2017-2018学年江苏省南京市秦淮区七年级上学期期末数学试卷(有答案)
2017-2018学年第一学期期末测试七年级数学试题及答案

2017—2018学年第一学期期末测试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分为120分。
考试用时100分钟。
考试结束后,只上交答题卡。
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。
3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
24.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列算式:(1) (2)--;(2) 2- ;(3) 3(2)-;(4) 2(2)-. 其中运算结果为正数的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 2.若a 与b 互为相反数,则a-b 等于(A )2a (B )-2a (C ) 0 (D )-2 3.下列变形符合等式基本性质的是(A )如果2a -b =7,那么b =7-2a (B )如果mk =nk ,那么m =n (C )如果-3x =5,那么x =5+3 (D )如果-13a =2,那么a =-64.下列去括号的过程(1)c b a c b a --=--)(; (2)c b a c b a ++=--)(; (3)c b a c b a +-=+-)(; (4)c b a c b a --=+-)(.其中运算结果错误的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 5.下列说法正确的是(A )1-x 是一次单项式 (B)单项式a 的系数和次数都是1 (C )单项式-π2x 2y 2的次数是6 (D)单项式24102x ⨯的系数是26.下列方程:(1)2x -1=x -7 ,(2)12x =13x -1 ,(3)2(x +5)=-4-x , (4)23x =x -2.其中解为x =-6的方程的个数为 (A ) 4 (B ) 3 (C ) 2 (D ) 1 7.把方程5.07.01.023.012.0-=--x x 的分母化为整数的方程是 (A )57203102-=--x x (B )5723102-=--x x (C )572312-=--x x (D )5720312-=--x x 8.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物,28.3亿吨用科学记数法表示为(A ) 28.3×107(B ) 2.83×108(C )0.283×1010(D )2.83×1099.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是 (A )用两个钉子就可以把木条固定在墙上(B )利用圆规可以比较两条线段的大小关系 (C )把弯曲的公路改直,就能缩短路程(D )植树时,只要定出两棵树的位置,就能确定同一行树所在的直线10.一个两位数,个位数字为a ,十位数字为b ,把这个两位数的个位数字与十位数字 交换,得到一个新的两位数,则新两位数与原两位数的和为 (A )b a 99+ (B )ab 2 (C )ab ba + (D )b a 1111+ 11.已知表示有理数a 、b 的点在数轴上的位置如图所示:则下列结论正确的是(A )|a|<1<|b| (B )1<a<b (C )1<|a|<b (D ) -b<-a<-1 12.定义符号“*”表示的运算法则为a*b =ab +3a ,若(3*x)+(x*3)=-27,则x = (A )29-(B )29(C )4 (D )-4 第Ⅱ卷(非选择题)(第11题图)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.若把45.58°化成以度、分、秒的形式,则结果为 . 14.若xm-1y 3与2xyn的和仍是单项式,则(m-n )2018的值等于______ .15. 若031)2(2=++-y x ,则y x -= . 16.某同学在计算10+2x 的值时,误将“+”看成了“﹣”,计算结果为20, 那么10+2x 的值应为 . 17.如图,数轴上相邻刻度之间的距离是51,若BC=52,A 点在数轴上对应的数值是53-,则B 点在数轴上对应的数值是 .218.我们知道,钟表的时针与分针每隔一定的时间就会重合一次,请利用所学知识确定,时针与分针从上一次重合到下一次重合,间隔的时间是______ 小时.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题分5分,本小题满分10分)计算: (1)11(0.5)06(7)( 4.75)42-+--+-- (2)[(﹣5)2×]×(﹣2)3÷7.20.(每小题分5分,本小题满分10分)先化简,再求值: (1)3x 2-[5x-(6x-4)-2x 2],其中x=3(2)(8mn-3m 2)-5mn-2(3mn-2m 2),其中m=-1,n=2. 21.(每小题分5分,本小题满分10分)解方程:53-(1)6322-41--=x x . (2)3125121103--=+x x . 22.(本小题满分8分)一个角的余角比这个角的补角的 13还小10°,求这个角的度数.23.(本大题满分10分)列方程解应用题:A 车和B 车分别从甲,乙两地同时出发,沿同一路线相向匀速而行.出发后1.5小时两车相距75公里,之后再行驶2.5小时A 车到达乙地,而B 车还差40公里才能到达甲地.求甲地和乙地相距多少公里?24.(本小题满分12分)如图,∠AOB 是直角,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线. (1)当∠AOC =40°,求出∠MON 的大小,并写出解答过程理由; (2)当∠AOC =50°,求出∠MON 的大小,并写出解答过程理由; (3)当锐角∠AOC=α时,求出∠MON 的大小,并写出解答过程理由.2017—2018学年第一学期期末测试七年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CADCBCBDCDCD二、填空题(本大题6个小题,每小题4分,共24分)(第24题图)13.45°34'48"; 14.1; 15.37; 16. 0 ; 17.0或54 ; 18.1112 . 三、解答题(本大题6个小题,共60分) 19.(每小题分5分,本小题满分10分)计算: 解:(1)11(0.5)06(7)( 4.75)42-+--+-- =130.567.5444-+-+ ………………………………………………2分 =13(0.57.5)(64)44--++ ………………………………………………4分 =3. ………………………………………………5分(2)[(﹣5)2×]×(﹣2)3÷7=[25×]×(﹣8)÷7……………………………………1分=[﹣15+8]×(﹣8)÷7………………………………………………2分=﹣7×(﹣8)÷7………………………………………………………3分=56÷7…………………………………………………………4分=8.…………………………………………………………5分20.(每小题分5分,本小题满分10分)先化简,再求值: 解:(1)原式, ………………………3分当时,原式; ………………………5分(2)原式,………………………3分当时,原式. ………………………5分21.(每小题分5分,本小题满分10分)解方程: 解:(1)去分母得:, …………3分移项合并得:; …………5分(2)解:原方程可化为312253--=+x x . …………1分 去分母,得)12(2)53(3--=+x x . …………2分去括号,得24159+-=+x x . …………3分 移项,得215-49+=+x x . …………4分 合并同类项,得1313-=x .系数化为1,得1-=x . …………5分22.(本小题满分8分)解:设这个角的度数为x °, …………1分 根据题意,得90-x =13(180-x)-10, …………5分解得x =60. …………7分 答:这个角的度数为60°. …………8分 23.(本大题满分10分)解:设甲地和乙地相距x 公里,根据题意,列出方程752401.5 1.52.5x x --=+ ………………………………………5分 解方程,得4300360x x -=- ………………………………………7分240x = ………………………………………9分答:甲地和乙地相距240公里. ……………………………10分 24.(本小题满分12分) 解:(1)∠AOC =40°时,∠MON =∠MOC -∠CON ………………………………………1分 =12(∠BOC -∠AOC) ………………………………………3分=12∠AOB ………………………………………5分=45°. ………………………………………6分 (2)当∠AOC =50°,∠MON =45°.理由同(1).………………………9分 (3)当∠AOC=α时,∠MON =45°. 理由同(1).………………………12分注意:评分标准仅做参考,只要学生作答正确,均可得分。
2017-2018学年度第一学期七年级期末数学试卷(有答案)【精品】

第一学期七年级期末评价数 学 试 卷一、选择题:(本大题10个小题,每小题3分,共30分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。
【 】A . - 6 B. – 5 C. - 1 D. l2.下列说法中①小于90°的角是锐角; ②等于90°的角是直角;③大于90°的角是钝角; ④平角等于180°;⑤周角等于360°,正确的有………………………………………………【 】 A .5个 B .4个C .3个D .2个3.用代数式表示“m 的3倍与n 的差的平方”,正确的是…………………………………【 】 A .(3m -n )2B .3(m -n )2C .3m -n 2D .(m -3n )24.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是【 】A .∠DOE 的度数不能确定B .∠AOD =12∠EOC C .∠AOD +∠BOE =60°D .∠BOE =2∠COD5..有理数a ,b 在数轴的位置如图,则下面关系中正确的个数为……………………………【 】 ①a -b >0; ②ab <0; ③11a b>; ④a 2>b 2. A .1B .2C .3D .46.一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为元,根据题意,下面所列的方程正确的是……………………………【 】 A .·30%×80%=312 B .·30%=312×80% C .312×30%×80%=D .(1+30%)×80%=3127..下列等式变形正确的是…………………………………………………………………【 】A .如果s= 2ab,那么b=2s a B .如果12=6,那么=3 C .如果-3 =y-3,那么-y =0 D .如果m= my ,那么=y8.下列方程中,以=-1为解的方程是………………………………………………………【 】 A .13222xx +=-B .7(-1)=0C .4-7=5+7D .133x =-9.如图,边长为2m +3的正方形纸片剪出一个边长为m +3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则另一边长为…………………………………………………【 】 A .2m +6B .3m +6C .2m 2+9m +6D .2m 2+9m +910.下列图案是用长度相同的火柴按一定规律拼搭而成,第一个图案需8根火柴,第二个图案需15根火柴,…,按此规律,第n 个图案需几根火柴棒 ………………………………………………………………………………………【 】A .2+7nB .8+7nC .7n +1D .4+7n二、填空题:(本大题8个小题,每小题4分,共32分)在每小题中,请将答案直接填在题后的横线上。
【精编】南京秦淮区七年级上期末数学试题含解析-(苏科版)

