线性回归方程——非线性方程转化为线性方程

合集下载

9.1.2线性回归方程讲义-2021-2022学年高二下学期数学苏教版(2019)选择性必修第二册

9.1.2线性回归方程讲义-2021-2022学年高二下学期数学苏教版(2019)选择性必修第二册

编号032 §9.1.2 线性回归方程目标要求1、结合具体实例,了解一元线性回归模型的含义.2、结合具体实例,了解模型参数的统计意义.3、结合具体实例,了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法.4、结合具体实例,会使用相关的统计软件.5、针对实际问题,会用一元线性回归模型进行预测.学科素养目标本章内容是在学生已经学习过必修课程中的统计知识和概率知识的基础上,通过对典型案例的研究,了解和使用一些常用统计分析方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用,从而形成运用统计的观点认识客观事物的习惯.在本章教学中,应突出对学生应用意识的培养,不能只限于要求学生会解书本上的习题,还要关注学生应用与解决实际问题的能力.应引导、鼓励学生从现实生活中发现问题,并能自觉地运用所学的统计方法加以理解,应尽量给学生提供一定的实践活动机会,可结合数学建模活动,选择一个案例,要求学生亲自实践.重点难点重点:一元线性回归模型参数的最小二乘估计方法; 难点:用一元线性回归模型进行预测.教学过程基础知识点 1.线性回归模型我们将y =___________称为线性回归模型. 2.线性回归方程与最小二乘法(1)线性回归方程:直线=__________称为线性回归方程.其中__称为回归截距,__称为回归系数,__称为回归值. (2),的计算公式=∑i =1n(x i -x)(y i -y )∑i =1n(x i -x )2=________________ ,=______________.【课前小题演练】题1.关于回归分析,下列说法错误的是( ) A .回归分析是研究两个具有相关关系的变量的方法 B .散点图中,解释变量在x 轴,响应变量在y 轴 C .回归模型中一定存在随机误差 D .散点图能明确反映变量间的关系题2.根据如下样本数据:x2 3 4 5 6Y 4 2.5 -0.5 -2 -3得到的经验回归方程为=x+,则( )A.>0,>0 B.>0,<0C.<0,>0 D.<0,<0题3.已知变量x,Y之间具有线性相关关系,其散点图如图所示,则其经验回归方程可能为( )A.=1.5x+2 B.=-1.5x+2C.=1.5x-2 D.=-1.5x-2题4.若某地财政收入x与支出Y满足经验回归方程=x++e i(单位:亿元)(i=1,2,…),其中=0.8,=2,|e i|<0.5,如果今年该地区财政收入10亿元,年支出预计不会超过( )A.10亿元B.9亿元C.10.5亿元D.9.5亿元题5.若施肥量x(kg)与水稻产量Y(kg)的经验回归方程为=5x+250,当施肥量为80 kg时,预计水稻产量约为________kg.题6.某种产品的广告费用支出x与销售额Y(单位:百万元)之间有如下的对应数据:x/百万元 2 4 5 6 8Y/百万元30 40 60 50 70(1)画出散点图;(2)求经验回归方程;(3)试预测广告费用支出为10百万元时,销售额多大?【当堂巩固训练】题7.已知x,y的取值如表所示:x234 5y 2.2 3.8 5.5m若y与x线性相关,且回归直线方程为=1.46x-0.61,则表格中实数m的值为( )A.7.69 B.7.5 C.6.69 D.6.5题8.某药厂为了了解某新药的销售情况,将2019年2至6月份的销售额整理如下:月份 2 3 4 5 6 销售额(万元)1925353742根据2至6月份的数据可求得每月的销售额y 关于月份x 的线性回归方程=x +为( )(参考公式及数据:=∑i =1nx i y i -n x y∑i =1n x 2i -n (x )2,=y -x ,∑i =15x i y i =690,∑i =15x 2i =90)A .=5.8x +8.4B .=8.4x +5.8C .=6x -9D .=4x +31.6题9.登山族为了了解某山高y (km )与气温x (℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x (℃) 18 13 10 -1 山高y (km )24343864由表中数据,得到线性回归方程=-2x +()∈R ,由此请估计出山高为72(km )处气温的度数为( )A .-10B .-8C .-4D .-6题10.根据如下的样本数据:x 1 2 3 y2.133.9得到的回归方程为=bx +a ,则直线ax +by -3=0经过定点( ) A .(-1,-2) B .(-1,2) C .(1,-2)D .(1,2)题11.某同学在研究学习中,收集到某制药厂今年5个月甲胶囊生产产量(单位:万盒)的数据如表所示:x (月份) 1 2 3 4 5 y (万盒)55668若x ,y 线性相关,线性回归方程为=0.7x +,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加0.7个单位长度 B .x 每增加1个单位长度,则y 必减少0.7个单位长度C.当x=6时,y的预测值为8.1万盒D.线性回归直线=0.7x +经过点(2,6)题12.下列说法:①设有一个回归方程=3-5x,变量x增加一个单位时,y平均增加5个单位;②线性回归方程=x+必过()x,y;③设某地女儿身高y对母亲身高x的一个回归直线方程是=34.92+0.78x,则方程中的=34.92可以解释为女儿身高不受母亲身高变化影响的部分.其中正确的个数是( )A.0 B.1 C.2 D.3题13.(多选题...)两个相关变量x,y的5组对应数据如表:x8.3 8.6 9.9 11.1 12.1y 5.9 7.8 8.1 8.4 9.8根据表格,可得回归直线方程=x+,求得=0.78.据此估计,以下结论正确的是( )A.x=10 B.y=9C.=0.2 D.当x=15时,=11.95题14.(多选题...)已知x与y之间的几组数据如表:x 1 2 3 4 5 6y0 2 1 3 3 4假设根据表格数据所得线性回归直线方程为=x+,若某同学根据上表中的前两组数据()1,0和()2,2求得的直线方程为y=b′x+a′,则以下结论正确的是( )参考公式:=∑i=1nx i y i-n x y∑i=1nx2i-n(x)2,=y-b x .A.a′=-2 B.b′=2 C.>b′ D.>a′【综合突破拔高】题15.对于指数曲线y=ae bx,令U=ln y,c=ln a,经过非线性回归分析后,可转化的形式为( ) A.U=c+bx B.U=b+cxC.y=c+bx D.y=b+cx题16.若一函数模型为y =sin 2α+2sinα+1,为将y 转化为t 的经验回归方程,则需作变换t 等于( ) A .sin 2αB .(sinα+1)2C .⎝ ⎛⎭⎪⎫sin α+12 2D .以上都不对题17.在生物学上,有隔代遗传的现象.已知某数学老师的体重为62 kg ,他的曾祖父、祖父、父亲、儿子的体重分别为58 kg 、64 kg 、58 kg 、60 kg .