2012高中物理 第5章万有引力定律及其应用单元测试10 鲁科版必修2
《第5章 万有引力定律及其应用》试卷及答案_高中物理必修2_鲁科版_2024-2025学年

《第5章万有引力定律及其应用》试卷(答案在后面)一、单项选择题(本大题有7小题,每小题4分,共28分)1、在牛顿提出的万有引力定律中,两个质点之间的引力大小与它们的质量的乘积成正比,与它们之间距离的平方成反比。
以下哪个选项描述了这一关系?())A.(F∝m1m2d2)B.(F∝m1m2dC.(F∝m1m2))D.(F∝1m1m22、地球表面上的物体受到的引力是由地球的质量和物体的质量决定的。
如果地球的质量增加一倍,同时物体的质量也增加一倍,那么物体受到的地球引力将如何变化?()A. 增加一倍B. 减少一倍C. 不变D. 无法确定3、在地球表面,一个物体受到的重力是它质量的9.8倍,即g=9.8 m/s²。
如果将这个物体带到距离地球表面高度为h的地方,重力加速度变为g’。
根据万有引力定律,下列哪个关系式是正确的?A. g’ = g / (1 + h/R)B. g’ = g / (1 - h/R)C. g’ = g * (1 + h/R)D. g’ = g * (1 - h/R)4、两个质量分别为m1和m2的物体,它们之间的万有引力为F。
如果将它们的质量都增加一倍,即m1变为2m1,m2变为2m2,那么它们之间的万有引力将变为多少?A. 2FB. 4FC. F/2D. F5、在地球表面附近,一个物体的重力与其质量成正比,比例系数称为重力加速度g。
已知地球的质量M和半径R,那么地球表面附近的重力加速度g可以表示为:)A.(g=GMR2)B.(g=GMR3)C.(g=GMR2)D.(g=GR36、两个质量分别为m1和m2的星体相距为r,它们之间的万有引力F随距离r的增大而:A. 增大B. 减小C. 不变D. 先增大后减小7、在地球表面,一个物体的重力加速度与地球的质量和物体的质量有关。
根据万有引力定律,下列说法正确的是:A. 重力加速度与地球的质量成正比,与物体的质量成反比B. 重力加速度与地球的质量和物体的质量都成正比C. 重力加速度与地球的质量成反比,与物体的质量成正比D. 重力加速度与地球的质量和物体的质量都成反比二、多项选择题(本大题有3小题,每小题6分,共18分)1、关于万有引力定律,以下说法正确的是:A. 万有引力定律适用于所有物体之间的引力作用B. 万有引力的大小与两个物体的质量成正比,与它们之间的距离的平方成反比C. 万有引力定律只适用于天体之间的引力作用D. 万有引力定律是由牛顿提出的2、在地球表面,一个物体的重力与其质量成正比,以下关于重力和质量关系的说法正确的是:A. 地球上不同位置的重力加速度不同B. 地球表面同一位置的重力加速度相同C. 重力加速度与地球的质量成正比D. 重力加速度与地球的半径成反比3、下列关于万有引力定律及其应用的描述,正确的是()A. 万有引力定律适用于任意两个物体之间B. 两个静止的物体之间也存在万有引力C. 万有引力的大小与物体之间的距离平方成反比D. 万有引力的大小与物体的质量成正比三、非选择题(前4题每题10分,最后一题14分,总分54分)第一题:地球绕太阳做近似圆周运动,已知地球的公转周期为1年,地球的轨道半径为1.5×10^8 km。
高中物理 第五章万有引力定律及其应用2单元测试 鲁科版必修2

