关于牛顿第二定律连接体问题(整体法与隔离法)
牛顿第二定律的应用――连接体问题

专题: 牛顿第二定律的应用――― 连接体【知识讲解】一、连接体与隔离体(系统与质点)两个或两个以上物体,靠绳或接触面或电磁作用相互联系组成的物体系统,称为连接体(系统,多质点)。
如果把其中某个物体隔离出来,该物体即为隔离体(单质点)。
二、外力和内力如果以物体系为研究对象,受到系统之外的物体施加的作用力,这些力是系统受到的外 力,而系统内各物体间的相互作用力为内力。
应用牛顿第二定律列方程求合力时不考虑内力。
如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的外力。
三、连接体问题的分析方法1.整体法:整体法是物理中常用的一种思维方法。
它是将几个物体看作一个整体来作为研究对象即系统,这样就暂时回避了这些物体间的相互作用的内力,只考虑整体受到的外力,整体法列出的方程数目较少,解题变的简明快捷。
(1)连接体中的各物体如果加速度相同,求解时可以把连接体作为一个整体。
运用F 合=(m 1+m 2+m 3…..)a 列方程求解;题目只涉及内外力关系不需要求加速度时,也可以用牛顿定律在加速度相同情况下的推论:总合合合m m m 2211F F F ==(动力分配原理,即系统内各部分的合力与其质量成正比)。
(2)连接体中的各物体如果加速度不同,若系统内有几个物体,这几个物体的质量分别为m 1,m 2,m 3………m n ,,加速度分别为a 1,a 2,a 3......a n ,这个系统受到的合外力为F 合外,则对这个系统应用牛顿第二定律的表达式为1122n nF m a m a m a =++⋅⋅⋅+合外其正交分解表示式为11221122x x n nxy y n nyy F m a m a m a F m a m a m a=++⋅⋅⋅+=++⋅⋅⋅+x 外外(3)当系统内各个物体加速度均为零时,有的静止有的匀速运动,整个系统处于平衡状态,此时可用F 合外=0进行求解。
或者:0F 0F y x ==外外,联立求解。
牛顿第二定律连接体问题(整体法与隔离法)

牛顿第二定律——连接体问题(整体法与隔离法)一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法系统运动状态相同整体法问题不涉及物体间的内力 使用原则三、连接体题型:1【例1】A、B 平力N F A 6=推A ,用水平力N F B 3=【练1】如图所示,质量为M 的斜面A 在水平向左的推力F 作用下,A 与B 体B 的质量为m ,则它们的加速度a A. ()(,sin μθ++==g m M F g a B. θθcos )(,cos g m M F g a +==C. ()(,tan μθ++==g m M F g a D. gm M F g a )(,cot +==μθ【练2】如图所示,质量为2m 的物体2滑定滑轮连接质量为1m 的物体,与物体A. 车厢的加速度为θsin gB. 绳对物体1的拉力为θcos 1gm C. 底板对物体2的支持力为g m m )(12-D. 物体2所受底板的摩擦力为θtan 2g m m g ,m B =0.4kg ,盘C 的质量O 处的细线瞬间,木F BC 多大?(g 取10m/s 2)连接体作业1、如图所示,小车质量均为M ,光滑小球P 的质量为m ,绳的质量不计,水平地面光滑。
要使小球P 随车一起匀加速运动(相对位置如图所示),则施于小车的水平拉力F 各是多少?(θ已知)球刚好离开斜面 球刚好离开槽底F= F= F= F=2、如图所示,A 、B 质量分别为m1,m2,它们在水平力F 的作用下均一起加速运动,甲、乙中水平面光滑,两物体间动摩擦因数为μ,丙中水平面光滑,丁中两物体与水平面间的动摩擦因数均为μ,求A 、B 间的摩擦力和弹力。
f= f= F AB = F AB = 3、如图所示,在光滑水平桌面上,叠放着三个质量相同的物体,用力推物体a ,使三个物体保持静止,一起作加速运动,则各物体所受的合外力 ( ) A .a 最大 B .c 最大 C .同样大 D .b 最小4、如图所示,小车的质量为M,的前端相对于车保持静止,A.在竖直方向上,B.在水平方向上,C.若车的加速度变小,D.若车的加速度变大,5、物体A 、B 叠放在斜面体C 上,物体的作用下一起随斜面向左匀加速运动的过程中,物体A 、B摩擦力为2f F ,(02≠f F ),则(A. 01=f F B. 2f F C.1f F 水平向左 D. 2f F 6、如图3所示,质量为M A. 地面对物体M B. 地面对物体M C. 物块m D. 地面对物体M 7、如图所示,质量M =8kg 到1.5m/s μ=0.28、如图6所示,质量为A m 的物体A 沿直角斜面C 9、如图10所示,质量为M 的滑块C B B 、2a F a b c。