如果体重是隔代遗传,且呈线性相关,根据以上数据可得解释变量x 与预报变量的回归方程为=x +,其中=0.5,据此模型预测他的孙子的体重约为( ) A .58 kgB .61 kgC .65 kgD .68 kg题18.(多选题...)月亮公转与自转的周期大约为30天,阴历是以月相变化为依据.人们根据长时间的观测,统计了月亮出来的时间y (简称“月出时间”,单位:小时)与天数x (x 为阴历日数,x ∈N *,且0≤x ≤30)的有关数据,如表,并且根据表中数据,求得y 关于x 的线性回归方程为=0.8x +.x 2 4 7 10 15 22 y8.19.41214.418.524其中,阴历22日是分界线,从阴历22日开始月亮就要到第二天(即23日0:00)才升起.则( ) A .样本点的中心为()10,14.4 B .=6.8C .预报月出时间为16时的那天是阴历13日D .预报阴历27日的月出时间为阴历28日早上4:00题19.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润Y 的统计分析知x ,Y 具备线性相关关系,经验回归方程为=10.47-1.3x ,估计该台机器最为划算的使用年限为______年.题20.以模型y =ce kx 去拟合一组数据时,为了求出非经验回归方程,设z =ln y ,其变换后得到经验回归方程=0.3x +4,则c =________.题21.为了响应中央号召,某日深圳环保局随机抽查了本市市区汽车尾气排放污染物x (单位:ppm )与当天私家车路上行驶的时间y (单位:小时)之间的关系,从某主干路随机抽取10辆私家车,已知x 与y 之间具有线性相关关系,其回归直线方程为=0.3x -0.4,若该10辆车中有一辆私家车的尾气排放污染物为6(单位:ppm ),据此估计该私家车行驶的时间为________小时.题22.某市农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月4日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下数据:日期 12月1日12月2日12月3日12月4日温差 11 13 12 8 发芽数(颗)26322617根据表中12月1日至12月3日的数据,求得线性回归方程=x +中的=-8,则求得的=________;若用12月4日的数据进行检验,检验方法如下:先用求得的线性回归方程计算发芽数,再求与实际发芽数的差,若差值的绝对值不超过2颗,则认为得到的线性回归方程是可靠的,则求得的线性回归方程________(填“可靠”或“不可靠”).题23.如表为收集到的一组数据:x 21 23 25 27 29 32 35 Y711212466115325试建立Y 与x 之间的回归方程.题24.宿州市公安局交警支队依据《中华人民共和国道路交通安全法》第90条规定:所有主干道路凡机动车途经十字路口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以100元罚款,记3分的行政处罚.如表是本市一主干路段监控设备所抓拍的5个月内,机动车驾驶员“不礼让行人”行为统计数据:月份x 1 2 3 4 5 违章驾驶员人数y1151101009085(1)若x 与y 之间具有很强的线性相关关系,请利用所给数据求违章驾驶员人数y 与月份x 之间的回归直线方程=x +;(2)预测该路段8月份的“不礼让行人”违章驾驶员的人数.参考公式:=∑i =1nx i y i -n x ·y∑i =1nx 2i -n (x)2,=y -x ,参考数据:∑i =15x i y i =1 420.编号032 §9.1.2 线性回归方程目标要求1、结合具体实例,了解一元线性回归模型的含义.2、结合具体实例,了解模型参数的统计意义.3、结合具体实例,了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法.4、结合具体实例,会使用相关的统计软件.5、针对实际问题,会用一元线性回归模型进行预测.学科素养目标本章内容是在学生已经学习过必修课程中的统计知识和概率知识的基础上,通过对典型案例的研究,了解和使用一些常用统计分析方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用,从而形成运用统计的观点认识客观事物的习惯.在本章教学中,应突出对学生应用意识的培养,不能只限于要求学生会解书本上的习题,还要关注学生应用与解决实际问题的能力.应引导、鼓励学生从现实生活中发现问题,并能自觉地运用所学的统计方法加以理解,应尽量给学生提供一定的实践活动机会,可结合数学建模活动,选择一个案例,要求学生亲自实践.重点难点重点:一元线性回归模型参数的最小二乘估计方法; 难点:用一元线性回归模型进行预测.教学过程基础知识点 1.线性回归模型我们将y =a +bx +ε称为线性回归模型. 2.线性回归方程与最小二乘法(1)线性回归方程:直线=+x 称为线性回归方程.其中称为回归截距,称为回归系数,称为回归值.(2),的计算公式=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=___∑i =1nx i y i -n x y∑i =1nx 2i -n (x)2___ ,=__y -x __.【课前小题演练】题1.关于回归分析,下列说法错误的是( ) A .回归分析是研究两个具有相关关系的变量的方法 B .散点图中,解释变量在x 轴,响应变量在y 轴 C .回归模型中一定存在随机误差 D .散点图能明确反映变量间的关系【解析】选D .用散点图反映两个变量间的关系时,存在误差. 题2.根据如下样本数据:x 2 3 4 5 6Y 4 2.5 -0.5 -2 -3得到的经验回归方程为=x+,则( )A.>0,>0 B.>0,<0C.<0,>0 D.<0,<0【解析】选B.由题干表中的数据可得,变量Y随着x的增大而减小,则<0,又回归方程为=x+经过(2,4),(3,2.5),可得>0.题3.已知变量x,Y之间具有线性相关关系,其散点图如图所示,则其经验回归方程可能为( )A.=1.5x+2 B.=-1.5x+2C.=1.5x-2 D.=-1.5x-2【解析】选B.设经验回归方程为=x+,由题干中散点图可知变量x,Y之间负相关,经验回归直线在Y轴上的截距为正数,所以<0,>0,因此方程可能为=-1.5x+2.题4.若某地财政收入x与支出Y满足经验回归方程=x++e i(单位:亿元)(i=1,2,…),其中=0.8,=2,|e i|<0.5,如果今年该地区财政收入10亿元,年支出预计不会超过( )A.10亿元B.9亿元C.10.5亿元D.9.5亿元【解析】选C.=0.8×10+2+e i=10+e i,因为|e i|<0.5,所以9.5<<10.5.题5.若施肥量x(kg)与水稻产量Y(kg)的经验回归方程为=5x+250,当施肥量为80 kg时,预计水稻产量约为________kg.【解析】把x=80代入经验回归方程可得其预测值=5×80+250=650(kg).答案:650题6.某种产品的广告费用支出x与销售额Y(单位:百万元)之间有如下的对应数据:x/百万元 2 4 5 6 8Y/百万元30 40 60 50 70(1)画出散点图;(2)求经验回归方程;(3)试预测广告费用支出为10百万元时,销售额多大?