多D .所用套环的材料与老师的不同答案:D S只要套环的材料是导体,套环中就能产生感应电流,套环就会跳起.如果套环是塑料材料做的,则不能产生感应电流,也就不会受安培力作用而跳起.D .4.(2012山东卷).如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻,匀强磁场垂直于导轨平面,磁感应强度为B.将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g ,下列选项正确的是A .2sin P mg θ=B .3sin P mg θ=C .当导体棒速度达到2v 时加速度为sin 2g θ D .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功 答案:AC 解析:当导体棒第一次匀速运动时,沿导轨方向:Rv L B m g 22sin =θ;当导体棒第二次达到最大速度时,沿导轨方向:Rv L B mg F 222sin =+θ,即F=mgsin θ,此时拉力F 的功率P=F ×2v=2mgvsin θ,选项A 正确、B 错误;当导体棒的速度达到v/2时,沿导轨方向:ma Rv L B mg =-2sin 22θ,解得θsin 21g a =,选项C 正确;导体棒的速度达到2v 以后,拉力与重力的合力做功全部转化为R 上产生的焦耳热,选项D错误.5.(2012四川卷).半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B.杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示.则A .θ=0时,杆产生的电动势为2BavB .θ=π3时,杆产生的电动势为Bav 3 C .θ=0时,杆受的安培力大小为02)2(2R av B +π D .θ=π3 时,杆受的安培力大小为02)35(3R av B +π 答案:AD解析:根据法拉第电磁感应定律可得Blv E =(其中l 为有效长度),当0=θ时,a l 2=,则Bav E =;当3πθ=时,a l =,则Bav E =,故A 选项正确,B 选项错误;根据通电直导线在磁场中所受安培力的大小的计算公式可得BIl F =,又根据闭合电路欧姆定律可得r R E I +=,当0=θ时,a l 2=,Bav E 2=,0)2(aR R r +=+π,解得02)2(4R av B F +=π;当0=θ时,a l =,Bav E =,0)135(aR R r +=+π,解得()02353R av B F +=π,故C 选项错误,D 选项正确.6.(2012全国新课标).如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t =0到t =t 1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右.设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是答案:A解析:要求框中感应电流顺时针,根据楞次定律,可知框内磁场要么向里减弱(载流直导线中电流正向减小),要么向外增强(载流直导线中电流负向增大).线框受安培力向左时,载流直导线电流一定在减小,线框受安培力向右时,载流直导线中电流一定在增大.故答案选A.7.(2012天津卷).如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5m ,左端接有阻值R=0.3Ω的电阻,一质量m=0.1kg ,电阻r=0.1Ω的金属棒MN 放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4T ,棒在水平向右的外力作用下,由静止开始以a=2m/s 2的加速度做匀加速运动,当棒的位移x=9m 时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q 1:Q 2=2:1,导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触,求(1)棒在匀加速运动过程中,通过电阻R 的电荷量q(2)撤去外力后回路中产生的焦耳热Q 2(3)外力做的功W F解析:(1)棒匀加速运动所用时间为t ,有x at =221 32922=⨯==a x t s 根据法拉第电磁感应定律和闭合电路的欧姆定律求电路中产生的平均电流为 5.1)1.03.0(395.04.0)()(=+⨯⨯⨯=+=+∆Φ=+=R r t Blx R r t r R E I A 根据电流定义式有 5.435.1=⨯==t I q C(2)撤去外力前棒做匀加速运动根据速度公式末速为632=⨯==at v m/s撤去外力后棒在安培力作用下做减速运动,安培力做负功先将棒的动能转化为电能,再通过电流做功将电能转化为内能,所以焦耳热等于棒的动能减少.有 8.161.02121222=⨯⨯==∆=mv E Q k J (3)根据题意在撤去外力前的焦耳热为6.3221==Q Q J撤去外力前拉力做正功、安培力做负功(其大小等于焦耳热Q 1)、重力不做功共同使棒的动能增大,根据动能定理有1Q W E F k -=∆则4.58.16.31=+=∆+==∆k F k E Q W E J8.(2012广东卷).