第一学期第二阶段学业选题监测试卷七年级数学一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.下列四个算式中,有一个算式与其他三个算式的计算结果不同,该算式是( ).A .2(1)-B .(1)--C .21-D .1-【答案】C【解析】2(1)1-=,(1)1--=,11-=,211-=-,选C .2.南京地铁4号线计划于2017年1月通车运营,地铁4号线一期工程全长为33800米,将33800用科学记数法表示为( ). A .333.810⨯B .43.3810⨯C .433.810⨯D .53.3810⨯【答案】B【解析】考察科学计数法的一般形式,433800 3.3810=⨯.3.下列各组单项式中,同类项一组的是( ).A .33x y 与33xyB .22ab 与23a b -C .2a 与2bD .2xy -与3yx【答案】D【解析】所含字母相同,并且相同字母的指数也相同的项叫同类项.4.如图,有一个直径为1个单位长度的圆片,把圆片上的点A 放在原点,并把圆片沿数轴向左滚动1周,点A 到达点A '位置,则点A '表示的数是( ).A .π-B .π2-C .π2D .π【答案】D【解析】从A 到A '经过的路程为:1ππ⨯=,所以点A '表示的数是π.5.如图,将一张长方形纸片ABCD 沿EF 折叠,点D 、C 分别落在D '、C '的位置处,若156∠=︒,则D E F ∠的度数是( ).C'F E CB A D'D 1A .56︒B .62︒C .68︒D .124︒【答案】B【解析】由题意得,D EF DEF '∠=∠, ∵1180D EF DEF '∠+∠+∠=︒,156∠=︒, ∴62DEF ∠=︒.6.将一副三角尺按如图方式摆放,1∠与2∠不一定...互补的是( ). A .12B .12C .21D .12【答案】B【解析】对于A ,129090360∠+∠+︒+︒=︒, ∴12180∠+∠=︒,①21对于C 如图②,23∠=∠, ∵13180∠+∠=︒, ∴21180∠+∠=︒.312②对于D ,260∠=︒,19030∠=︒+︒, ∴12180∠+∠=︒.213③7.已知线段AB 、CD ,点M 在线段AB 上,结合图形,下列说法不正确的是( ).A .过点M 画线段CD 的垂线,交CD 于点EB .过点M 画线段AB 的垂线,交CD 于点EC .延长线段AB 、CD ,相交于点F D .反向延长线段BA 、DC ,相交于点FMFEDCBA【答案】A【解析】A 描述的图形应该如下图,EMDCB A8.一个长方形的长和宽分别为3cm 和2cm ,依次以这个长方形的长和宽所在的直线为旋转轴,把长方形旋转1周形成圆柱体甲和圆柱体乙,两个圆柱体的体积分别记作V 甲、V 乙,侧面积分别记叙S 甲、S 乙,则下列说法正确的是( ).A .V V <甲乙,S S =甲乙B .V V >甲乙,S S =甲乙C .V V 甲乙=,S S =甲乙D .V V >甲乙,S S <甲乙【答案】A【解析】4π312πV =⋅=甲,9π218πV =⋅=乙,4π312πS =⋅=甲,6π212πS =⋅=乙. ∴V V <甲乙,S S =甲乙.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题..卷相应位置.....上) 9.单项2523x y -的次数是__________.【答案】7【解析】单项式的次数是各个字母的指数和.10.比较大小: 3.13-__________ 3.12-.(填“<”、“”或“>”) 【答案】<【解析】负数比较大小,绝对值大的反而小. 3.13 3.12->-, 3.13 3.12-<-.11.已知关于x 的一元一次方程21x m +=-的解是1x =,则m 的值是__________. 【答案】1-【解析】将1x =代入21x m +=-得:121m +=-,1m =-.12.“两个数和的平方等于这两个数积的两倍加上这两个数的平方和”,在学过用字母表示数后,请借助符号描述这句话:__________. 【答案】222()2a b ab a b +=++ 【解析】略13.若22a b -=,则648b a +-=__________. 【答案】2- 【解析】648b a +-64(2)a b =--642=-⨯2=-.14.如图,直线a 、b 相交于点O ,将量角器的中心与点O 重合,发现表示60︒的点在直线a 上,表示135︒的点在直线b 上,则1∠=__________︒.150°180°120°90°60°30°0°1【答案】75【解析】21356075∠=︒-︒=︒,1∠与2∠是对顶角,1275∠=∠=︒.135°60°2ba115.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上表示“0cm ”、“8cm ”的点分别对应数轴上的2-和x ,那么x 的值为__________.【答案】6【解析】80(2)x -=--,解得:6x =.16.如图,A 、B 是河l 两侧的两个村庄,现要在河l 上修建一个抽水站,使它到A 、B 两村庄的距离之和最小.数学老师说:连接AB ,则线段AB 与l 的交点C 即为抽水站的位置.其理由是:__________.C Al【答案】两点之间线段最短 【解析】略17.互联网“微商”经营已经成为大众创业新途径,某微信平台上某件商品标价200元,按标价的九折销售,仍可获得20%.这件商品的进价是多少元?若设这件商品的进价是为元,根据题意可列方程__________.【答案】20090%20%x x ⨯-=【解析】“获利20%”列方程,利润=销售额-成本,20090%20%x x ⨯-=.18.如图,在AOB ∠的内部有3条射线OC 、OD 、OE ,若50AOC ∠=︒,1BOE BOC n∠=∠,1BOD AOB n∠=∠,则DOE ∠=__________︒(用含n 的代数式表示). E C BAOD【答案】50n【解析】设BOE β∠=,COD α∠=,则BOC n β∠=,AOB n α∠=, 设DOE x ∠=,则BOC COD DOE BOE AOB BOC AOC ∠=∠+∠+∠⎧⎨∠=∠+∠⎩,即50n x n x βαβααβ=++⎧⎨=+++︒⎩,解得50x n ︒=,即50DOE n︒∠=. βαxD OABC E三、解答题(本大题共9小题,共64分.请在答题卷指定区域内作答,解答时应写出文字说明、说理过程或演算步骤) 19.(8分)计算:(1)348(2)(4)⎡⎤÷---⎣⎦.(2)234422(1)93⎛⎫-÷⨯+- ⎪⎝⎭.【答案】(1)12- (2)7-【解析】(1)348(2)(4)⎡⎤÷---⎣⎦48(84)=÷-+1484=-⨯12=-.(2)234422(1)93⎛⎫-÷⨯+- ⎪⎝⎭998144=-⨯⨯+7=-.20.(6分)先化简,再求值:2222(23)2(2)x xy y x xy y +--+-,其中1x =,2y =. 【答案】3【解析】2222(23)2(2)x xy y x xy y +--+- 222223224x xy y x xy y =+---+ 22y x =-.1x =,2y =,223y x -=.21.(8分)解方程:(1)5(1)2(1)32x x x ---=+. (2)123122x x+--=. 【答案】(1)2x = (2)34x =【解析】(1)5(1)2(1)32x x x ---=+552232x x x --+=+, 510x =, 2x =.(2)123122 x x +--=1223x x+-=-,43x=,34x=.22.(6分)观察下面的立体图形,把主视图、左视图、俯视图画出.【答案】主视图左视图俯视图【解析】略23.(6分)如图,直线AB、CD相交于点O,90AOE COF∠=∠=︒.F EC BA OD(1)DOE∠的余角是__________(填写所有符合要求的角).(2)若70DOE∠=︒,求BOF∠的度数.【答案】(1)BOD∠、EOF∠、AOC∠(2)110︒【解析】(1)∵90AOE∠=︒,90COF∠=︒,∴90BOE∠=︒,90DOF∠=︒,即90DOE BOD∠+∠=︒,90DOE EOF∠+∠=︒,∵AOC BOD ∠=∠, ∴90DOE AOC ∠+∠=︒,∴DOE ∠的余角是BOD ∠、EOF ∠、AOC ∠. (2)∵90DOE EOF ∠+∠=︒,70DOE ∠=︒, ∴20EOF ∠=︒,∴9020110BOF BOE EOF ∠=∠+∠=︒+︒=︒.F ECBA O D24.(6分)第十八届“飞向北京——飞向太空”全国青海年航空天模型教育竞赛江苏预赛在南京举行,某校航模不级参赛选手中男生占该校参赛人数的一半,后又增加2名男生,那么男生人数就占该校参赛人数23,该校原有参赛男生多少人? 【答案】该校原有参赛男生2人 【解析】设原有参赛男生x 人,则22(22)3x x +=+,解得:2x =.即该校原有参赛男生2人.25.(7分)如图,已知α∠.α(1)用直尺和圆规作AOB ∠,使AOB α∠=∠(保留作图痕迹,不写作法). (2)用量角器画AOB ∠的平分线OC ;(3)在OC 上任取一点M (点M 不与点C 重合),过点M 分别画直线MP OA ⊥,垂足为P ,画直线MN OA ∥,交射线OB 于点N ,则点M 到射线OA 的距离是线段__________的长度,MN 与MP 的位置关系是__________. 【答案】(1)BO Aα(2)CBO Aα(3)MP、MP MN⊥【解析】略26.(7分)如图,C是线段AB上一点,16cmAB=,6cmBC=.C BA(1)AC=__________cm;(2)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B;点Q以1cm/s 的速度沿BA向左运动,终点为A.当一个点到达终点,另一个点也随之停止运动.求运动多少秒时,C、P、Q三点,有一点恰好是以另两点为端点的线段的中点?【答案】(1)10【解析】(1)10cmAC AB BC=-=.(2)①当05t<≤时,C为线段PQ中点1026t t-=-,解之得4t=.②当1653t<≤时,P为线段CQ中点210163t t-=-,解之得265t=.③当1663t<≤时,Q为线段PC中点6316t t-=-,解之得112t=.④当68t<≤时,C为线段PQ中点2106t t-=-,解之得4t=(舍).综上所述:4t=或265或112.27.10分以下是两张不同类型火车的车票(“D⨯⨯⨯⨯次”表示动车,“G⨯⨯⨯⨯次”表示高铁):(1)根据车票中的信息填空:该列动车和高铁是__________向而行(填“相”或“同”). (2)已知该弄动车和高铁的平均速度分别为200km /h 、300km /h ,两列火车的长度不计.①经过测算,如果两列火车直达终点(即中途都不停靠任何站点),高铁比动车将早到1h ,求A 、B 两地之间的距离.②在①中测算的数据基础上,已知A 、B 两地途中依次设有5个站点1P 、2P 、3P 、1P 、5P ,且 1122334455AP PP P P P P P P P B =====,动车每个站点都停靠,高铁只停靠2P 、4P 两个站点,两列火车在每个停靠站点都停留5min .求该列高铁追上动车的时刻. 【答案】(1)同 (2)1200km【解析】(2)动车:速度为200km/h ,6:00出发,高铁:速度为300km/h ,7:00出发, 高铁比动车晚出发1小时,比动车早到1小时,可知动车比高铁从A 地到B 地多花2个小时, 所以,设AB 之间的距离为km x ,则可列方程:2200300x x-=,解得1200x =. 所以AB 之间的距离为1200km . (3)8点55分A 、B 两地之间依次设有5个距离相同的站点,可知每个相邻站点距离为200km ,已知动车和高铁速度,可知高铁到每一站所花时间为40分钟,动车到每一站所花时间为60分钟. 根据题意,可知动车和高铁到每一站的时刻如图所示:12:2511:2510:209:158:107:056:0012345D 动车9:509:058:257:407:0012345G 高铁可知高铁在2P 站、3P 站之间追上并超过动车, 设高铁经过t 小时之后追上动车,由题意可列方程:11300122001212t t ⎛⎫⎛⎫-⨯=+-⨯⨯ ⎪ ⎪⎝⎭⎝⎭,解得:2312t =.由题意可知,高铁在7:00出发,经过2312小时后,追上动车.可求得追上的时刻为8:55.。
【七年级数学】2018年秋南京市秦淮区七年级数学上期末试卷(含答案)

解小明的错误是“他设中的x和方程中的x表示的意义不同”.2分
正确的解答设这个班共有x名学生.