【解析】(1)散点图如图所示:(2)列出下表,并用科学计算器进行有关计算:i 1 2 3 4 5 合计 x i 2 4 5 6 8 25 y i 30 40 60 50 70 250 x i y i 60 160 300 300 560 1 380 x 2i416253664145所以x =255 =5,y =2505=50,∑i =15x 2i =145,∑i =15x i y i =1 380.于是可得=∑i =15x i y i -5x y∑i =15x 2i -5x 2=1 380-5×5×50145-52×5=6.5,=y -x =50-6.5×5=17.5. 所以所求的经验回归方程为=6.5x +17.5.(3)根据上面求得的经验回归方程,当广告费用支出为 10百万元时,=6.5×10+17.5=82.5(百万元),即广告费用支出为10百万元时,销售额大约为82.5百万元. 【当堂巩固训练】题7.已知x ,y 的取值如表所示:x 2 3 4 5 y2.23.85.5m若y 与x 线性相关,且回归直线方程为=1.46x -0.61,则表格中实数m 的值为( ) A .7.69 B .7.5 C .6.69 D .6.5 【解析】选D .因为x =2+3+4+54 =72, y =2.2+3.8+5.5+m 4 =11.5+m 4,所以11.5+m 4 =1.46×72-0.61,解得m =6.5.题8.某药厂为了了解某新药的销售情况,将2019年2至6月份的销售额整理如下:月份 2 3 4 5 6 销售额(万元)1925353742根据2至6月份的数据可求得每月的销售额y 关于月份x 的线性回归方程=x +为( )(参考公式及数据:=∑i =1nx i y i -n x y∑i =1n x 2i -n (x )2,=y -x ,∑i =15x i y i =690,∑i =15x 2i =90)A .=5.8x +8.4B .=8.4x +5.8C .=6x -9D .=4x +31.6【解析】选A .由表格中的数据得x =2+3+4+5+65=4,y =19+25+35+37+425=31.6,所以=∑i =15x i y i -5x y∑i =15x 2i -5(x)2=690-5×4×31.690-5×42=5.8, =31.6-5.8×4=8.4,因此,y 关于x 的线性回归方程为=5.8x +8.4.题9.登山族为了了解某山高y (km )与气温x (℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x (℃) 18 13 10 -1 山高y (km )24343864由表中数据,得到线性回归方程=-2x +()∈R ,由此请估计出山高为72(km )处气温的度数为( )A .-10B .-8C .-4D .-6【解析】选D .由题意可得x =10,y =40,所以=y +2x =40+2×10=60.所以=-2x +60,当=72时,有-2x +60=72,解得x =-6. 题10.根据如下的样本数据:x 1 2 3 y2.133.9得到的回归方程为=bx +a ,则直线ax +by -3=0经过定点( ) A .(-1,-2)B .(-1,2)C .(1,-2)D .(1,2)【解析】选D .由所给数据得x =2,y =3,3i 1=∑(x i -x )(y i -y )=1.8,3i 1=∑(x i -x )2=2,所以b =0.9,a =3-0.9×2=1.2,所以直线ax +by -3=0方程为1.2x +0.9y -3=0,过点(1,2). 题11.某同学在研究学习中,收集到某制药厂今年5个月甲胶囊生产产量(单位:万盒)的数据如表所示:x (月份) 1 2 3 4 5 y (万盒)55668若x ,y 线性相关,线性回归方程为=0.7x +,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加0.7个单位长度 B .x 每增加1个单位长度,则y 必减少0.7个单位长度 C .当x =6时,y 的预测值为8.1万盒 D .线性回归直线=0.7x +经过点(2,6)【解析】选C .由=0.7x +,得x 每增(减)一个单位长度,y 不一定增加(减少)0.7,而是大约增加(减少)0.7个单位长度,故选项A ,B 错误;由已知表中的数据,可知x =1+2+3+4=55 =3,y =5+5+6+6+85=6,则回归直线必过点(3,6),故D 错误;将(3,6)代入回归直线=0.7x +,解得=3.9,即=0.7x +3.9,令x =6,解得=0.7×6+3.9=8.1万盒. 题12.下列说法:①设有一个回归方程=3-5x ,变量x 增加一个单位时,y 平均增加5个单位; ②线性回归方程=x +必过()x ,y ;③设某地女儿身高y 对母亲身高x 的一个回归直线方程是=34.92+0.78x ,则方程中的=34.92可以解释为女儿身高不受母亲身高变化影响的部分. 其中正确的个数是( ) A .0 B .1 C .2 D .3【解析】选C .设有一个回归方程=3-5x ,变量x 增加一个单位时,y 平均减少5个单位,故①错;线性回归方程=x +必过样本中心点()x ,y ,故②正确;设某地女儿身高y 对母亲身高x 的一个回归直线方程是=34.92+0.78x ,当x =0时,=34.92, 方程中的=34.92可以解释为女儿身高不受母亲身高变化影响的部分,故③正确. 题13.(多选题...)两个相关变量x ,y 的5组对应数据如表:x 8.3 8.6 9.9 11.1 12.1 y5.97.88.18.49.8根据表格,可得回归直线方程=x +,求得=0.78.据此估计,以下结论正确的是( )A .x =10B .y =9C .=0.2D .当x =15时,=11.95【解析】选AC .易求得x =10,y =8⇒=y -x =8-0.78×10=0.2,所以=0.78x +0.2. x =15⇒=0.78×15+0.2=11.90.题14.(多选题...)已知x 与y 之间的几组数据如表:x 1 2 3 4 5 6 y21334假设根据表格数据所得线性回归直线方程为=x +,若某同学根据上表中的前两组数据()1,0 和()2,2 求得的直线方程为y =b ′x +a ′,则以下结论正确的是()参考公式:=∑i =1nx i y i -n x y∑i =1nx 2i -n (x)2,=y -b x . A .a ′=-2 B .b ′=2 C .>b ′ D .>a ′【解析】选ABD .因为某同学根据前两组数据()1,0 和()2,2 求得的直线方程为y =b ′x +a ′,所以b ′=2,a ′=-2,根据题意得:x =3.5,y =136,∑i =16x i y i =0+4+3+12+15+24=58,∑i =16x 2i =1+4+9+16+25+36=91,所以=∑i =16x i y i -6x y∑i =16x 2i -6(x)2=57 ,=y -x =136 -57 ×72 =-13 ,所以<b ′,>a ′. 【综合突破拔高】题15.对于指数曲线y =ae bx ,令U =ln y ,c =ln a ,经过非线性回归分析后,可转化的形式为( ) A .U =c +bx B .U =b +cx C .y =c +bxD .y =b +cx【解析】选A .由y =ae bx 得ln y =ln (ae bx ), 所以ln y =ln a +ln e bx ,所以ln y =ln a +bx ,所以U =c +bx .