牛顿第二定律的应用-整体法与隔离法

解题过程
首先确定整体受到的重力 和支持力,然后根据牛顿 第二定律求出加速度。
03 隔离法应用
定义与特点
定义
隔离法是将研究对象从其周围物体中 隔离出来,对它进行受力分析,研究 其运动状态变化规律的方法。
特点
隔离法可以单独地分析每个物体的受 力情况,从而简化问题,易于理解和 掌握。
适用范围与条件
适用范围
公式
F=ma,其中F表示作用力,m表示 物体的质量,a表示物体的加速度。
适用范围与条件
适用范围
适用于宏观低速的物体,即物体的速 度远小于光速,此时物体的运动状态 变化符合牛顿第二定律。
条件
作用力必须是物体受到的合外力,且 物体具有质量。
牛顿第二定律的重要性
基础性
牛顿第二定律是经典力学的基础,是研究物体运动规律和作用力的基本公式。
汽车加速与刹车
当汽车加速或刹车时,乘客会受到一个向心或离心的力,这是由于牛顿第二定律中加速度与力之间的 关系。
电梯载人
当电梯加速上升或减速下降时,乘客会感到超重或失重,这是因为牛顿第二定律中加速度与力之间的 关系。
在工程中的应用
桥梁设计
桥梁设计需要考虑重力、风载、地震等外力作用,通过牛顿第二定律可以计算出桥梁的 承载能力和稳定性。
适用于需要单独分析某个物体的受力情况,或者需要排除其他物体的影响,单独研究某个物体的运动状态变化。
条件
隔离法的使用需要满足一定的条件,如物体间的相互作用力较小,可以忽略不计;或者需要将复杂的系统分解为 若干个简单的子系统进行研究等。
实例分析:连接体问题
问题描述
两个或多个物体通过轻绳、轻弹簧等 连接在一起,共同运动,求各物体的 加速度和运动状态。
牛顿第二定律连接体问题

一、巧用牛顿第二定律解决连接体问题所谓的“连接体”问题,就是在一道题中出现两个或两个以上相关联的物体,研究它们的运动与力的关系。
1、连接体与隔离体:两个或几个物体相连接组成的物体系统为连接体。
如果把其中某个物体隔离出来,该物体即为隔离体。
2、连接体问题的处理方法(1)整体法:连接体的各物体如果有共同的加速度,求加速度可把连接体作为一个整体,运用牛顿第二定律列方程求解。
(2)隔离法:如果要求连接体间的相互作用力,必须隔离出其中一个物体,对该物体应用牛顿第二定律求解,此方法为隔离法。
隔离法目的是实现内力转外力的,解题要注意判明每一隔离体的运动方向和加速度方向。
(3)整体法解题或隔离法解题,一般都选取地面为参照系。
例题1 跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图1所示. 已知人的质量为70kg,吊板的质量为10kg,绳及定滑轮的质量、滑轮的摩擦均可不计。
取重力加速度g =lOm/s2.当人以440 N的力拉绳时,人与吊板的加速度a和人对吊板的压力F分别为() A.a=1.0m/s,F=260N B.a=1.0m/s,F=330N C.a=3.0m/s,F=110N D.a=3.0m/s,F=50N。
应用整体法和隔离法的解题技巧—内力公式(解析版)

高中物理题型解题技巧之力学篇03内力公式一、必备知识1.连接体问题母模型如图1所示,光滑地面上质量分别为m 1、m 2的两物体通过轻绳连接,水平外力F 作用于m 2上,使两物体一起加速运动,此时轻上的拉力多大?整体由牛顿第二定律求加速度a =Fm 1+m 2−μg隔离求内力T -μm 1g =m 1a得T =m 1m 1+m 2F二:应用技巧(1).