根据题意,得x6-x8=2.4分
解这个方程,得x=48.5分
答这个班共有48名学生.6分
25.(8分)
解
(1)因为F平分∠AE,∠AE=120°,
所以∠AF=12∠AE=60°.2分
因为F⊥cD,
3x=6.3分
x=2.4分
(2)2(2x-1)=6-(2x-1).1分
4x-2=6-2x+1.2分
6x=9.3分
x=32.4分
22.(6分)
解
(1)画图正确,AD<AB;3分
(2)画图正确,DE∥AB.6分
23.(6分)
解(1)长方体;2分
(2)2×(3×3+3×4+3×4)=66 c2.6分
答这个几何体的表面积是66 c2.
2018年秋南京市秦淮区七年级数学上期末试卷(含答案)
秦淮区2018学年度第一学期第二阶段学业质量调研试卷
七年级数学参考答案及评分标准
说明本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.
一、选择题(每小题2分,共计16分)
题号12345678
答案A BDBBccD
=18-21+303分
=27.4分
(2)原式=-9+16×(-12)×122分
=-9-43分
=-13.4分
20.(6分)
解原式=6a2b-2ab2+ab2-2a2b2分
=4a2b-ab2.4分
当a=2、b=-1时,
原式=4×22×(-1)-2×(-1)2=-16-2=-18.6分
21.(8分)
南京市七年级(上)期末数学试卷含答案

七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共6小题,共18.0分)1.−13的相反数是()A. −3B. 3C. −13D. 132.下列各题中合并同类项,结果正确的是()A. 3a+2b=5abB. 4x2y−2xy2=2xyC. 7a+a=7a2D. 5y2−3y2=2y23.如图,数轴的单位长度为1,如果点A表示的数为−2,那么点B表示的数是()A. −1B. 0C. 3D. 44.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个.设计划做x个“中国结”,可列方程()A. x+96=x−74B. x−96=x+74C. x+96=x+74D. x−96=x−745.下列说法错误的是()A. 平面内过一点有且只有一条直线与已知直线平行B. 平面内过一点有且只有一条直线与已知直线垂直C. 两点之间的所有连线中,线段最短D. 如果a//b,b//c,那么a//c6.如图,在一个8×8的方格棋盘的A格里放了一枚棋子,如果规定棋子每步只能向上、下或向左、右走一格,那么这枚棋子走如下的步数后能到达B格的是()A. 7B. 14C. 21D. 28二、填空题(本大题共10小题,共30.0分)7.单项式−25a2b系数是______,次数是______.8.计算−5−9=______;23÷(−49)=______.9.比较大小:−π+1______−3.10.在数轴上,与−3表示的点相距4个单位的点所对应的数是______.11.从南京市统计局获悉,到2018年底,南京市的常住人口达到821.61万人,该数据用科学记数法可以表示为______人.12.已知,则∠α的补角是______.13. 如图,将一副三角板的直角顶点重合,摆放在桌面上,若∠BOD =64°,则∠AOC =______.14. 长方形的周长为20cm ,它的宽为xcm ,那么它的面积为______.15. 某商店在进价的基础上提高50元作零售价销售,商店又以8折(即售价的80%)的价格开展促销活动,这时一件商品所获利润为20元,则该商品进价为______元. 16. 如图,在同一平面内,两条直线相交有2对对顶角,三条直线相交有6对对顶角……,照此规律,n 条直线相交一共有______对对顶角.三、计算题(本大题共3小题,共24.0分) 17. 计算:(1)(16−18+512)×48(2)−24−(−2)3÷83×(−3)218. 先化简,再求值(a 2b +ab 2)−2(a 2b −1 )−2ab 2−2.其中a =−2,b =2.19. 解方程:(1)3(x −4)=12;(2)2x −13=2x +16−1四、解答题(本大题共7小题,共48.0分)20.如图,方格纸中有一条直线AB和一格点P,(1)过点P画直线PM//AB;(2)在直线AB上找一点N,使得AN+PN+BN距离和最小.21.如图,C为线段AD上一点,点B为CD的中点,且AD=8cm,BD=1cm,(1)求AC的长;(2)若点E在直线AD上,且EA=2cm,求BE的长.22.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,OF⊥CD.(1)写出图中互余的角;(2)求∠EOF的度数.23.整理一批图书,甲、乙两人单独做分别需要6h、9h完成.现在先由甲单独做1h,然后两人合作完成.甲、乙两人合作整理这批图书用了多少时间?24.如图,已知∠AOB,OC⊥OA,画射线OD⊥OB.试写出∠AOB和∠COD大小关系,并说明理由.25.A、B两地相距360km,甲、乙两车分别沿同一条路线从A地出发驶往B地,已知甲车的速度为60km/ℎ,乙车的速度为90km/ℎ,甲车先出发1h后乙车再出发,乙车到达B地后在原地等甲车.(1)求乙车出发多长时间追上甲车?(2)求乙车出发多长时间与甲车相距50km?26.【理解新知】如图①,已知∠AOB,在∠AOB内部画射线OC,得到三个角,分别为∠AOC、∠BOC、∠AOB.若这三个角中有一个角是另外一个角的2倍,则称射线OC为∠AOB的“2倍角线”.(1)角的平分线______这个角的“2倍角线”;(填“是”或“不是”)(2)若∠AOB=90°,射线OC为∠AOB的”2倍角线”,则∠AOC=______.【解决问题】如图②,已知∠AOB=60°,射线OP从OA出发,以每秒20°的速度绕O点逆时针旋转;射线OQ从OB出发,以每秒10°的速度绕O点顺时针旋转,射线OP、OQ 同时出发,当一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t(s).(3)当射线OP、OQ旋转到同一条直线上时,求t的值;(4)若OA、OP、OQ三条射线中,一条射线恰好是以另外两条射线为边的角的“2倍角线”,直接写出所有可能的值.(本中所研究的角都是小于等于180°的角.)答案和解析1.【答案】D【解析】【分析】求一个数的相反数,即在这个数的前面加负号. 本题考查的是相反数的求法. 【解答】解:根据相反数的定义,得−13的相反数是13.故选:D . 2.【答案】D【解析】解:(A)原式=3a +2b ,故A 错误; (B)原式=4x 2y −2xy 2,故B 错误; (C)原式=8a ,故C 错误; 故选:D .根据合并同类项的法则即可求出答案.本题考查合并同类项,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 3.【答案】C【解析】解:点B 在点A 的右侧距离点A 5个单位长度, ∴点B 表示的数为:−2+5=3, 故选:C .根据数轴的单位长度为1,点B 在点A 的右侧距离点A 5个单位长度,直接计算即可. 本题主要考查数轴,解决此题时,明确数轴上右边的数总是比左边的数大是解题的关键. 4.【答案】A【解析】解:设计划做x 个“中国结”, 由题意得,x+96=x−74.故选:A .设计划做x 个“中国结”,根据每人做6个,那么比计划多做了9个,每人做4个,那么比计划少7个,列方程即可.本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程. 5.【答案】A【解析】解:A 、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故本选项说法错误.B 、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项说法正确.C 、两点之间的所有连线中,线段最短,故本选项说法正确.D 、根据平行公理知,如果a//b ,b//c ,那么a//c ,故本选项说法正确. 故选:A .根据平行公理及推理,平行线的判定以及线段的性质判断.本题考查了平行线的判定与性质、线段的性质以及平行公理及推论,逐一分析三条结论的正误是解题的关键.6.【答案】C【解析】解:将棋子走的步数分为奇数步和偶数步.首先看A选项:7步,按照最近的路线即:左,上,左,上,左,上,左,上,上.也要9步,故A错误;观察到B,C,D三项都超过最小步数,且B,D为偶数,C为奇数,若选择答案B,即也可选择答案D,故按照逆向思维,只能选择奇数步的C.再验证可得结果正确.故选:C.将棋子走的步数分为奇数步和偶数步.分类讨论并验证即可.本题考查了动点在网格上的路径问题,分类讨论并结合图形验证,是解题的关键.7.【答案】−253【解析】解:单项式−25a2b系数是:−25,次数是:3.故答案为:−25,3.利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,分别得出答案.此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.8.【答案】−14−32【解析】解:原式=−14;原式=−23×94=−32,故答案为:−14;−32原式利用减法法则,以及除法法则计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.9.【答案】>【解析】解:∵π<4∴−π>−4∴−π+1>−4+1即:−π+1>−3故答案为“>”.先比较π与4的大小,再根据不等式的基本性质进行变形,再进一步比较即可.本题考查的是两个实数的大小比较,利用不等式的性质进行变形,得出要比较的式子,是解决本题的关键.10.【答案】1或−7【解析】解:分为两种情况:①当点在表示−3的点的左边时,数为−3−4=−7;②当点在表示−3的点的右边时,数为−3+4=1;故答案为:1或−7.根据题意得出两种情况:当点在表示−3的点的左边时,当点在表示−3的点的右边时,列出算式求出即可.本题考查了数轴的应用,注意符合条件的有两种情况.11.【答案】8.2161×106【解析】解:821.61万=8.2161×106,故答案为:8.2161×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】149°36’【解析】解:,∴∠α的补角是,故答案为:149°36′.根据补角的定义得出∠α的补角是180°−∠α,代入求出即可.本题考查了互为补角的定义的应用,理解互为补角的定义是解此题的关键.13.【答案】116°【解析】解:∵将一副三角板的直角顶点重合,∴∠AOB=∠COD=90°,∵∠BOC=64°,∴∠AOD=90°−64°=26°,∴∠AOC=∠COD+∠AOD=90°+26°=116°.故答案为:116°.利用互余的定义得出∠AOD的度数,进而求出∠AOC的度数.此题主要考查了互余两角的定义,正确掌握互余两角的定义是解题关键.14.【答案】x(10−x)cm2【解析】解:长方形的长为20÷2−x=10−x,面积:x(10−x)cm2.故答案为:x(10−x)cm2.根据长方形的周长表示出长,再根据面积公式列式计算即可得解.本题考查了列代数式,主要利用了长方形的周长和面积,是基础题.15.【答案】100【解析】解:设该商品进价为x元,由题意得(x+50)×80%−x=20解得:x=100答:该商品进价为100元.故答案为:100.设该商品进价为x元,则售价为(x+50)×80%,进一步利用售价−进价=利润列出方程解答即可.此题考查一元一次方程的实际运用,掌握销售问题中基本数量关系是解决问题的关键.16.【答案】n(n−1)【解析】解:2条直线相交有2对对顶角,2=1×2,3条直线两两相交有6对对顶角,6=2×3,4条直线两两相交有12对对顶角,12=3×4,…,n条直线两两相交有n(n−1)对对顶角.故答案为:n(n−1).分析不难发现,对顶角的对数等于直线的条数与比它小1的数的乘积.本题考查了对顶角的定义,相交直线,仔细观察数据,分别写成两个数的乘积的形式是解题的关键.17.【答案】解:(1)原式=8−6+20=22;×9=−16−(−27)=−16+27=11.(2)原式=−16−(−8)×38【解析】(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】解:原式=a2b+ab2−2a2b+2−2ab2−2=−a2b−ab2,当a=−2,b=2时,原式=−(−2)2×2−(−2)×22=0.【解析】先根据去括号法则或乘法分配律去括号,再合并,最后把a、b的值代入计算即可.本题考查了整式的化简求值.解题的关键是掌握去括号法则、合并同类项.19.【答案】解:(1)x−4=4,x=8.