第5章《万有引力定律及其应用》单元测试21.可以发射一颗这样的人造地球卫星,使其圆轨道( ) A .与地球表面上某一纬度线(非赤道)是共面同心圆 B .与地球表面上某一经度线所决定的圆是共面同心圆C .与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是静止的D .与地球表面上的赤道线是共面同心圆,但卫星相对地球表面是运动的解析:因为是地球对卫星的万有引力提供向心力,所以卫星的圆心必在地心上,正确选项为CD . 答案:CD2.利用下列哪组数据,可以计算出地球的质量(引力常量G 已知)( ) A .已知地球的半径R 和地面的重力加速度gB .已知卫星绕地球做匀速圆周运动的轨道半径r 和周期TC .已知卫星绕地球做匀速圆周运动的轨道半径r 和线速度vD .已知卫星绕地球做匀速圆周运动的线速度v 和周期T解析:设地面上某物体的质量为m ,由2R Mm G =mg ,可得M=G gR 2,选项A 正确.设卫星质量为m ,由2r Mm G =224T m r π得M=2324GT r π,选项B 正确.由2r Mm G =r v m 2得M=G rv 2,选项C 正确.由2r Mm G =r v m 2和2r Mm G =mv T π2,消去r 可得M=GTv π23,选项D 正确.答案:ABCD3.人造地球卫星绕地球做匀速圆周运动,其速率( )A .一定等于7.9 km/sB .等于或小于7.9 km/sC .一定大于7.9 km/sD .介于7.9 km/s —11.2 km/s解析:此题考查对第一宇宙速度的理解.第一宇宙速度是发射速度的最小值,是在圆形轨道上运行速度的最大值,因此,绕地球做匀速圆周运动的人造卫星的线速度一定等于或小于7.9 km/s ,而不能大于7.9 km/s .故选项B 正确. 答案:B4.关于地球同步卫星,下列说法中正确的是( ) A .它的周期是24 h ,且轨道平面与赤道平面重合 B .它处于平衡状态,距离地面高度一定 C .它的线速度大于7.9 km/sD .它的加速度小于9.8 m/s 2解析:地球同步卫星绕地球做匀速圆周运动,相对地球静止,故公转周期必须与地球自转周期相同(24 h ),轨道平面必须与赤道平面在同一平面内,故选项A 正确.根据万有引力提供向心力可以推导出其距离地面高度一定(36 000km ),运行速度一定,为3.1 km/s ,故选项C 错误.但因它受到万有引力作用,合力不为零,故并非处于平衡状态,故选项B 错误.根据牛顿第二定律可求得其所在处的加速度小于地球表面的重力加速度g (9.8 m/s 2),故选项D 正确. 答案:AD5.一颗行星一昼夜的时间为6 h ,弹簧秤在行星赤道上称某物体重力比两极小10%,此行星的平均密度为______________.(万有引力常量G=6.67×10-11 N·m 2/kg 2) 解析:物体在两极时,重力等于万有引力,即2RMmG=mg′.物体在赤道上时,随行星一起做匀速圆周运动,向心力是行星引力和弹簧秤拉力的合力,即mg′-F=224Tm R π.由题意知F=90%mg′三式联立得M=23240GT R π,平均密度为ρ=230GT V M π= 代入数据解得ρ=3.03×103kg/m 3.答案:3.03×103 kg/m 36.在某个行星上,以初速度v 0竖直上抛一个物体,测得其上升的最大高度为H ,已知该行星的直径为d ,若给该行星发射一颗在其表面附近运转的匀速圆周运动的卫星,则该卫星的绕行速度有多大?解析:物体做竖直上抛匀减速直线运动时,有v 2-v 02=2as,即-v 02=-2g′H所以可求得行星表面的重力加速度为g′=H v22对环绕行星表面的卫星有mg′=22d v m可以求得运行速度为v=Hd v 20. 答案:Hd v 20 7.在地球某处海平面上测得物体自由下落高度h 所需时间为t ,到某高山顶测得物体自由下落同样高度所需时间增加了Δt ,已知地球半径为R ,试求山的高度H .解析:由于地球自转角速度很小,忽略地球上物体跟随地球自转的向心力,这样地球表面物体所受重力就等于地球对物体的万有引力,由2R Mm G=mg ,得g=2R GM自由下落时间为t=gh2 在高山顶上有g′=2)(H R GM+ 自由下落的时间为t+Δt='2g h以上各式联立解得H=R tt∆. 