物理场景:轻绳或轻杆或轻弹簧等相连加速度相同的连接体,如下情形求m 2、m 3间作用力,将m 1和m 2看作整体F 23=m 1+m 2m 1+m 2+m 3F整体求加速度a =Fm 1+m 2−μg隔离求内力T -μm 1g =m 1a得T =m 1m 1+m 2F整体求加速度a =Fm 1+m 2−g (sin θ+μcos θ)隔离求内力T -m 1g (sin θ-μcos θ)=m 1a得T =m 1m 1+m 2F整体求加速度a =Fm 1+m 2−g隔离求内力T -m 1g =m 1a得T =m 1m 1+m 2Fa =F 2-F 1m 1+m 2−μg隔离T -F 1-μm 1g =m 1a得T =m 1F 2+m 2F 1m 1+m 2(2)方法总结:(内力公式)如上图所示,一起加速运动的物体系统,若力作用于m 1上,则m 1和m 2间的相互作用力为F 12=m 不m 1+m 2F (其中m 不即为外力不作用的物体的作用)此结论与有无摩擦无关(有摩擦,两物体与接触面的动摩擦因数必须相同),物体系统沿水平面、斜面、竖直方向运动时,此结论都成立。
两物体的连接物为轻弹簧、轻杆时,此结论不变。
注意:若整体受到多个外力时,可先将多点个外力分别应用内力公式a .两外力相反时,绳中的拉力为T =m 2m 1+m 2F 1+m 1m 1+m 2F2b .两外力相同时绳中的拉力为T =m 2m 1+m 2F 1-m 1m 1+m 2F2三、实战应用(应用技巧解题,提供解析仅供参考)一、单选题1如图,两物块P 、Q 置于水平地面上,其质量分别为m 、2m ,两者之间用水平轻绳连接。
专题3.4整体法与隔离法及牛顿第二定律的瞬时、临界与极值问题

专题3.4整体法与隔离法及牛顿第二定律的瞬时、临界与极值问题整体法和隔离法是牛顿第二定律应用中极为普遍的方法.隔离法是根本,但有时较烦琐;整体法较简便,但无法求解系统内物体间相互作用力.所以只有两种方法配合使用,才能有效解题.故二者不可取其轻重.连接体问题对在解题过程中选取研究对象很重要.有时以整体为研究对象,有时以单个物体为研究对象.整体作为研究对象可以将不知道的相互作用力去掉,单个物体作研究对象主要解决相互作用力.对于有共同加速度的连接体问题,一般先用整体法由牛顿第二定律求出加速度,再根据题目要求,将其中的某个物体进行隔离分析和求解.由整体法求解加速度时,F=ma,要注意质量m与研究对象对应.一、1.整体法的选取原则若在已知与待求量中一涉及系统内部的相互作用时,可取整体为研究对象,分析整体受到的外力,应用牛顿第二定律列方程。
当系统内物体的加速度相同时:;否则。
2.隔离法的选取原则若在已知量或待求量中涉及到系统内物体之间的作用时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.3.整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.二、运用隔离法解题的基本步骤1.明确研究对象或过程、状态,选择隔离对象.2.将研究对象从系统中隔离出来,或将研究的某状态、某过程从运动的全过程中隔离出来.3.对隔离出的研究对象进行受力分析,注意只分析其它物体对研究对象的作用力.4.寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解.【典例1】如图所示,一夹子夹住木块,在力F作用下向上提升.夹子和木块的质量分别为m、M,夹子与木块两侧间的最大静摩擦力均为F m.若木块不滑动,力F的最大值是( )【典例2】如图所示,质量为M的框架放在水平地面上,一轻质弹簧上端固定在框架上,下端固定一个质量为m的小球.小球上下振动时,框架始终没有跳起.当框架对地面压力为零的瞬间,小球的加速度大小为()【典例3】如图所示,猴子的质量为m,开始时停在用绳悬吊的质量为M的木杆下端,当绳子断开瞬时,猴子沿木杠以加速度a(相对地面)向上爬行,则此时木杆相对地面的加速度为()【典例4】倾角θ=37°,质量M=5kg的粗糙斜面位于水平地面上,质量m=2kg的木块置于斜面顶端,从静止开始匀加速下滑,经t=2s到达底端,运动路程L=4m,在此过程中斜面保持静止(),求:(1)地面对斜面的摩擦力大小与方向;(2)地面对斜面的支持力大小[【典例5】如图,m和M保持相对静止,一起沿倾角为θ的光滑斜面下滑,则M和m间的摩擦力大小是多少?牛顿第二定律的瞬时性问题加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失。
牛顿第二定律的应用整体法与隔离法解
实验:
θ
打点计时器
1、首先平衡摩擦。µ =tanθ
2、m砝《m车Байду номын сангаас,可以认为砝码的重车≈F拉,
其实砝码和小车一起匀加速直线运动 时,砝码重力大于绳子拉力.