(2)2(2x−1)=(2x+1)−6,4x−2=2x+1−6,4x−2x=−5+2,2x=−3,x=−3.2【解析】(1)两边除以4,再移项、合并即可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.20.【答案】解;(1)如图所示:直线PM即为所求;(2)如图所示:点N即为所求.【解析】(1)利用过点P作出与AB平行的直线PM,平移线段AB即可得出所要直线;(2)利用网格得出AB的垂线PN.本题考查了作图−应用作图,熟练掌握网格结构以及平行线与垂线的定义是解题的关键.21.【答案】解:(1)∵点B为CD的中点,BD=1cm,∴CD=2BD=2cm,∵AD=8cm,∴AC=AD−CD=8−2=6cm(2)若E在线段DA的延长线,如图1∵EA=2cm,AD=8cm∴ED=EA+AD=2+8=10cm,∵BD=1cm,∴BE=ED−BD=10−1=9cm,若E线段AD上,如图2EA=2cm,AD=8cm∴ED=AD−EA=8−2=6cm,∵BD=1cm,∴BE=ED−BD=6−1=5cm,综上所述,BE的长为5cm或9cm.【解析】点B为CD的中点,根据中点的定义,得到CD=2BD,由BD=1cm便可求得CD的长度,然后再根据AC=AD−CD,便可求出AC的长度;(2)中由于E在直线AD 上位置不明定,可分E在线段DA的延长线和线段AD上两种情况求解.本题考查的是线段的中点、线段的和差计算,对题目进行分类讨论是解题的关键22.【答案】解:(1)∵OF⊥CD,∴∠FOD=90°,∴∠BOF+∠BOD=90°,∵∠BOD=∠AOC,∴∠BOF+∠AOC=90°,∴图中互余的角有∠BOF与∠BOD,∠BOF与∠AOC;(2)∵直线AB和CD相交于点O,∴∠BOD=∠AOC=72°,∵OF⊥CD,∴∠BOF=90°−72°=18°,∵OE平分∠BOD,∴∠BOE=12∠BOD=36°,∴∠EOF=36°+18°=54°.【解析】(1)根据垂直的定义得到∠FOD=90°,于是得到∠BOF+∠BOD=90°,根据对顶角的性质得到∠BOD=∠AOC,等量代换得到∠BOF+∠AOC=90°,即可得到结论.(2)根据已知条件得到∠BOF=90°−72°=18°,再由OE平分∠BOD,得出∠BOE=12∠BOD=36°,因此∠EOF=36°+18°=54°.本题考查了对顶角、邻补角、垂线以及角平分线的定义;弄清各个角之间的关系是解题的关键.23.【答案】解:设他们合作整理这批图书的时间是xh,根据题意得:1 6+(16+19)x=1,解得:x=3,答:他们合作整理这批图书的时间是3h.【解析】设他们合作整理这批图书的时间是xh,根据总工作量为单位“1”,列方程求出x的值即可得出答案.本题考查了一元一次方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题主要用到公式:工作总量=工作效率×工作时间.24.【答案】解:画射线OD ⊥OB ,有两种情况:①如左图,∠AOB =∠COD .因为OC ⊥OA ,所以∠AOB +∠BOC =90°.因为OD ⊥OB ,所以∠COD +∠BOC =90°.所以∠AOB =∠COD ;②如右图,∠AOB +∠COD =180°.因为∠COD =∠BOC +∠AOB +∠AOD ,所以∠AOB +∠COD=∠BOC +∠AOB +∠AOD +∠AOB=∠AOC +∠BOD=90°+90°=180°.所以∠AOB 和∠COD 大小关系是:相等或互补.【解析】根据垂线的定义,画射线OD ⊥OB ,有两种情况:①根据余角的性质,可得答案;②根据角的和差,可得答案.本题考查了垂线,利用了余角的性质,角的和差,要分类讨论,以防遗漏. 25.【答案】解:(1)设乙车出发x 小时追上甲车,由题意得:60+60x =90x 解得x =2故乙车出发2小时追上甲车.(2)乙车出发后t 小时与甲车相距50km ,存在以下三种情况:①乙车出发后在追上甲车之前,两车相距50km ,则有:60+60t =90t +50 解得t =13;②乙车超过甲车且未到B 地之前,两车相拒50km ,则有:60+60x +50=90t 解得t =113;③乙车到达B 地而甲车未到B 地,两车相距50km ,则有:60+60t +50=360 解得t =256. 故乙车出发13小时、113小时或256小时与甲车相距50km .【解析】(1)乙车追上甲车则两车的路程相等,设时间为未知数列方程求解即可;(2)乙车出发后与甲车相距50km,在整个运动过程中存在三种情况:乙车在追上甲车之前;乙车超过甲车且未到B地之前;乙车到达B地而甲车未到B地.根据三种情况利用两车路程之间的关系列方程即可求得.本题考查一元一次方程的实际应用,行程问题为很常见的一元一次方程应用题型,关键在于理解清楚题目中路程的等量关系,才能列出方程求解.26.【答案】是30°或45°或60°【解析】解:(1)∵一个角的平分线平分这个角,且这个角是所分两个角的2倍,∴一个角的角平分线是这个角的“2倍角线”;故答案为:是;(2)有三种情况:①若∠BOC=2∠AOC时,且∠AOC+∠BOC=90°,∴∠AOC=30°;②若∠AOB=2∠AOC=2∠BOC时,且∠AOC+∠BOC=90°,∴∠AOC=45°;③若∠AOC=2∠BOC时,且∠AOC+∠BOC=90°,∴∠AOC=60°.故答案为:30°或45°或60°;(3)由题意得,运动时间范围为:0<t≤18,则有①60+20t+10t=180,解得,t=4②60+20t+10t=360,解得,t=10③60+20t+10t=180+360,解得,t=16综上,t的值为4或10或16(4)由题意,运动时间范围为:0<t≤18,①OA为∠POQ的“2倍角线”此时0<t<4则有20t×2=10t+60,解得,t=2②当4≤t≤10时,不存在③当10<t≤12时,OP为∠AOQ的“2倍角线”则有,∠POQ=20t+10t+60°−360°−30t−300∠ACP=360°−20t(30t−300)×2=360°−20tt=12④当12<t≤18时,不存在综上,当t=2或t=12时,OA、OP、OQ三条射线中,一条射线恰好是以另外两条射线为边的角的“2倍角线”(1)由角平分线的定义和2倍角线的定义可得;(2)分三种情况讨论,由“2倍角线”的定义,列出方程可求t的值;(3)分三种情况讨论,由“2倍角线”的定义,列出方程可求t的本题考查一元一次方程的应用,角平分线的性质,找等量关系列出方程是解决问题的关键,属于中考常考题型。
2017-2018学年江苏省南京市秦淮区七年级(上)期末数学试卷

2017-2018学年江苏省南京市秦淮区七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给出的四个选项中,恰有一项是符合要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.(2分)﹣3的相反数是()A.﹣3B.3C.D.2.(2分)计算2﹣(﹣3)×4的结果是()A.20B.﹣10C.14D.﹣203.(2分)下列各组单项式中,是同类项的一组是()A.3x3y与3xy3B.2ab2与﹣3a2bC.a2与b2D.﹣2xy与3 yx4.(2分)单项式2a2b的系数和次数分别是()A.2,2B.2,3C.3,2D.4,25.(2分)已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°6.(2分)下列方程变形中,正确的是()A.由3 x=﹣4,系数化为1得x=B.由5=2﹣x,移项得x=5﹣2C.由,去分母得4(x﹣1)﹣3(2 x+3)=1D.由3x﹣(2﹣4 x)=5,去括号得3x+4 x﹣2=57.(2分)如图所示正方体的展开图的是()A.B.C.D.8.(2分)如图,已知∠AOB是直角,∠AOC是锐角,ON平分∠AOC,OM平分∠BOC,则∠MON是()A.45°B.45°+∠AOC C.60°﹣∠AOC D.不能计算二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答卷纸相应位置上)9.(2分)比较大小:﹣﹣.10.(2分)审计署发布公告:截止2010年5月20日,全国共接收玉树地震救灾捐赠款物70.44亿元.将70.44亿元用科学记数法表示为元.11.(2分)一个棱柱共有15条棱,那么它是棱柱,有个面.12.(2分)若关于x的方程2x=x+a+1的解为x=1,则a=.13.(2分)已知4a+3b=1,则整式8a+6b﹣3的值为.14.(2分)如图所示,在一条笔直公路p的两侧,分别有甲、乙两个村庄,现要在公路p上建一个汽车站,使汽车站到甲、乙两村的距离之和最小,你认为汽车站应该建在处(填A或B或C),理由是.15.(2分)如图,∠AOB=90°,∠AOC=2∠BOC,则∠BOC=°.16.(2分)一种商品每件的进价为a元,售价为进价的1.1倍,现每件又降价10元,现售价为每件210元.根据题意可列方程为.17.(2分)如图,已知C、D为线段AB上顺次两点,点M、N分别为AC与BD 的中点,若AB═10,CD=4,则线段MN的长为.18.(2分)某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款70元和288元,如果小敏把这两次购物改为一次性购物,则应付款元.三、解答题(本大题共9小题,共64分,请在答.卷.纸.指.定.区.域.内作答,解答时应写出文字说明、证明过程或演算步骤)19.(6分)计算:(1)(2)20.(6分)先化简,再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=,y=221.(8分)解方程:(1)4x﹣2=3﹣x(2)22.(6分)如图所示的几何体是由5 个相同的正方体搭成的,请分别画出这个几何体的三视图.23.(6分)如图,△ABC中,∠A+∠B=90°.(1)根据要求画图:①过点C画直线MN∥AB;②过点C画AB的垂线,交AB于D点.(2)请在(1)的基础上回答下列问题:①若知∠B+∠DCB=90°,则∠A与∠DCB的大小关系为.理由是;②图中线段长度表示点A到直线CD的距离.24.(6分)某礼品制造工厂接受一批玩具的订货任务,按计划天数生产,如果每天生产20个玩具,则比订货任务少100个;如果每天生产23个玩具,则可以超过订货任务20个.请求出这批玩具的订货任务是多少个?原计划几天完成任务?25.(6分)如图:已知直线AB、CD相交于点O,∠COE=90°(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数.26.(8分)求若干个相同的不为零的有理数的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”.一般地,把(a≠0)记作,读作“a的圈n次方”.(1)直接写出计算结果:2③=,(﹣3)④=,(﹣)⑤=;(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,请尝试把有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈n次方等于;(3)计算24÷23+(﹣8)×2③.27.(12分)【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B 表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.2017-2018学年江苏省南京市秦淮区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给出的四个选项中,恰有一项是符合要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.(2分)﹣3的相反数是()A.﹣3B.3C.D.【解答】解:﹣3的相反数是3.故选:B.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(2分)计算2﹣(﹣3)×4的结果是()A.20B.﹣10C.14D.﹣20【解答】解:原式=2+12=14,故选:C.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2分)下列各组单项式中,是同类项的一组是()A.3x3y与3xy3B.2ab2与﹣3a2bC.a2与b2D.﹣2xy与3 yx【解答】解:A、相同字母的指数不同,故A错误;B、相同字母的指数不同,故B错误;C、字母不同不是同类项,故C错误;D、字母项相同且相同字母的指数也同,故D正确.故选:D.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.4.(2分)单项式2a2b的系数和次数分别是()A.2,2B.2,3C.3,2D.4,2【解答】解:2a2b的系数和次数分别是2,3.故选:B.