答案:R tt ∆ 8.宇宙飞船要与环绕地球运转的轨道空间站对接,飞船为了追上轨道空间站( ) A .只能从较低轨道上加速 B .只能从较高轨道上加速C .只能从空间站同一高度轨道上减速D .无论在什么轨道上,只要加速都行解析:宇宙飞船在轨道上运行,加速时,速度增大,此时宇宙飞船所需的向心力大于其所受的万有引力,即万有引力不足以提供向心力,宇宙飞船做离心运动,轨道半径增大.通过以上分析可知,只能从较低轨道加速才能追上较高轨道的空间站,对接成功.故选项A 正确. 答案:A9.某小报登载:2000年7月10日,X 国发射了一颗质量为100 kg 、周期为1 h 的人造月球卫星,一位同学没记住引力常量G 的数值,身边没有资料可查,但他记得月球半径约为地球半径的1/4,月球表面的重力加速度约为地球表面重力加速度的1/6,经推理,他认为该报道是假新闻.试写出他的论证方案.论证:设卫星靠近月球表面做匀速圆周运动,所受万有引力(近似等于在月球表面上时所受重力)提供向心力,即mg=224Tm R π则周期T=gR π2 这是卫星运行的最小周期,根据月球与地球半径、重力加速度的关系,可以得到月球半径和重力加速度,并代入上式计算得最小周期为T=6.2×103s=1.7 h 不可能是1 h ,故该报道是假新闻.10.天文学根据观测研究得出:银河系中心可能存在一个大“黑洞”,距“黑洞”60亿千米的星体以2 000 km/s 的速度绕它旋转,接近“黑洞”的所有物质,即使速度等于光速的光子也会被“黑洞”吸住而不能反射.已知引力常量G=6.67×10-11 N·m 2/kg 2,求: (1)该“黑洞”的质量; (2)该“黑洞”的最大半径.解析:(1)设“黑洞”、星体质量分别为M 、m ,它们之间的距离为R ,则有2R Mm G =Rv m 2,解得M=GR v 2=3.6×1035 kg .(2)设“黑洞”半径为R 0,质量为M ,速度为光速c 的光子绕“黑洞”做匀速圆周运动,有022R c mR Mm G=,R 0=2c GM .由以上二式解得R 0=2.7×108m. 答案:(1)3.6×1035kg (2)2.7×108m11.一颗在赤道上空飞行的人造地球卫星,其轨道半径为r=3R (R 为地球半径),已知地球表面重力加速度为g ,则该卫星的运行周期是多大?若卫星的运动方向与地球自转方向相同,已知地球自转角速度为ω0,某一时刻,卫星通过赤道上某建筑物的正上方,再经过多长时间它又出现在该建筑物的正上方?解析:由万有引力定律和牛顿运动定律得2)3(R MmG =m(3R)222,4R Mm G T π=mg .联立两式可得T=gR36π.以地面为参考系,卫星再次出现在建筑物上方时转过的角度为2π,卫星相对地面的角速度为ω1-ω0,则Δt=0331222ωπωπ-=-RgT.答案:3312ωπ-Rg12.将来人类离开地球到宇宙中生活最具有可能的是在太阳系内地球附近建立“太空城”.如图5-2-4所示是设想中的一个圆柱形太空城,它是一个密封建筑,长1 600 m ,直径200 m ,在电力驱动下,绕自身轴转动.其外壳为金属材料,内壁沿纵向分隔成若干部分,窗口和人造陆地交错分布,陆地上覆盖1.5 m 厚的土壤,窗口外有巨大的铝制反射镜,可调节阳光射入,城内充满空气.太空城内的空气、水和土壤最初可从地球和月球运送,以后则在太空城内形成与地球相同的生态环境.为了使太空城内的居民能如同在地球上一样具有“重力”,以适应人类在地球上的行为习惯,应使太空城以多大的转速绕其中心轴转动?若转速超过此数值时,人们将有什么感觉?图5-2-4解析:当太空城中居民由于太空城绕轴自转而做匀速圆周运动所需的向心力等于人在地球表面所受的重力时,太空城的居民就能如同地球上一样具有“重力”.设居民质量为m ,太空城绕中心轴转速为n ,半径为r ,则有mg=mr(2πn)2n=rg π21 代入数据解得n=0.05 r/s=3 r/min当转速超过此值时,向心力大于人在地球表面所受的重力,将会有超重的感觉. 答案:3 r/min ,超重。