例2:如图,质量都为m的两物体A和B,中间用一弹性 系数为K的轻弹簧连接着,把它们置于光滑水平 面上,若水平恒力F1和F2分别作用在A和B上,方 向如图示,且F1> F2,则弹簧的压缩量为多少?
例3. 如图示,两物块质量为M和m,用绳连接后放在倾 角为θ的斜面上,物块和斜面的动摩擦因素为μ,用沿斜 面向上的恒力F 拉物块M 向上运动,求中间绳子的张力.
F
M m
θ T= m(a+ gsinθ+μgcosθ) = mF/( M+m)
练习 4.如图所示,置于水平面上的相同材料的 m和 M 用轻绳连接,在 M上施一水平恒力力 F,使两物体作 匀加速直线运动,对两物体间细绳拉力正确的说法是: ( A) B (A)水平面光滑时,绳拉力等于mF/(M+m); (B)水平面不光滑时,绳拉力等于m F/(M+m); (C)水平面不光滑时,绳拉力大于mF/(M+m); (D)水平面不光滑时,绳拉力小于mF/(M+m)。
例1:如图示:桌面光滑,小车质量为M,砝码质 量为m,求小车受到的拉力和小车的加速度。
F
F
解法一(隔离法): 对m:mg-F=ma L( 1) 对M:F=Ma L L(2) 由(1)(2)得:a= m g M+m 解法二(整体法):将M 、m当作整体,由牛顿第二定律得: mg=(M+m)a a= m g M+m
第四讲牛顿第二定律的综合应用(原卷版)
第四讲牛顿第二定律的综合应用考点一、连接体问题1.连接体多个相互关联的物体连接(叠放、并排或由绳子、细杆、弹簧等联系)在一起构成的系统称为连接体。
连接体一般(含弹簧的系统,系统稳定时)具有相同的运动情况(速度、加速度).2.常见的连接体(1)物物叠放连接体:两物体通过弹力、摩擦力作用,具有相同的速度和加速度速度、加速度相同(2)轻绳连接体:轻绳在伸直状态下,两端的连接体沿绳方向的速度大小总是相等.速度、加速度相同速度、加速度大小相等,方向不同(3)轻杆连接体:轻杆平动时,连接体具有相同的平动速度.速度、加速度相同(4)弹簧连接体:在弹簧发生形变的过程中,两端连接体的速度、加速度不一定相等;在弹簧形变最大时,两端连接体的速度、加速度相等.3.整体法与隔离法在连接体中的应用(1)整体法当连接体内(即系统内)各物体的加速度大小相同时,可以把系统内的所有物体看成一个整体,分析其受力和运动情况,对整体列方程求解的方法。
(2)隔离法当求系统内物体间相互作用的内力时,常把某个物体从系统中隔离出来,分析其受力和运动情况,再对隔离出来的物体列方程求解的方法.例1、如图所示,水平面上有两个质量分别为m1和m2的木块1和2,中间用一条轻绳连接,两木块的材料相同,现用力F向右拉木块2,当两木块一起向右做匀加速直线运动时,已知重力加速度为g,下列说法正确的是()A.若水平面是光滑的,则m2越大绳的拉力越大B.若木块和地面间的动摩擦因数为μ,则绳的拉力为m1Fm1+m2+μm1gC.绳的拉力大小与水平面是否粗糙无关D.绳的拉力大小与水平面是否粗糙有关L例2、(多选)(2020·高考海南卷,T12)如图,在倾角为θ的光滑斜面上,有两个物块P和Q,质量分别为m1和m2,用与斜面平行的轻质弹簧相连接,在沿斜面向上的恒力F作用下,两物块一起向上做匀加速直线运动,则()A.两物块一起运动的加速度大小为a=Fm1+m2B.弹簧的弹力大小为T=m2m1+m2FC.若只增大m2,两物块一起向上匀加速运动时,它们的间距变大D.若只增大θ,两物块一起向上匀加速运动时,它们的间距变大例3、(2020·高考江苏卷,T5)中欧班列在欧亚大陆开辟了“生命之路”,为国际抗疫贡献了中国力量。
牛顿第二定律连接体问题临界极值超失重
连结体: 稳定之后,系统内各物体具有共同旳加速度
两个(或两个以上)物体相互连结参加运动旳系统。
隔离法:求系统相互作用力时,将各个物体隔离出来分析
整体法:若连结体内(即系统内)各物体旳加速度相同,又不
需要系统内各物体间旳相互作用力时,可将系统作为一种整
体来研究
目旳是先把共同加速度表达出来
课本P54 例3
如图所示,AB、AC为不可伸长旳轻绳,小球质量为
m=0.4 kg,当小车静止时,AC水平,AB与竖直方向夹角
为θ=37°,试求小车分别下列列加速度向右匀加速运动时,
两绳上旳张力FAC、FAB分别为多少.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8,tan37°=0.75.