【点评】本题考查了单项式,单项式是数与字母的乘积,单项式的次数是字母指数和,单项式的系数是数字因数,注意π是常数不是字母.5.(2分)已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°【解答】解:∵∠α和∠β是对顶角,∠α=30°,∴根据对顶角相等可得∠β=∠α=30°.故选:A.【点评】本题主要考查了对顶角相等的性质,比较简单.6.(2分)下列方程变形中,正确的是()A.由3 x=﹣4,系数化为1得x=B.由5=2﹣x,移项得x=5﹣2C.由,去分母得4(x﹣1)﹣3(2 x+3)=1D.由3x﹣(2﹣4 x)=5,去括号得3x+4 x﹣2=5【解答】解:3x=﹣4,系数化为1,得x=﹣,故选项A错误,5=2﹣x,移项,得x=2﹣5,故选项B错误,由,去分母,得4(x﹣1)﹣3(2x+3)=24,故选项C错误,由3x﹣(2﹣4x)=5,去括号得,3x﹣2+4x=5,故选项D正确,故选:D.【点评】本题考查解一元一次方程、等式的性质,解答本题的关键是明确解方程的方法.7.(2分)如图所示正方体的展开图的是()A.B.C.D.【解答】解:根据正方体展开图的特点分析,选项A是它的展开图.故选:A.【点评】此题考查了几何体的展开图,关键是熟练掌握正方体展开图的特征.8.(2分)如图,已知∠AOB是直角,∠AOC是锐角,ON平分∠AOC,OM平分∠BOC,则∠MON是()A.45°B.45°+∠AOC C.60°﹣∠AOC D.不能计算【解答】解:∵OM平分∠BOC,ON平分∠AOC,∴∠MOC=∠BOC,∠NOC=∠AOC,∴∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC),=(∠BOA+∠AOC﹣∠AOC),=∠BOA,=45°.故选:A.【点评】本题考查了角的计算,属于基础题,此类问题,注意结合图形,运用角的和差和角平分线的定义求解.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答卷纸相应位置上)9.(2分)比较大小:﹣<﹣.【解答】解:根据两个负数,绝对值大的反而小的规律得出:﹣<﹣.【点评】同号有理数比较大小的方法(正有理数):绝对值大的数大.(1)作差,差大于0,前者大,差小于0,后者大;(2)作商,商大于1,前者大,商小于1,后者大.如果都是负有理数的话,结果刚好相反,且绝对值大的反而小.如过是异号的话,就只要判断哪个是正哪个是负就行,都是字母的话,就要分情况讨论;如果是代数式的话要先求出各个式的值,再比较.10.(2分)审计署发布公告:截止2010年5月20日,全国共接收玉树地震救灾捐赠款物70.44亿元.将70.44亿元用科学记数法表示为7.044×109元.【解答】解:70.44亿元即7 044 000 000元,用科学记数法表示为7.044×109元.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2分)一个棱柱共有15条棱,那么它是五棱柱,有7个面.【解答】解:一个棱柱共有15条棱,那么它是五棱柱,有7个面,故答案为:五;7.【点评】本题主要考查了认识立体图形,关键是掌握五棱柱的构造特征.12.(2分)若关于x的方程2x=x+a+1的解为x=1,则a=0.【解答】解:依题意,得2=1+a+1,解得a=0.故答案是:0.【点评】本题考查了方程的解的定义.无论是给出方程的解求其中字母系数,还有判断某数是否为方程的解,这两个方向的问题,一般都采用代入计算的方法.13.(2分)已知4a+3b=1,则整式8a+6b﹣3的值为﹣1.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.14.(2分)如图所示,在一条笔直公路p的两侧,分别有甲、乙两个村庄,现要在公路p上建一个汽车站,使汽车站到甲、乙两村的距离之和最小,你认为汽车站应该建在B处(填A或B或C),理由是两点之间线段最短.【解答】解:汽车站应该建在B处,理由是两点之间线段最短.故答案为:B;两点之间线段最短.【点评】此题主要考查了线段的性质,关键是掌握两点之间线段最短.15.(2分)如图,∠AOB=90°,∠AOC=2∠BOC,则∠BOC=30°.【解答】解:∵∠AOB=90°,∠AOC=2∠BOC,∴∠AOC+∠BOC=90°,即2∠BOC+∠BOC=90°,∴∠BOC=30°故答案为:30°.【点评】本题考查了角的有关计算的应用,解此题的关键是利用方程思想,难度适中.16.(2分)一种商品每件的进价为a元,售价为进价的1.1倍,现每件又降价10元,现售价为每件210元.根据题意可列方程为 1.1a﹣10=210.【解答】解:设商品的进价为a元,由题意得:1.1a﹣10=210,故答案为:1.1a﹣10=210【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.17.(2分)如图,已知C、D为线段AB上顺次两点,点M、N分别为AC与BD 的中点,若AB═10,CD=4,则线段MN的长为7.【解答】解:由AB=10,CD=4,∴AC+BD=AB﹣CD=10﹣4=6.∵M、N分别为AC与BD的中点,∴MC=AC,ND=BD∴MC+ND=(AC+BD)=×6=3,∴MN=MC+ND+CD=3+4=7.故答案为:7.【点评】本题考查了两点间的距离,利用线段的和差得出AC+BD的长是解题关键.18.(2分)某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款70元和288元,如果小敏把这两次购物改为一次性购物,则应付款312或344元.【解答】解:第一次购物显然没有超过100元,即在第二次消费70元的情况下,小敏的实质购物价值只能是70元.第二次购物消费288元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):第一种情况:小敏消费超过100元但不足350元,这时候小敏是按照9折付款的.设第二次实质购物价值为x元,那么依题意有x×0.9=288,解得:x=320.第二种情况:小敏消费不低于350元,这时候小敏是按照8折付款的.设第二次实质购物价值为a元,那么依题意有a×0.8=288,解得:a=360.即在第二次消费288元的情况下,小敏的实际购物价值可能是320元或360元.综上所述,小敏两次购物的实质价值为70+320=390或70+360=430,均超过了350元.因此均可以按照8折付款:390×0.8=312(元),或430×0.8=344(元).故应付款312或344元.故答案为:312或344.【点评】此题主要考查了一元一次方程的应用,解题关键是第二次购物的288元可能有两种情况,需要讨论清楚.本题要注意不同情况的不同算法,要考虑到各种情况,不要丢掉任何一种.三、解答题(本大题共9小题,共64分,请在答.卷.纸.指.定.区.域.内作答,解答时应写出文字说明、证明过程或演算步骤)19.(6分)计算:(1)(2)【解答】解:(1)原式=﹣2××=﹣2;(2)原式=﹣9﹣6+1+8=﹣6.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(6分)先化简,再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=,y=2【解答】解:当x=,y=2时,原式=3x2y﹣[2x2y﹣6xy+3x2y﹣xy]=3x2y﹣[5x2y﹣7xy]=﹣2x2y+7xy=﹣1﹣7=﹣8【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.(8分)解方程:(1)4x﹣2=3﹣x(2)【解答】解:(1)4x﹣2=3﹣x移项得:4x+x=3+2,合并同类项得:5x=5,系数化为1得:x=1;(2)去分母得:2(x﹣1)﹣(x+2)=6,去括号得:2x﹣2﹣x﹣2=6,移项得:2x﹣x=6+2+2,合并同类项得:x=10.【点评】此题主要考查了解一元一次方程,正确掌握基本解题步骤是解题关键.22.(6分)如图所示的几何体是由5 个相同的正方体搭成的,请分别画出这个几何体的三视图.【解答】解:如图所示:.【点评】此题主要考查了作三视图,关键是掌握主视图从正面看、左视图是从左边看,俯视图是从上面看.23.(6分)如图,△ABC中,∠A+∠B=90°.(1)根据要求画图:①过点C画直线MN∥AB;②过点C画AB的垂线,交AB于D点.(2)请在(1)的基础上回答下列问题:①若知∠B+∠DCB=90°,则∠A与∠DCB的大小关系为相等.理由是同角的余角相等;②图中线段AD长度表示点A到直线CD的距离.【解答】解:(1)①如图,MN为所求;②如图,CD为所求;(2)①∵∠B+∠DCB=90°,∠B+∠A=90°,∴∠A=∠DCB;②线段AD长度表示点A到直线CD的距离.故答案为=,同角的余角相等;AD.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了点到直线的距离.24.(6分)某礼品制造工厂接受一批玩具的订货任务,按计划天数生产,如果每天生产20个玩具,则比订货任务少100个;如果每天生产23个玩具,则可以超过订货任务20个.请求出这批玩具的订货任务是多少个?原计划几天完成任务?【解答】解:设原计划用x天完成任务,20x+100=23x﹣20,3x=120,解得:x=40,则订货任务是20×40+100=900(个).答:这批订货任务是900个,原计划用40天完成.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.25.(6分)如图:已知直线AB、CD相交于点O,∠COE=90°(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数.【解答】解:(1)∠BOE=180°﹣∠AOC﹣∠COE=180°﹣36°﹣90°=54°;(2)∵∠BOD:∠BOC=1:5,∠BOD+∠BOC=180°,∴∠BOD=30°,∵∠BOD=∠AOC,∴∠AOC=30°,∴∠AOE=∠COE+∠AOC=90°+30°=120°.【点评】此题考查了对顶角、邻补角,熟练掌握平角等于180度,直角等于90度,对顶角相等是解答本题的关键.26.(8分)求若干个相同的不为零的有理数的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”.一般地,把(a≠0)记作,读作“a的圈n次方”.(1)直接写出计算结果:2③=,(﹣3)④=,(﹣)⑤=﹣8;(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,请尝试把有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈n次方等于这个数倒数的(n﹣2)次方;(3)计算24÷23+(﹣8)×2③.【解答】解:(1);;﹣8;(2)这个数倒数的(n﹣2)次方;(3)24÷23+(﹣8)×2③=24÷8+(﹣8)×=3+(﹣4)=﹣1.故答案为:(1);;﹣8;(2)这个数倒数的(n﹣2)次方;【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.27.(12分)【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B 表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=10,线段AB的中点表示的数为3;②用含t的代数式表示:t秒后,点P表示的数为﹣2+3t;点Q表示的数为8﹣2t.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.【解答】解:(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为=﹣2,点N表示的数为=+3,∴MN=|(﹣2)﹣(+3)|=|﹣2﹣﹣3|=5.【点评】本题考查了一元一次方程的应用应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
南京秦淮外国语学校人教版七年级数学上册期末试卷及答案