鲁科版高中物理必修二高一单元测试第五章万有引力定律及其应用22.docx

高中物理学习材料(鼎尚**整理制作)第5章《万有引力定律及其应用》单元测试一、选择题(10×4分)1.在越野赛车时,一辆赛车在水平公路上减速转弯,从俯视图可以看到,赛车沿圆周由P 向Q 行驶.下列图中画出了赛车转弯时所受合力的四种方式,其中正确的是( )【解析】将F 向切向和径向分解,切向分力使其减速,径向的分力产生向心加速度,故D 正确. [答案] D2.备受关注的京沪高速铁路预计在2010年投入运营.按照设计,乘高速列车从北京到上海只需4个多小时,由于高速列车的速度快,对轨道、轨基的抗震动和抗冲击力的要求都很高.如图所示,列车转弯可以看成是做匀速圆周运动,若某弯道的半径为R ,列车设计时速为v ,则该弯道处铁轨内外轨的设计倾角θ应为( )A .arctan v2RgB .arcsin v2RgC .arccot v2RgD .arccos v2Rg【解析】设计的倾角θ应使列车过弯道时重力与支持力的合力提供向心力:mgtan θ=m v2R ,解得:θ=arctan v2Rg.[答案] A3.2005年12月11日,有着“送子女神”之称的小行星“婚神”(Juno)冲日,在此后十多天的时间里,国内外天文爱好者凭借双筒望远镜可观测到它的“倩影”.在太阳系中除了八大行星以外,还有成千上万颗肉眼看不见的小天体,沿着椭圆轨道不停地围绕太阳公转.这些小天体就是太阳系中的小行星.冲日是观测小行星难得的机遇.此时,小行星、太阳、地球几乎成一条直线,且和地球位于太阳的同一侧.“婚神”星冲日的虚拟图如图所示,则( )A .2005年12月11日,“婚神”星的线速度大于地球的线速度B .2005年12月11日,“婚神”星的加速度小于地球的加速度C .2006年12月11日,必将发生下一次“婚神”星冲日D .下一次“婚神”星冲日必将在2006年12月11日之后的某天发生【解析】由G Mm r2=m v2r 得v2∝1r ,“婚神”的线速度小于地球的线速度,由a =F m =G Mr2知,“婚神”的加速度小于地球的加速度,地球的公转周期为一年,“婚神”的公转周期大于一年,C 错误,D 正确.[答案] BD 源:高考%资源网 KS%5U] 4.2007年11月5日,嫦娥一号探月卫星沿地月转移轨道到达月球附近,在距月球表面200 km 的P 点进行第一次“刹车制动”后被月球俘获,进入椭圆轨道 Ⅰ 绕月飞行,如图所示.之后,卫星在P 点经过几次“刹车制动”,最终在距月球表面200 km 、周期127 min 的圆形轨道 Ⅲ 上绕月球做匀速圆周运动.若已知月球的半径R 月和引力常量G ,忽略地球对嫦娥一号的引力作用,则由上述条件( )A .可估算月球的质量B .可估算月球表面附近的重力加速度C .可知卫星沿轨道Ⅰ经过P 点的速度小于沿轨道Ⅲ经过P 点的速度D .可知卫星沿轨道Ⅰ经过P 点的加速度大于沿轨道Ⅱ经过P 点的加速度【解析】由G Mm (R 月+h)2=m(R 月+h)4π2T2可得:月球的质量M =4π2(R 月+h)3GT2,选项A 正确.月球表面附近的重力加速度为:g 月=G M R 月2=4π2(R 月+h)3R 月2T2,选项B 正确.卫星沿轨道Ⅰ经过P 点时有:m vPⅠ2R 月+h >G Mm(R 月+h)2沿轨道Ⅲ经过P 点时:m vPⅢ2(R 月+h)=G Mm(R 月+h)2 可见vPⅢ<vPⅠ,选项C 错误.加速度aP =F m =G M(R 月+h)2,与轨迹无关,选项D 错误.[答案] AB5.假设太阳系中天体的密度不变,天体的直径和天体之间的距离都缩小到原来的 12,地球绕太阳公转近似为匀速圆周运动,则下列物理量变化正确的是( ) A .