(18分)如图17所示,质量为M 的导体棒ab ,垂直放在相距为l 的平行光滑金属轨道上.导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直与导轨平面向上的匀强磁场中,左侧是水平放置、间距为d 的平行金属板,R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻.(1)调节R x =R ,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I 及棒的速率v .(2)改变R x ,待棒沿导轨再次匀速下滑后,将质量为m 、带电量为+q 的微粒水平射入金属板间,若它能匀速通过,求此时的R x.解析:(1)当R x =R 棒沿导轨匀速下滑时,由平衡条件sin Mg F θ=安培力F BIl =解得sin Mg I Blθ=感应电动势E Blv =电流2E I R= 解得 222sin MgR v B l θ= (2)微粒水平射入金属板间,能匀速通过,由平衡条件U mg qd = 棒沿导轨匀速,由平衡条件1sin Mg BI l θ=金属板间电压1x U I R = 解得sin x mldB R Mq θ= 9.(2012上海卷).(14分)如图,质量为M 的足够长金属导轨abcd 放在光滑的绝缘水平面上.一电阻不计,质量为m 的导体棒PQ 放置在导轨上,始终与导轨接触良好,PQbc 构成矩形.棒与导轨间动摩擦因数为μ,棒左侧有两个固定于水平面的立柱.导轨bc 段长为L ,开始时PQ 左侧导轨的总电阻为R ,右侧导轨单位长度的电阻为R 0.以ef 为界,其左侧匀强磁场方向竖直向上,右侧匀强磁场水平向左,磁感应强度大小均为B .在t =0时,一水平向左的拉力F 垂直作用于导轨的bc 边上,使导轨由静止开始做匀加速直线运动,加速度为a .(1)求回路中感应电动势及感应电流随时间变化的表达式;(2)经过多少时间拉力F 达到最大值,拉力F 的最大值为多少?(3)某一过程中回路产生的焦耳热为Q ,导轨克服摩擦力做功为W ,求导轨动能的增加量.解析:(1)感应电动势为E =BLv ,导轨做初速为零的匀加速运动,v =at ,E =BLat ,s =at 2/2,感应电流的表达式为I =BLv /R 总=BLat /(R +2R 0⨯at 2/2)=BLat /(R +R 0at 2),(2)导轨受安培力F A =BIL =B 2L 2at /(R +R 0at 2),摩擦力为F f =μF N =μ(mg +BIL )=μ[mg +B 2L 2at /(R +R 0at 2)],由牛顿定律F -F A -F f =Ma ,F =Ma +F A +F f =Ma +μmg +(1+μ)B 2L 2at /(R +R 0at 2),上式中当R /t =R 0at 即t =a RR 0时外力F 取最大值,F max =Ma +μmg +12(1+μ)B 2L 2a RR 0, (3)设此过程中导轨运动距离为s ,由动能定理W 合=∆E k ,摩擦力为F f =μ(mg +F A ),摩擦力做功为W =μmgs +μW A =μmgs +μQ ,s =W -μQ μmg ,∆E k =Mas =Ma μmg(W -μQ ),10.(2012江苏卷).某兴趣小组设计一种发电装置,如图所示,在磁极与圆柱状铁芯之间形成的两磁场区域的圆心角α均为49p ,磁场均沿半径方向,匝数为N 的矩形线圈abcd 边长ab =cd =l 、bc =ad =2l ,线圈以角速度ω绕中心轴匀速转动,bc 与ad 边同时进入磁场,在磁场中,两条边的经过处的磁感应强度大小均为B ,方向始终与两条边的运动方向垂直,线圈的总电阻为r ,外接电阻为R ,求(1)线圈切割磁感线时,感应电动势的大小E m(2)线圈切割磁感线时,bc 边所受安培力的大小F(3)外接电阻上电流的有效值I解析:(1)bc 、ad 边的运动速度2l v ω= , 感应电动势NBlv E m 4=,解得ω22NBl E m =. (2)电流R r E I m m +=, 安培力 l NBI F m 2=,解得 Rr l B N F +=ω3224. (3)一个周期内,通电时间T t 94=,R 上消耗的电能Rt I W m 2=,且RT I W 2= 解得)(342R r NBl I +=ω. 11.(2012海南卷).如图,ab 和cd 是两条竖直放置的长直光滑金属导轨,MN 和''M N 是两根用细线连接的金属杆,其质量分别为m 和2m.竖直向上的外力F 作用在杆MN 上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R ,导轨间距为l .整个装置处在磁感应强度为B 的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t=0时刻将细线烧断,保持F 不变,金属杆和导轨始终接触良好.求(1)细线少断后,任意时刻两杆运动的速度之比;(2)两杆分别达到的最大速度.§解析:设某时刻MN 和''M N 速度分别为v 1、v 2.(1)MN 和''M N 动量守恒:mv 1-2mv 2=0 求出:122v v =① (2)当MN 和''M N 的加速度为零时,速度最大 对''M N 受力平衡:BIl mg = ② E I R =③ 12E Blv blv =+④由①——④得:12223mgR v B l =、2223mgR v B l =。