南京秦淮外国语学校人教版七年级数学上册期末试卷及答案一、选择题 1.4 =( )A .1B .2C .3D .42.当x 取2时,代数式(1)2x x -的值是( ) A .0B .1C .2D .33.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =4.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b 5.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10- B .10 C .5- D .5 6.计算(3)(5)-++的结果是( )A .-8B .8C .2D .-27.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①② C .②④ D .③④8.若21(2)0x y -++=,则2015()x y +等于( ) A .-1B .1C .20143D .20143-9.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .110.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( ) A .0B .1C .12D .311.当x=3,y=2时,代数式23x y-的值是( )A.43B.2 C.0 D.312.3的倒数是()A.3B.3-C.13D.13-二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.14.如图,点A在点B的北偏西30方向,点C在点B的南偏东60︒方向.则ABC∠的度数是__________.15.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.16.写出一个比4大的无理数:____________.17.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.18.﹣30×(1223-+45)=_____.19.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.20.如果向东走60m记为60m+,那么向西走80m应记为______m.21.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.22.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.23.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 24.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.三、压轴题25.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).26.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ; (2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度. 27.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n的代数式表示); ②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.28.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.29.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 6a +(c ﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积; (3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的13?直接写出此时点P 的坐标.30.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)31.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并32.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.(1)若点C是线段AB的中点,求线段CO的长.(2)若动点P、Q分别从 A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,①当x=__________秒时,PQ=1cm;②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:4=2,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.2.B解析:B【解析】把x 等于2代入代数式即可得出答案. 【详解】 解:根据题意可得: 把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B. 【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.3.A解析:A 【解析】 【分析】把32x =-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是. 【详解】解: A 中、把32x =-代入方程得左边等于右边,故A 对; B 中、把32x =-代入方程得左边不等于右边,故B 错; C 中、把32x =-代入方程得左边不等于右边,故C 错; D 中、把32x =-代入方程得左边不等于右边,故D 错. 故答案为:A. 【点睛】本题考查方程的解的知识,解题关键在于把x 值分别代入方程进行验证即可.4.D解析:D 【解析】 【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论. 【详解】解:∵由图可知a <0<b , ∴ab <0,即-ab >0又∵|a|>|b|,∴a<﹣b.故选:D.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.5.D解析:D【解析】【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.【详解】解:∵方程2k-3x=4与x-2=0的解相同,∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.故选:D.【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.6.C解析:C【解析】【分析】根据有理数加法法则计算即可得答案.【详解】-++(3)(5)=5+-3-=2故选:C.【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.7.A解析:A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误;根据客车数列方程,应该为2554045n n++=,③正确,②错误;所以正确的是①③.故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.8.A解析:A【解析】(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y)2015=(1﹣2)2015=﹣1.故选A9.B解析:B【解析】【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x=1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.10.C解析:C 【解析】 【分析】根据同类项的定义得出2m=1,求出即可. 【详解】解:∵单项式-3a 2m b 与ab 是同类项, ∴2m=1, ∴m=12, 故选C . 【点睛】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.11.A解析:A 【解析】 【分析】当x=3,y=2时,直接代入代数式即可得到结果. 【详解】23x y -=2323⨯-=43, 故选A 【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.12.C解析:C 【解析】根据倒数的定义可知. 解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.二、填空题13.两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.解析:两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.14.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.15.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.17.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.18.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45)=﹣30×12+(﹣30)×(23-)+(﹣30)×45=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 19.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式20.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m记为,那么向西走80m应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.21.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元. 22.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.23.1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可. 【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.24.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.三、压轴题25.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 26.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】【分析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A 1A 2=A 2A 3=……=A 19A 20,|a 1﹣a 4|=12,∴3A 3A 4=12,∴A 3A 4=4.又∵a 3=20,∴a 2=a 3﹣4=16.故答案为:4;16.(2)由(1)可得:a 1=12,a 2=16,a 4=24,∴a 2+a 4=40.又∵|a 1﹣x|=a 2+a 4,∴|12﹣x|=40,∴12﹣x =40或12﹣x =﹣40,解得:x =﹣28或x =52.(3)根据题意可得:A 1A 20=19A 3A 4=76.设线段MN 的运动速度为v 单位/秒,依题意,得:9v =76+5,解得:v =9.答:线段MN 的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A 3A 4的长度及a 2的值;(2)由(1)的结论,找出关于x 的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.27.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=, 故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数,对6188分解质因数可知61882271317=⨯⨯⨯⨯, ()()n 1n 2m 22713173++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯, m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 28.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.29.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵6a ++|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.30.