题16.若一函数模型为y =sin 2α+2sinα+1,为将y 转化为t 的经验回归方程,则需作变换t 等于( ) A .sin 2αB .(sinα+1)2C .⎝⎛⎭⎪⎫sin α+12 2D .以上都不对 【解析】选B .因为y 是关于t 的经验回归方程,实际上就是y 是关于t 的一次函数,又因为y =(sin α+1)2,若令t =(sin α+1)2,则可得y 与t 的函数关系式为y =t ,此时变量y 与变量t 是线性相关关系. 题17.在生物学上,有隔代遗传的现象.已知某数学老师的体重为62 kg ,他的曾祖父、祖父、父亲、儿子的体重分别为58 kg 、64 kg 、58 kg 、60 kg .如果体重是隔代遗传,且呈线性相关,根据以上数据可得解释变量x 与预报变量的回归方程为=x +,其中=0.5,据此模型预测他的孙子的体重约为( ) A .58 kgB .61 kgC .65 kgD .68 kg【解析】选B .由于体重是隔代遗传,且呈线性相关, 则取数据(58,58),(64,62),(58,60),得x =58+64+583 =60,y =58+62+603 =60,即样本点的中心为(60,60),代入=x +, 得=60-0.5×60=30,则=0.5x +30, 取x =62,可得=0.5×62+30=61 kg . 故预测他的孙子的体重约为61 kg .题18.(多选题...)月亮公转与自转的周期大约为30天,阴历是以月相变化为依据.人们根据长时间的观测,统计了月亮出来的时间y (简称“月出时间”,单位:小时)与天数x (x 为阴历日数,x ∈N *,且0≤x ≤30)的有关数据,如表,并且根据表中数据,求得y 关于x 的线性回归方程为=0.8x +.x 2 4 710 15 22 y8.19.41214.418.524其中,阴历22日是分界线,从阴历22日开始月亮就要到第二天(即23日0:00)才升起.则( ) A .样本点的中心为()10,14.4 B .=6.8C .预报月出时间为16时的那天是阴历13日D .预报阴历27日的月出时间为阴历28日早上4:00 【解析】选AD .x =2+4+7+10+15+226=10,y =8.1+9.4+12+14.4+18.5+246=14.4,故样本点的中心为()10,14.4 ,选项A 正确;将样本点的中心()10,14.4 代入=0.8x +得=6.4,故选项B 错误;因为=0.8x +6.4,当y =16时,求得x =12,月出时间为阴历12日,选项C 错误;因为阴历27日时,即x =27,代入=0.8×27+6.4=28,日出时间应该为28日早上4:00,选项D 正确. 题19.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润Y 的统计分析知x ,Y 具备线性相关关系,经验回归方程为=10.47-1.3x ,估计该台机器最为划算的使用年限为______年. 【解析】当年利润小于或等于零时应该报废该机器, 当y =0时,令10.47-1.3x =0,解得x ≈8, 故估计该台机器最为划算的使用年限为8年. 答案:8题20.以模型y =ce kx 去拟合一组数据时,为了求出非经验回归方程,设z =ln y ,其变换后得到经验回归方程=0.3x +4,则c =________. 【解析】由题意,得ln (ce kx )=0.3x +4,所以ln c +kx =0.3x +4,所以ln c =4,所以c =e 4. 答案:e 4题21.为了响应中央号召,某日深圳环保局随机抽查了本市市区汽车尾气排放污染物x (单位:ppm )与当天私家车路上行驶的时间y (单位:小时)之间的关系,从某主干路随机抽取10辆私家车,已知x 与y 之间具有线性相关关系,其回归直线方程为=0.3x -0.4,若该10辆车中有一辆私家车的尾气排放污染物为6(单位:ppm ),据此估计该私家车行驶的时间为________小时.【解析】由=0.3x -0.4,令x =6,代入可得=0.3×6-0.4=1.4.所以估计该私家车行驶的时间为1.4小时. 答案:1.4题22.某市农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月4日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下数据:日期 12月1日 12月2日12月3日12月4日温差 11 13 12 8 发芽数(颗)26322617根据表中12月1日至12月3日的数据,求得线性回归方程=x +中的=-8,则求得的=________;若用12月4日的数据进行检验,检验方法如下:先用求得的线性回归方程计算发芽数,再求与实际发芽数的差,若差值的绝对值不超过2颗,则认为得到的线性回归方程是可靠的,则求得的线性回归方程________(填“可靠”或“不可靠”).【解析】由题得x =11+13+123 =12,y =26+32+263 =28,所以样本中心点为(12,28),所以28=×12-8,所以=3;因为=3x -8,所以12月4日的估计值为=3×8-8=16,又|17-16|=1,没有超过2,所以求得的线性回归方程可靠. 答案:3 可靠题23.如表为收集到的一组数据:x 21 23 25 27 29 32 35 Y711212466115325试建立Y 与x【解析】作出散点图,如图.从散点图中可以看出x 与Y 不具有线性相关关系,根据已有知识可以发现样本点分布在某一条指数函数曲线的周围.令Z =ln Y ,则变换后的样本点分布在直线=x +的周围,这样就可以利用线性经验回归模型来建立非线性经验回归方程了,数据可以转化为:x 21 232527 29 32 35 Z1.9462.3983.0453.1784.1904.7455.784求得经验回归方程为=0.272x -3.849, 所以=e0.272x -3.849.题24.宿州市公安局交警支队依据《中华人民共和国道路交通安全法》第90条规定:所有主干道路凡机动车途经十字路口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以100元罚款,记3分的行政处罚.如表是本市一主干路段监控设备所抓拍的5个月内,机动车驾驶员“不礼让行人”行为统计数据:月份x 1 2 3 45 违章驾驶员人数y1151101009085(1)若x 与y 之间具有很强的线性相关关系,请利用所给数据求违章驾驶员人数y 与月份x 之间的回归直线方程=x +;(2)预测该路段8月份的“不礼让行人”违章驾驶员的人数.参考公式:=∑i =1nx i y i -n x ·y∑i =1nx 2i -n (x)2,=y -x ,参考数据:∑i =15x i y i =1 420.【解析】(1)由表中数据得:x =15()1+2+3+4+5 =3,y =15()115+110+100+90+85 =100,=∑i =15x i y i-5x·y∑i=15x2i-5(x)2=1 420-5×3×10055-45=-8,=y-x=100+8×3=124.所以y与x之间的回归直线方程为=-8x+124;(2)由(1)得,=-8x+124,令x=8,得=-8×8+124=60,预测该路段8月份的“不礼让行人”违章驾驶员人数为60人.。