了变化(即“视重”发生变化).
[规律总结] 超重和失重现象判断旳“三”技巧
(1)从受力旳角度判断,当物体所受向上旳拉力(或支持力)不小于重 力时,物体处于超重状态,不不小于重力时处于失重状态,等于 零时处于完全失重状态.
(2)从加速度旳角度判断,当物体具有向上旳加速度时处于超重状 态,具有向下旳加速度时处于失重状态,向下旳加速度为重力加 速度时处于完全失重状态.
答案:(1)a=2 m/s2 (2)FAB=4 N (3)s=40 m
考点 临界与极值问题 课本P54
[规律总结] 动力学中旳“四种”经典临界条件
(1)接触与脱离旳临界条件:弹力FN=0. (2)相对滑动(分离)旳临界条件:静摩擦力到达最大值或加速度 不相同步. (3)绳子断裂与松驰旳临界条件:绳子所能承受旳张力是有程度旳, 绳子断与不断旳临界条件是绳中张力等于它所能承受旳最大张力, 绳子松驰旳临界条件是:FT=0. (4)加速度变化,速度到达最值旳临界条件:当加速度变为零时.
牛顿第二定律整体法、隔离法专题分析
A.F1<F2 B.F1=F2 C.F1>F2 D.无法比较大小 A
有相互作用力的系统
整体法与隔离法
练习:如图所示,物体A放在物体B上,物体B放在光滑 的水平面上,已知mA=6kg,mB=2kg,A、B间动摩擦因数 =0.2.A物上系一细线,细线能承受的最大拉力是20N, 水平向右拉细线,假设A、B之间最大静摩擦力等于滑动 摩擦力.在细线不被拉断的情况下,下述中正确的是 (g=10m/s2) (CD)
A.当拉力F<12N时,A静止不动 B.当拉力F>12N时,A相对B滑动 C.当拉力F=16N时,B受A摩擦力等 于4N D.无论拉力F多大,A相对B始终静 止
有相互作用力的系统
整体法与隔离法
【解析】要判断A、B是否有相对滑动,可假设 F=F0时,A、B间的摩擦力达到最大值,求出此 时拉力的数值F0,若F>F0,则A、B有相对滑 动;若F<F0,则A、B无相对滑动. A、B间的最大静摩擦力为 f0=mAg=0.2×6×10=12N. 当A、B间的静摩擦力f=f0时,由牛顿第二定律 得: 对B: mAg=mBa, a=mAg/mB=0.2×6×10/2=6m/s2;
有相互作用力的系统
整体法与隔离法
• 因三物体加速度相同,本题可用整 体法。 • 解: 研究整体 F=(m1+m2+m3)a 为求a再研究m1: m1的受力图如右。 T= m1 a 为求T研究m2 T= m2g
故a= m2 g/ m1 F=(m1+m2+m3)a F =(m1+m2+m3) m2 g/ m1
m AmB g T g m A mB 1 / m A 1 / mB
对于C、D选项: (mA +mB)为恒量, 只有当mA=mB 时, mA· mB才最大, C、D错。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿第二定律——连接体问题(整体法与隔离法)
一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统
二、处理方法——整体法与隔离法
系统运动状态相同
整体法
问题不涉及物体间的内力 使用原则
系统各物体运动状态不同 隔离法
问题涉及物体间的内力
三、连接体题型:
1【例1】A 、B 两物体靠在一起,kg m B 6=,今用水平力N F A 6=推A ,用水平力F A 、B 间的作用力有多大?