(1)25- ,35 (2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x 秒,表示出P ,Q 的运动路程,利用路程和等于AB 长即可解题;(3)根据点Q 达到A 点时,点P ,Q 停止运动求出运动时间即可解题;(4)根据第三问点P 运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25-,35(2)设运动时间为x秒13x2x2535+=+解得x4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P运动了6个来回后,又运动了30个单位长度,∵25305-+=,∴点P所在的位置表示的数为5 .(4)由(3)得:点P运动了6个来回后,又运动了30个单位长度,∴点P和点Q一共相遇了6+1=7次.【点睛】本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.31.(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的13处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;(3)当点C停止运动时,有CD=12AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM=112AB.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13 AB,∴13 PQ AB=(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12 AB,∴CM=14 AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.32.(1)CO=2.5;(2)①14和16 ;②定值55,理由见解析;(3)t=22.5和67.5【解析】【分析】(1)先求出线段AB的长,然后根据线段中点的定义解答即可;(2)①由PQ=1,得到|15-(4x-3x)|=1,解方程即可;②先表示出PM、OQ、OM的长,代入4PM+3OQ﹣mOM得到55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解方程即可;(3)分两种情况讨论,画出图形,根据图形列出方程,解方程即可.【详解】(1)∵OA=10cm,OB=5cm,∴AB=OA+OB=15cm.∵点C是线段AB的中点,∴AC=AB=7.5cm,∴CO=AO-AC=10-7.5=2.5(cm).(2)①∵PQ=1,∴|15-(4x-3x)|=1,∴|15-x|=1,∴15-x=±1,解得:x=14或16.②∵PM=10+7x-4x=10+3x,OQ=5+3x,OM=7x,∴4PM+3OQ﹣mOM=4(10+3x)+3(5+3x)-7mx=55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解得:m=3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t-2t=90,解得:t=22.5;②如图2,根据题意得:6t+90=360+2t,解得:t=67.5.综上所述:当t=22.5秒和67.5秒时,射线OC⊥OD.【点睛】本题考查了一元一次方程的应用.解题的关键是分类讨论.。
江苏省南京市秦淮区四校2017-2018学年第一学期七年级数学期末试卷(解析版)

2017-2018学年第一学期江苏省南京市秦淮区四校七年级数学期末试卷一、选择题(本大题共8 小题,每小题2 分,共16 分,在每小题所给出的四个选项中,恰有一项是符合要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1. -3 的相反数是()A. -3B. 3C.D.【答案】B【解析】解:-3 的相反数是3.故选B.2. 计算2- (-3) ×4 的结果是()A. 20B. -10C. 14D. -20【答案】C3. 下列各组单项式中,是同类项的一组是()A. 3x3y与3xy3B. 2ab2与-3a2bC. a2与b2D. 2xy与3 yx【答案】D【解析】解:A.相同字母的指数不同,故A错误;B.相同字母的指数不同,故B错误;C.字母不同,不是同类项,故C错误;D.字母项相同且相同字母的指数也相同,是同类项,故D正确.故选D.点睛:本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.4. 单项式2a2b 的系数和次数分别是()A. 2,2B. 2,3C. 3,2D. 4,2【答案】B【解析】解:单项式2a2b的系数是2,次数是3.故选B.5. 已知和是对顶角,若300,则的度数为()A. 300B. 600C. 700D. 1500【答案】A【解析】解:∵∠α和∠β是对顶角,∠α=30°,∴根据对顶角相等可得∠β=∠α=30°.故选A.6. 下列方程变形中,正确的是()A. 由3 x=-4 ,系数化为1 得x = ;B. 由5=2 -x ,移项得x =5 -2 ;C. 由,去分母得4( x -1) -3(2 x+3) =1 ;D. 由3x - (2 -4 x) =5 ,去括号得3x+4 x - 2 = 5【答案】D【解析】解:A.由3 x=-4 ,系数化为1 得x =,故A错误;B.由5=2 -x,移项得x =2-5,故B错误;C.由,去分母得4( x -1) -3(2 x+3) =24,故C错误;D.由3x - (2 -4 x) =5 ,去括号得3x+4 x - 2 = 5,正确.故选D.7. 如图所示正方体的展开图的是()A. B. C. D.【答案】A【解析】解:根据已知图形,三个图案交于一点,五角星和正方形的顶点正对,故选项A是它的展开图.故选A.点睛:此题考查了几何体的展开图,关键是熟练掌握正方体展开图的特征.8. 如图,已知∠AOB 是直角,∠AOC是锐角,ON平分∠AOC ,OM平分∠BOC ,则∠MON的度数是()A. 450B. 450+∠AOCC. 600-∠AOCD. 不能计算【答案】A【解析】解:∵OM平分∠BOC,ON平分∠AOC,∴∠MOC=∠BOC,∠NOC=∠AOC,∴∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(∠BOA+∠AOC﹣∠AOC)=∠BOA=45°.故选A.点睛:本题考查了角的计算,属于基础题,此类问题,注意结合图形,运用角的和差和角平分线的定义求解.二、填空题(本大题共 10 小题,每小题 2 分,共 20 分,不需写出解答过程,请把答案直接填写在答卷纸相应位置上)9. 比较大小:______________【答案】<【解析】解:∵|﹣|=,|﹣|=,>,∴﹣<﹣.故答案为:<.点睛:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:两个负数,绝对值大的其值反而小.10. 审计署发布公告:截止2010 年5 月20 日,全国共接收玉树地震救灾捐赠款物70.44 亿元,将70.44 亿元用科学记数法表示为__________元.【答案】7.044×109【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解:70.44亿元即7 044 000 000元,用科学记数法表示为7.044×109元.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11. 一个棱柱共有15 条棱,那么它是__________棱柱,有___________个面.【答案】(1). 五(2). 7【解析】解:一个棱柱共有15条棱,那么它是五棱柱,有7个面.故答案为:五;7.12. 若关于x 的方程2x= x+ a + 1的解为x =1 ,则a = __________.【答案】0【解析】把x=1代入已知方程,列出关于a的新方程,通过解新方程即可求得a的值.解:依题意得:2=1+a+1,解得a=0,故答案为:0.13. 已知4a +3b =1 ,则整式8a +6b - 3 的值为___________.【答案】-1【解析】解:∵4a+3b=1,∴8a+6b=2,8a+6b-3=2-3=-1.故答案为:-1.14. 如图所示,在一条笔直公路p 的两侧,分别有甲、乙两个村庄,现要在公路p 上建一个汽车站,使汽车站到甲、乙两村的距离之和最小,你认为汽车站应该建在___________处(填A 或B 或C),理由是__________.【答案】(1). B (2). 两点之间线段最短【解析】解:汽车站应该建在B处,理由是两点之间线段最短.故答案为:B,两点之间线段最短.15. 如图,∠AOB=900,∠AOC=2∠BOC,则∠BOC=________0【答案】30【解析】试题分析:设∠BOC=x°,则∠AOC=2x°,根据题意可得:x+2x=90°,解得:x=30°,即∠BOC=30°.16. 一种商品每件的进价为a 元,售价为进价的1.1 倍,现每件又降价10元,现售价为每件210元,根据题意可列方程__________.【答案】1.1a-10=210【解析】解:设商品的进价为a元.由题意得:1.1a-10=210.故答案为:1.1a-10=210.点睛:此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.17. 如图,已知C、D为线段AB上顺次两点,点M、N分别为AC与BD的中点,若AB=10,CD=4,则线段MN的长为__________.【答案】7【解析】试题分析:根据线段的和差,可得AC+BD,根据线段中点的性质,可得MC,ND,根据线段的和差,可得答案.试题解析:解:由AB=10,CD=4,∴AC+BD=AB﹣CD=10﹣4=6.学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...点睛:本题考查了两点间的距离,利用线段的和差得出AC+BD的长是解题的关键.18. 某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100 元(不含100 元)以内,不享受优惠;②一次性购物在100 元(含100 元)以上,350 元(不含350 元)以内,一律享受九折优惠;③一次性购物在350 元(含350 元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款70 元和288 元,如果小敏把这两次购物改为一次性购物,则应付款__________元.【答案】312或344【解析】解:第一次购物显然没有超过100元,即在第一次消费70元的情况下,他的实质购物价值只能是70元.第二次购物消费288元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):第一种情况:他消费超过100元但不足350元,这时候他是按照9折付款的.设第二次实质购物价值为x元,那么依题意有:x×0.9=288,解得:x=320.第二种情况:他消费不低于350元,这时候他是按照8折付款的.设第二次实质购物价值为a元,那么依题意有:a×0.8=288,解得:a=360.即在第二次消费288元的情况下,他的实际购物价值可能是320元或360元.综上所述,他两次购物的实质价值为70+320=390或70+360=430,均超过了350元.因此均可以按照8折付款:390×0.8=312(元),430×0.8=344(元).故答案为:312元或344元.点睛:此题主要考查了一元一次方程的应用,解题关键是第二次购物的288元可能有两种情况,需要讨论清楚.本题要注意不同情况的不同算法,要考虑到各种情况,不要丢掉任何一种.三、解答题(本大题共9 小题,共64 分,请在答.卷.纸.指.定.区.域.内作答,解答时应写出文字说明、证明过程或演算步骤)19. 计算:(1) (2)【答案】(1)-2;(2)-6【解析】试题分析:根据有理数混合运算法则计算即可.试题解析:解:(1)原式==-2;(2)原式==-9-6+9=-6.20. 先化简,再求值:3x2y –[2 x2y -3(2 xy- x2y)-xy],其中, y=2.【答案】-8【解析】试题分析:去小括号,去中括号,合并同类项,最后代入求出即可.试题解析:原式当时,原式21. 解方程:(1)4x-2 =3 –x (2)【答案】(1)x=1;(2)x=10【解析】试题分析:(1)方程移项合并同类项,化系数为1即可;(2)方程去分母,去括号,移项合并同类项,化系数为1即可.试题解析:解:(1)移项得:4x+x=3+2合并同类项得:5x=5解得:x=1.(2)去分母得:2(x-1)-(x+2)=6去括号得:2x-2-x-2=6移项得:2x-x=6+2+2合并同类项得:x=10.22. 如图所示的几何体是由 5 个相同的正方体搭成的,请分别画出这个几何体的三视图.