(整理)计量经济学第四章非线性回归模型的线性化

(整理)计量经济学第四章非线性回归模型的线性化

(整理)计量经济学第四章⾮线性回归模型的线性化第四章⾮线性回归模型的线性化以上介绍了线性回归模型。

但有时候变量之间的关系是⾮线性的。

例如 y t = α 0 + α11βt x + u t y t = α 0 t x e 1α+ u t上述⾮线性回归模型是⽆法⽤最⼩⼆乘法估计参数的。

可采⽤⾮线性⽅法进⾏估计。

估计过程⾮常复杂和困难,在20世纪40年代之前⼏乎不可能实现。

计算机的出现⼤⼤⽅便了⾮线性回归模型的估计。

专⽤软件使这种计算变得⾮常容易。

但本章不是介绍这类模型的估计。

另外还有⼀类⾮线性回归模型。

其形式是⾮线性的,但可以通过适当的变换,转化为线性模型,然后利⽤线性回归模型的估计与检验⽅法进⾏处理。

称此类模型为可线性化的⾮线性模型。

下⾯介绍⼏种典型的可以线性化的⾮线性模型。

4.1 可线性化的模型⑴指数函数模型y t = t t ubx ae + (4.1)b >0 和b <0两种情形的图形分别见图4.1和4.2。

显然x t 和y t 的关系是⾮线性的。

对上式等号两侧同取⾃然对数,得Lny t = Lna + b x t + u t (4.2)令Lny t = y t *, Lna = a *, 则y t * = a * + bx t + u t (4.3) 变量y t * 和x t 已变换成为线性关系。