【练1】如图所示,质量为M 的斜面A 置于粗糙水平地面上,动摩擦因数为μ,物体B 与斜面间无摩擦。
速度a 及推力
F 的大小为(A. ()(,sin μθ+==g m M F g a
B. θθcos )(,cos g m M F g a +==
C. )tan ()(,tan θμθ++==g m M F g a
D. g m M F g a )(,cot +==μθ【练2】如图所示,质量为2m 直方向成θ角,则( )
A. 车厢的加速度为θsin g
B. 绳对物体1的拉力为θcos 1g
m C. 底板对物体2的支持力为g m m )(12-
D. 物体2所受底板的摩擦力为θtan 2g m
2、连接体整体内部各部分有不同的加速度:【例2在杆上套有一个环,箱和杆的总质量为M 向下加速运动,当加速度大小为a 时(a <g A. Mg + mg B. Mg —
B θA F
【练3】如图所示,一只质量为m的小猴抓住用绳吊在天花板上的一根质量为M 的竖直杆。
当悬绳突然断裂时,小猴急速沿杆竖直上爬,以保持它离地面的高度不变。
则杆下降的加速度为()
A. g
B.
g
M
m
C.
g
M
m
M+
D.
g
M
m
M-
【练4】如图所示,在托盘测力计的托盘内固定一个倾角为30°的光滑斜面,
现将一个重4 N的物体放在斜面上,让它自由滑下,那么测力计因4 N物体
的存在,而增加的读数是()
A.4 N
B.23 N
C.0 N
D.3 N
【练5】如图所示,A、B的质量分别为m A=0.2kg,m B=0.4kg,盘C的质量m C=0.6kg,
现悬挂于天花板O处,处于静止状态。
当用火柴烧断O处的细线瞬间,木块A 的加速度a A多大?木块B对盘C的压力F BC多大?(g取10m/s2)
连接体作业
1、如图所示,小车质量均为M,光滑小球P的质量为m,绳的质量不计,水平地面光滑。
要使小球P随车一起匀加速运动(相对位置如图所示),则施于小车的水平拉力F各是多少?(θ已知)
球刚好离开斜面A
B
C O
球刚好离开槽底
F= F= F= F=
2、如图所示,A、B质量分别为m1,m2,它们在水平力F的作用下均一起加速
运动,甲、乙中水平面光滑,两物体间动摩擦因数为μ,丙中水平面光滑,丁
中两物体与水平面间的动摩擦因数均为μ,求A、B间的摩擦力和弹力。
f= f= F AB= F AB= 3、如图所示,在光滑水平桌面上,叠放着三个质量相同的物体,用力推
物体a,使三个物体保持静止,一起作加速运动,则各物体所受的合外力
()
A.a最大 B.c最大 C.同样大 D.b最小
4、如图所示,小车的质量为M,正在向右加速运动,一个质量为m的木块紧
靠在车的前端相对于车保持静止,则下列说法正确的是( )
A.在竖直方向上,车壁对木块的摩擦力与物体的重力平衡
B.在水平方向上,
C.若车的加速度变小,
D.若车的加速度变大,
5、物体A、B叠放在斜面体C上,物体B
F
a
b
c
的作用下一起随斜面向左匀加速运动的过程中,物体A 、B 相对静止,设物体B 给物体A 的摩擦力为1f F ,水平地面给斜面体C 的摩擦力为2f F ,(02≠f F ),则( )
A. 01=f F
B. 2f F 水平向左
C. 1f F 水平向左
D. 2f F 水平向右
6、如图3所示,质量为M
物体M 始终保持静止,则在物块m ( )
A. 地面对物体M 的摩擦力方向没有改变;
B. 地面对物体M 的摩擦力先向左后向右;
C. 物块m 上、下滑时的加速度大小相同;
D. 地面对物体M 的支持力总小于g m M )(+
7、如图所示,质量M =8kg 的小车放在光滑的水平面上,在小车右端加一水平恒力F =8N ,当小车速度达到1.5m/s 时,在小车的前端轻轻放上一大小不计、质量m =2kg 的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t =1.5s 通过的位移大小.(g 取10m/s 2)
9、如图10所示,质量为M 的滑块C 和B 用细绳连接,A 将B 用于滑块,为使A 和B 与滑块保持相对静止,B
A
m
F μ<1μ=0
.
10、在粗糙的水平面上有一质量为M 角形木块的两个粗糙斜面上,有两个质量为1m 、2m 的物体分别以1a 、2a 的加速度沿斜面下滑。
三角形木块始终是相对地面静止,求三角形木块受到静摩擦力和支持力?。