【答案】见解析【解析】试题分析:主视图有3列,每列小正方形数目分别为2,1,1;左视图2列,每列小正方形数目分别为1,2;俯视图有3列,每行小正方形数目分别为2,1,1.试题解析:解:如图所示:点睛:本题考查了作图﹣三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23. 如图,△ABC 中,∠A+∠B =900.⑴根据要求画图:①过点C画直线 MN ∥AB②过点C画AB的垂线,交AB于点D.⑵请在⑴的基础上回答下列问题:①已知∠B+∠DCB=900,则∠A与∠DCB 的大小关系为__________,理由是__________.②图中线段_________的长度表示点 A 到直线CD的距离.【答案】(1). ∠A=∠DCB (2). 同角的余角相等(3). AD【解析】试题分析:(1)根据题意画出MN∥AB,CD⊥AB于D;(2)①根据同角的余角相等可判断∠A=∠DCB;②根据点到直线的距离的定义求解.试题解析:解:(1)①如图,MN为所求;②如图,CD为所求;(2)①∵∠B+∠DCB=90°,∠B+∠A=90°,∴∠A=∠DCB;②线段AD长度表示点A到直线CD的距离.故答案为:∠A=∠DCB,同角的余角相等;AD.24. 某礼品制造工厂接受一批玩具的订货任务,按计划天数生产,如果每天生产20个玩具,则比订货任务少100个;如果每天生产23个玩具,则可以超过订货任务20个,请求出这批玩具的订货任务是多少个,原计划几天完成任务.【答案】订货任务是900个,原计划40天完成任务【解析】试题分析:设原计划用天完成任务,根据题意可得等量关系为订货任务是一定的,据此列方程求解,然后求出订货任务.试题解析:设原计划用天完成任务,,解得则订货任务是个.答:这批订货任务是900个,原计划用40天完成.考点:一元一次方程的应用.25. 如图:已知直线AB、CD 相交于点O,∠COE=900.(1)若∠AOC=360,求∠BOE 的度数;(2)若∠BOD : ∠BOC =1:5,求∠AOE 的度数.【答案】(1)54°;(2)120°【解析】试题分析:(1)根据平角的定义求解即可;(2)根据平角的定义可求∠BOD,根据对顶角的定义可求∠AOC,根据角的和差关系可求∠AOE的度数.试题解析:解:(1)∵∠AOC=36°,∠COE=90°,∴∠BOE=180°﹣∠AOC﹣∠COE=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=180°×=30°,∴∠AOC=30°,∴∠AOE=30°+90°=120°.26. 求若干个相同的不为零的有理数的除法运算叫做除方.如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3)等. 类比有理数的乘方,我们把2÷2÷2 记作2③,读作“2 的圈3 次方”. (-3)÷(-3)÷(-3 )÷( -3)记作(-3)④,读作“-3 的圈4 次方”.一般地,把(a≠0)记作,记作“a的圈n次方”.(1)直接写出计算结果:_____,_________,___________,(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,请尝试将有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈n 次方等于_____.(3)计算.【答案】(1). (2). (3). -8 (4). 它的倒数的n-2次方【解析】试题分析:(1)根据题中的新定义计算即可得到结果;(2)归纳总结得到规律即可;(3)利用得出的结论计算即可得到结果.试题解析:解:(1),,﹣8;(2)这个数倒数的(n﹣2)次方;(3)24÷23+(﹣8)×2③=24÷8+(﹣8)×=3+(﹣4)=﹣1.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.27. 【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点 A、点 B 表示的数分别为 a、b,则A、B 两点之间的距离AB= ,线段AB 的中点表示的数为.【问题情境】如图,数轴上点A表示的数为-2,点B表示的数为8,点P从点 A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t秒(t>0).【综合运用】(1) 填空:①A、B两点之间的距离AB=__________,线段AB的中点表示的数为_______;②用含t的代数式表示:t秒后,点P表示的数为_______;点Q表示的数为_____.(2) 求当t为何值时,P、Q 两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点 P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.【答案】(1). 10 (2). 3 (3). -2+3t (4). 98-2t【解析】试题分析:(1)根据题意即可得到结论;(2)当P、Q两点相遇时,P、Q表示的数相等列方程得到t=2,于是得到当t=2时,P、Q相遇,即可得到结论;(3)由t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,于是得到PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,列方程即可得到结论;(4)由点M表示的数为,点N表示的数为,即可得到结论.试题解析:解:(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等,∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3.∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为,点N表示的数为,∴MN=|()﹣()|=||=5.点睛:本题考查了一元一次方程的应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给出的四个选项中,恰有一项是符合要求的,请将正确选项前的字母代号涂在答题卡相应位置上)
1.−3的相反数是( )
A 、−3
B 、3
C 、31
D 、−3
1 2.计算2−(−3)×4的结果是( )
A 、20
B 、−10
C 、14
D 、−20
3.下列各组单项式中,是同类项的一组是( )
A 、3x 3y 与3xy 3
B 、2ab 2与−3a 2b
C 、a 2与b 2
D 、−2xy 与3 yx
4.单项式2a 2b 的系数和次数分别是( )
A 、2,2
B 、2,3
C 、3,2
D 、4,2
5.已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为( )
A 、30°
B 、60°
C 、70°
D 、150°
6.下列方程变形中,正确的是( )
A 、由 3 x =−4,系数化为1得 x =−43
B 、由 5=2−x ,移项得 x =5−2
C 、由 61-x −8
32+x =1,去分母得 4( x −1)−3(2 x +3)=1 D 、由 3x −(2−4 x )=5,去括号得 3x +4 x −2=5
7.如图所示正方体的展开图的是( )
A 、
B 、
C 、
D 、
8.如图,已知∠AOB 是直角,∠AOC 是锐角,ON 平分∠AOC ,OM
平分∠BOC ,则∠MON 是( )
A 、45°
B 、45°+
21∠AOC C 、60°−21
∠AOC D 、不能计算
二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答卷纸相应位置上)
9.比较大小:−54____−4
3.
10.审计署发布公告:截止2010年5月20日,全国共接收玉树地震救灾捐赠款物70.44亿元.将70.44亿元用科学记数法表示为______元.
11.一个棱柱共有15条棱,那么它是_____棱柱,有_________个面.
12.若关于x 的方程2x =x +a +1的解为x =1,则a =_______.
13.已知4a +3b =1,则整式8a +6b −3的值为_______.
14.如图所示,在一条笔直公路p 的两侧,分别有甲、乙两个村庄,现要在公路p 上建一个汽车站,使汽车站到甲、乙两村的距离之和最小,你认为汽车站应该建在_____处(填A 或B 或C ),理由是_________.
15.如图,∠AOB =90°,∠AOC =2∠BOC ,则∠BOC =_______°.
16.一种商品每件的进价为a 元,售价为进价的1.1倍,现每件又降价10元,现售价为每件210元.根据题意可列方程为________.
17.如图,已知C 、D 为线段AB 上顺次两点,点M 、N 分别为AC 与BD 的中点,若AB ═10,CD =4,则线段MN 的长为_________.
18.某超市在“五一”活动期间,推出如下购物优惠方案:
①一次性购物在100元(不含100元)以内,不享受优惠;
②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠; ③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款70元和288元,如果小敏把这两次购物改为一次性购物,则应付款________元.
三、解答题(本大题共9小题,共64分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.计算:
(1)−2÷
94×(3
2)2 (2)−32−|−6|−3×(−31)+(−2)2÷21
20.先化简,再求值:3x 2y −[2x 2y −3(2xy −x 2y)−xy],其中 x =−21,y =2
21.解方程:
(1)4x −2=3−x
(2)
31-x −6
2+x =1
22.如图所示的几何体是由5 个相同的正方体搭成的,请分别画出这个几何体的三视图.
23.如图,△ABC中,∠A+∠B=90°.
(1)根据要求画图:
①过点C画直线MN∥AB;
②过点C画AB的垂线,交AB于D点.
(2)请在(1)的基础上回答下列问题:
①若知∠B+∠DCB=90°,则∠A与∠DCB的大小关系为______.理由是________;
②图中线段__________长度表示点A到直线CD的距离.
24.某礼品制造工厂接受一批玩具的订货任务,按计划天数生产,如果每天生产20个玩具,则比订货任务少100个;如果每天生产23个玩具,则可以超过订货任务20个.请求出这批玩具的订货任务是多少个?原计划几天完成任务?
25.如图:已知直线AB、CD相交于点O,∠COE=90°
(1)若∠AOC=36°,求∠BOE的度数;
(2)若∠BOD:∠BOC=1:5,求∠AOE的度数.
26.求若干个相同的不为零的有理数的除法运算叫做除方,如2÷2÷2,(−3)÷(−3)÷(−3)÷(−3)等.类比有理数的乘方,我们把2÷2÷2记作2,读作“2的圈3次方”,
(−3)÷(−3)÷(−3)÷(−3)记作(−3),读作“−3的圈4次方”.一般地,把
(a ≠0)记作______,读作“a 的圈n 次方”.
(1)直接写出计算结果:2=________,(−3)=_________,(−21)=_________;
(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,请尝试把有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈n 次方等于______________________;
(3)计算24÷23+(−8)×2.
27.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离AB =|a −b|,线段AB 的中点表示的数为2
b a . 【问题情境】如图,数轴上点A 表示的数为−2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.
设运动时间为t 秒(t >0).
【综合运用】
(1)填空:
①A 、B 两点间的距离AB =______,线段AB 的中点表示的数为_________;
②用含t 的代数式表示:t 秒后,点P 表示的数为__________;点Q 表示的数为_________.
(2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;
(3)求当t 为何值时,PQ =2
1AB ; (4)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.
参考答案:。