其中u t 表⽰随机误差项。

010203040501234XY 1图4.1 y t =tt u bx ae+, (b > 0) 图4.2 y t =t+, (b < 0)⑵对数函数模型y t = a + b Ln x t+ u t(4.4)b>0和b<0两种情形的图形分别见图4.3和4.4。

x t和y t的关系是⾮线性的。

令x t* = Lnx t, 则y t = a + b x t* + u t(4.5)变量y t和x t* 已变换成为线性关系。

图4.3 y t = a + b Lnx t + u t , (b > 0) 图4.4 y t = a + b Lnx t + u t , (b < 0)⑶幂函数模型y t= a x t b t u e(4.6) b取不同值的图形分别见图4.5和4.6。

第3课时 非线性经验回归方程

第3课时 非线性经验回归方程

a=ec≈e5.46≈235. ∴模型②的经验回归方程为y^ =235e0.11x.
(2)根据下列表中的数据,比较两种模型的决定系数R2,并选择拟合精度 更高、更可靠的模型,预测2022年该景区的旅游人数(单位:万人,精确 到个位). 经验回归方程 ①y^=50.8x+169.7 ②y^=aebx
解 绘出的散点图如图所示,根据散点
图判断y= c1 ec2x更适合作为该种细菌的
繁殖数量y关于x的回归方程类型.
(2)当温度为25 ℃时,该种细菌的繁殖数量的预测值为多少?
参考公式:对于一组数据(ui,vi)(i=1,2,3,…,n),其经验回归直线v^ =
n
ui- u vi- v
i=1
β^ u+α^的斜率和截距的最小二乘估计分别为β^=
i=1
i=1
i=1
5.5 449 6.05
83
4 195
9.00
模型①的决定系数 R21小于模型②的 R22,说明回归模型②的拟合效果更好. 2022年时,x=13,预测旅游人数为 y^ =235e0.11×13=235e1.43≈235×4.2=987(万人).
跟踪训练1 已知某种细菌的适宜生长温度为10 ℃~25 ℃,为了研究该种细菌的 繁殖数量y(单位:个)随温度x(单位:℃)变化的规律,收集数据如表:
n
yi-y^i2
i=1
②刻画回归效果的决定系数 R2=1-
.
n
yi- y 2
i=1
③参考数据:e5.46≈235,e1.43≈4.2.
xy
10
10
10
u (xi- x )2 (xi- x )·(yi- y ) (xi- x )·(ui- u )

8.2一元线性回归模型及其应用(2)课件-2022-2023学年高二下学期数学人教A版(2019)选

8.2一元线性回归模型及其应用(2)课件-2022-2023学年高二下学期数学人教A版(2019)选

i1
i1
n
n
[( yi y) b(xi x)][( y bx) a] ( y bx a) [( yi y) b(xi x)]
i1
i1
n
n
( y bx a)( ( yi y) b (xi x))
i1
i1
( y bx a)[(n y n y) b(nx nx)] 0
i1
i1
i1
i1
上式是关于b的二次函数,因此要使Q取得最小值,当且仅当b的取值为
n
( xi x)( yi y)
b i1 n
( xi x)2
i 1
新知探索
3.最小二乘法
n
n
(xi x)( yi y)
xi yi nx y
b i1
n
(xi x)2

i 1
ˆy bˆx
新知探索
问题2:依据用最小二乘估计一元线性回归模型参数的公式,求出儿子身高Y 关于父亲身高x的经验回归方程.
ˆy 0.839x 28.957
1). 当x=176时,y 177 ,如果一位父亲身高为176cm,他儿子长大后
身高一定能长到177cm吗?为什么?
儿子的身高不一定会是177cm,这是因为还有其他影响儿子 身高的因素,回归模型中的随机误差清楚地表达了这种影响,父亲 的身高不能完全决定儿子的身高,不过,我们可以作出推测,当 父亲的身高为176cm时,儿子身高一般在177cm左右.
n
因此可用 yi -(bxi a)来刻画各样本观测数据与直线y=bx+a的整体接近程度. i 1
新知探索
n
| yi (bxi a) |
i 1
n
残差平方和:Q(a,b) yi (bxi a)2 i1

高一数学必修三课件第章线性回归方程

高一数学必修三课件第章线性回归方程

01
02
03
变量
在某一过程中可以取不同 数值的量。
自变量
能够影响其它变量,而又 不受其它变量影响的变量 。
因变量
依赖于其它变量,而又不 能影响其它变量的变量。
散点图及其特点
散点图
用点的密度和变化趋势表示两指 标之间的直线和曲线关系的图。
特点
能直观表现出影响因素和预测对 象之间的总体关系趋势。
线性回归方程定义
通过绘制自变量和因变量的散点图,观察数据点 分布形态,若呈现非线性形态,则可能存在非线 性关系。
曲线拟合
根据散点图形态,选择合适的曲线类型进行拟合 ,如二次曲线、指数曲线、对数曲线等。
3
变换自变量或因变量
通过对自变量或因变量进行变换,如取对数、平 方、开方等,将非线性关系转化为线性关系。
可化为线性关系非线性模型
一致性
随着样本量的增加,线性回归方程 的系数估计值会逐渐接近真实值。
预测值与置信区间估计
预测值
根据回归方程和给定的自 变量值,可以计算出因变 量的预测值。
置信区间
通过构造置信区间,可以 对预测值进行区间估计, 表示预测值的可靠程度。
置信水平
置信水平表示了置信区间 包含真实值的概率,常用 的置信水平有95%和99% 。
在数据采集过程中,可能存在某些自变量 被重复测量或高度相关的情况。
变量设计问题
样本量问题
在变量设计时,可能存在某些自变量之间 存在固有的高度相关性。
当样本量较小而自变量较多时,也容易出 现多重共线性问题。
识别和处理多重共线性方法
观察自变量间的相关系数
如果两个自变量间的相关系数很高,则可能存在多重共线性 。
案例二

回归分析_非线性回归

回归分析_非线性回归

x x ...... x
P( noevent )
1 1 e
0 1 x1 2 x2 ...... p x p
程序
工具
例子
Logistic Regression
The LOGISTIC procedure fits logistic models, in which the response can be either dichotomous or polychotomous. Stepwise model selection is available. You can request regression diagnostics, and predicted and residual values.
例2—程序1
proc logistic data=sasuser.hg06 descend; model y=x1 x2 x3 x4 x5; run;
例2—结果1
全回归
例2—程序2
proc logistic data=sasuser.hg06 descend; model y=x1 x2 x3 x4 x5 /selection=stepwise; run;
LOGISTIC程序
LOGISTIC工具
用Analyst 计算 Statistics → Regression → Logistic
Logistic_例1 抽查40名患者,治疗后一 定时间内观察其康复状态。
例1—程序
proc logistic data=sasuser.hg05; model y=x1 x2; run;
时间序列数据管理。
回归分析功能
REG 一般线性回归分析
RSREG

一元线性回归模型及其应用

一元线性回归模型及其应用

题型二 一元线性回归模型的应用
[探究发现]
(1)残差平方和与R2有怎样的关系?
n
yi-^yi2
i=1
提示:R2=1-
,即残差平方和越小,R2 越大.
n
yi--y 2
i=1
(2)R2的大小对模型的拟合效果有怎样的影响?
提示:R2越大,说明残差平方和越小,即模型的拟合效果越好.
[学透用活] [典例2] 假定小麦基本苗数x与成熟期有效穗y之间存在相关关系,今测得5 组数据如下:
解:(1) x =16×(8+8.2+8.4+8.6+8.8+9)=8.5, y =16×(90+84+83+80+75+68)=80, ^a= y +20 x =80+20×8.5=250, 所以经验回归方程为^y=-20x+250. (2)工厂获得的利润 z=(x-4)y=-20x2+330x-1 000, 由二次函数知识可知当 x=343时,zmax=361.25(元). 故该产品的单价应定为 8.25 元.
2.一元线性回归模型参数的最小二乘估计 (1)经验回归方程:
对于一组具有线性相关关系的成对样本数据(x1,y1),(x2,y2),…,(xn,yn),
n
xi--x yi--y
n xiyi-n-x -y
i=1
i=1
由最小二乘法得^b=


n
xi--x 2
n x2i -n-x 2
i=1
i=1
^a=-y -^b-x .
(二)基本知能小试
1.判断正误
(1)在一元线性回归模型中,e 是 bx+a 预报真实值 y 的随机误差,它是一个
可观测的量.
()
(2)用最小二乘法求出的^b可能是正的,也可能是负的. (3)残差平方和越大,线性回归模型的拟合效果越好. (4)经验回归方程^y=^bx+^a必过点(-x ,-y =1 076.2.

第23讲 非线性回归方程(解析版)

第23讲 非线性回归方程(解析版)

第23讲 非线性回归方程一、必备秘籍当经验回归方程并非形如y bx a =+(,a b R ∈)时,称之为非线性经验回归方程,当两个变量不呈线性相关关系时,依据样本点的分布选择合适的曲线方程来模拟,常见的非线性经验回归方程的转换方式总结如下:1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换(一般题目都有明显的暗示如何换元,换元成什么变量),将非线性经验回归模型转化为线性经验回归模型(特别注意:使用线性回归方程的公式,注意代入变换后的变量);4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 . 二、例题讲解1.(2021·全国高三专题练习(文))人类已经进入大数据时代.目前,数据量级已经从TB (1TB =1024GB )级别跃升到PB (1PB =1024TB ),EB (1EB =1024PB )乃至ZB (1ZB =1024EB )级别.国际数据公司(IDC )研究结果表明,2008年全球产生的数据量为0.49ZB ,2009年数据量为0.8ZB ,2010年增长到1.2ZB ,2011年数据量更是高达1.82ZB .下表是国际数据公司(IDC )研究的全球近6年每年产生的数据量(单位:ZB )及相关统计量的值:表中ln i i z y =,16i i z z ==∑.(1)根据上表数据信息判断,方程21c xy c e =⋅(e 是自然对数的底数)更适宜作为该公司统计的年数据量y 关于年份序号x 的回归方程类型,试求此回归方程(2c 精确到0.01).(2)有人预计2021年全世界产生的数据规模将超过2011年的50倍.根据(1)中的回归方程,说明这种判断是否准确,并说明理由.参考数据: 4.5695.58e ≈, 4.5897.51e ≈,回归方程y a bx =+中,斜率最小二乘法公式为()()()1122211n niii ii i nniij i x x y y x y nxyb x x xnx====---==--∑∑∑∑,a y bx =-.【答案】(1) 1.520.38x y e +=;(2)见解析. 【分析】(1)设ln z y =,则12ln z c c x =+,再根据参考数据及公式即可得解(2)先将8x =代入得预计2021年数据量,进而和2011年的50倍比较大小即可得解 【详解】(1)由21c xy c e =⋅,两边同时取自然对数得()2112ln ln ln c x y c e c c x =⋅=+,设ln z y =,则12ln z c c x =+. 因为 3.5x =, 2.85z =,()62117.58i i x x=-=∑,()()616.7.i i i x x z z =--=∑,所以()()()12216.730.3817.58niii nij x x z z c x x ==--==≈-∑∑,12ln 2.850.38 3.5 1.52c z c x =-=-⨯=.所以 1.520.38ln z x y =+=, 所以 1.520.38x y e +=;(2)令8x =,得 1.520.388 4.56ˆ95.58 1.825091ye e +⨯==≈>⨯=. 预计2021年全世界产生的数据规模会超过2011年的50倍. 【点睛】关键点点睛:对于非线性回归方程的求解,一般要结合题意作变换,转化为线性回归方程来求解,同时也要注意相应数据的变化.((11ii nj x b ===∑∑再直接选择数据,字母x 没有((11n ii nj x b ===∑∑参考数据总选择需要的数据代入计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时,2018 年人均可支配年收入
(Ⅱ)由题意知 2017 年时该市享受“国家精准扶贫”政策的学生共 200000×7%=14000 人
2/7
. ,
(万)
线性回归方程——非线性方程转化为线性方程 一般困难、很困难、特别困难的中学生依次有 7000 人、4200 人、2800 人, 2018 年人均可支配收入比 2017 年增长
=576。6,
年利润 z 的预报值为
. 1/7
线性回归方程——非线性方程转化为线性方程
(ⅱ)根据(II)的结果知,年利润 z 的预报值

所以当
,即
时, 取得最大值. 故年宣传费为 46.24 千元时,年利润的预报值最大.
例 2.某地级市共有 200000 中小学生,其中有 7%学生在 2017 年享受了“国家精准扶贫"政策,在享受“国家精准 扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为 5:3:2,为进一步帮助 这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助 1000 元、1500 元、2000 元。经济学家调查发现,当地人均可支配年收入较上一年每增加 ,一般困难的 学生中有 会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生中有
46.6 563 6。8 289。, =

(I)根据散点图判断,

,哪一个适宜作为年销售量 y 关于年宣传费 x 的回归方程类型(给
出判断即可,不必说明理由);
(II)根据(I)的判断结果及表中数据,建立 y 关于 x 的回归方程;
(III)已知这种产品的年利润 z 与 x,y 的关系为
其中
,
(Ⅰ)估计该市 2018 年人均可支配年收入;
(Ⅱ)求该市 2018 年的“专项教育基金"的财政预算大约为多少?
附:对于一组具有线性相关关系的数据
,其回归直线方程
最小二乘估计分别为
的斜率和截距的
【答案】(Ⅰ)2.8(万);(Ⅱ)1624 万. 【详解】(Ⅰ)因为
,所以


,所以
,
所以
,所以
。当
根据以上数据,绘制了如右图所示的散点图.
(1)根据散点图判断,在推广期内,
(c,d 均为大于零的常
数)哪一个适宜作为扫码支付的人次 y 关于活动推出天数 x 的回归方程类型?(给
出判断即可,不必说明理由);
(2)根据(1)的判断结果及表 1 中的数据,求 y 关于 x 的回归方程,并预测活
动推出第 8 天使用扫码支付的人次;
;(Ⅲ)(i)
【解析】(I)由散点图可以判断,
适宜作为年销售量 关于年宣传费 的回归方程类型。
(II)令
,先建立 关于 的线性回归方程,由于
=68,

=563− 68×6.8=100。6,
∴ 关于 的线性回归方程为

因此 关于 的回归方程为

(III)(ⅰ)由(II)知,当 =49 时,年销售量 的预报值

):
①根据回归方程类型及表中数据,建立 关于 的回归方程; ②该汽车交易市场对使用 8 年以内(含 8 年)的二手车收取成交价格 的佣金,对使用时间 8 年以上(不含 8 年) 的二手车收取成交价格 的佣金.在图 1 对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以 2017 年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.
(1)记“在 年成交的二手车中随机选取一辆,该车的使用年限在
”为事件 ,试估计 的概率;
(2)根据该汽车交易市场的历史资料,得到散点图如图 2,其中 (单位:年)表示二手车的使用时间, (单位:万
元)表示相应的二手车的平均交易价格.由散点图看出,可采用
作为二手车平均交易价格 关于其使用年
限 的回归方程,相关数据如下表(表中
参考数据:
其中 参考公式:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计公式分别
为: 【答案】(1)
. (2)
【详解】(1)根据散点图判断,
适宜作为扫码支付的人数 关于活动推出天数 的回归方程类型;
(2)
,两边同时取常用对数得:
;

3/7
线性回归方程——非线性方程转化为线性方程
把样本中心点
代入

关于 的回归方程式: 把 代入上式,

,
,得:

,
; ; 活动推出第 天使用扫码支付的人次为 ;
例 4.近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对 2017 年成交的 二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图 1.
图1
图2
线性回归方程——非线性方程转化为线性方程 线性回归方程-—非线性方程转化为线性方程
例 1.(2015·高考全国卷Ⅰ)某公司为确定下一年度投入某种产品的 宣传费,需了解年宣传费 x(单位:千元)对年销售量 y(单位:t)
和年利润 z(单位:千元)的影响,对近 8 年的宣传费 和年销售量
的值.
数据作了初步处理,得到下面的散点图及一些统计量
,根据(II)的结果回答下列问题:
(i)年宣传费
时,年销售量及年利润的预报值是多少?
(ii)年宣传费 为何值时,年利润的预报值最大?
附:对于一组数据
,
, …,
,其回归直线
的斜率和截距的最小二乘估计分别
为:


【答案】(Ⅰ)
适宜作为年销售量 关于年宣传费 的回归方程类型;(Ⅱ)
答案见解析;(ii)46。24 千元。
所以 2018 年该市特别困难的中学生有 2800×(1—10%)=2520 人, 很困难的学生有 4200×(1—20%)+2800×10%=3640 人 一般困难的学生有 7000×(1-30%)+4200×20%=5740 人. 所以 2018 年的“专项教育基金”的财政预算大约为 5740×1000+3640×1500+2520×2000=1624 万。 例 3.近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优 惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付 的人次,用 x 表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),统计数据如表 l 所示: 表1
转为一般困难,特别困难的学生中有 转为很困难。现统计了该地级市 2013 年到 2017 年共 5 年的人均可支配年收入,对数据初步处理后得到了如图所示的散 点图和表中统计量的值,其中年份 取 13 时代表 2013 年, 与 (万元)近似满足
关系式
,其中 为常数。(2013 年至 2019 年该市中学生人数大致保持不变)
相关文档
最新文档