地球绕太阳公转的向心力变为缩小前的 12B .地球绕太阳公转的向心力变为缩小前的 116C .地球绕太阳公转的周期与缩小前的相同D .地球绕太阳公转的周期变为缩小前的 12【解析】天体的质量M =ρ43πR3,各天体质量变为M′=18M ,变化后的向心力F′=G 164Mm (r2)2=116F ,B 正确.又由G Mm r2=m 4π2T2r ,得T′=T . [答案] BC6.假设有一载人宇宙飞船在距地面高度为4200 km 的赤道上空绕地球做匀速圆周运动,地球半径约为6400 km ,地球同步卫星距地面高为36000 km ,宇宙飞船和一地球同步卫星绕地球同向运动,每当两者相距最近时.宇宙飞船就向同步卫星发射信号,然后再由同步卫星将信号发送到地面接收站,某时刻两者相距最远,从此刻开始,在一昼夜的时间内,接收站共接收到信号的次数为( )A .4次B .6次C .7次D .8次【解析】设宇宙飞船的周期为T 有: T2242=(6400+42006400+36000)3解得:T =3 h设两者由相隔最远至第一次相隔最近的时间为t1,有:(2πT -2πT0)·t1=π解得t1=127h再设两者相邻两次相距最近的时间间隔为t2,有:(2πT -2πT0)·t2=2π解得:t2=247h由n =24-t1t2=6.5(次)知,接收站接收信号的次数为7次.[答案] C7.图示为全球定位系统(GPS).有24颗卫星分布在绕地球的6个轨道上运行,它们距地面的高度都为2万千米.已知地球同步卫星离地面的高度为3.6万千米,地球半径约为6400 km ,则全球定位系统的这些卫星的运行速度约为( )A .3.1 km/sB .3.9 km/sC .7.9 km/sD .11.2 km/s【解析】同步卫星的速度v1=2πT r =3.08 km/s .又由v2∝1r ,得定位系统的卫星的运行速度v2=3.9 km/s .[答案] B8.均匀分布在地球赤道平面上空的三颗同步通信卫星够实现除地球南北极等少数地区外的全球通信.已知地球的半径为R ,地球表面的重力加速度为g ,地球的自转周期为T .下列关于三颗同步卫星中,任意两颗卫星间距离s 的表达式中,正确的是( ) A .3R B .23R C .334π2gR2T2 D .33gR2T24π2【解析】设同步卫星的轨道半径为r ,则由万有引力提供向心力可得:G Mm r2=m 4π2T2r解得:r =3gR2T24π2由题意知,三颗同步卫星对称地分布在半径为r 的圆周上,故s =2rcos 30°=33gR2T24π2,选项D 正确. [答案] D9.发射通信卫星的常用方法是,先用火箭将卫星送入一近地椭圆轨道运行;然后再适时开动星载火箭,将其送上与地球自转同步运行的轨道.则( ) A .变轨后瞬间与变轨前瞬间相比,卫星的机械能增大,动能增大 B .变轨后瞬间与变轨前瞬间相比,卫星的机械能增大,动能减小C .变轨后卫星运行速度一定比变轨前卫星在椭圆轨道上运行时的最大速度要大D .变轨后卫星运行速度一定比变轨前卫星在椭圆轨道上运行时的最大速度要小【解析】火箭是在椭圆轨道的远地点加速进入同步运行轨道的,故动能增大,机械能增大,A 正确.设卫星在同步轨道上的速度为v1,在椭圆轨道的近地点的速度为v2,再设椭圆轨道近地点所在的圆形轨道的卫星的速度为v3.由G Mm r2=m v2r ,知v3>v1;又由向心力与万有引力的关系知v2>v3.故v1<v2.选项C 错误,D正确. [答案] AD10.如图所示,在水平方向的匀强电场中,一绝缘细线的一端固定在O 点,另一端系一带正电的小球,小球在重力、电场力、绳子的拉力的作用下在竖直平面内做圆周运动,小球所受的电场力的大小与重力相等.比较a 、b 、c 、d 这四点,小球( )A .在最高点a 处的动能最小B .在最低点c 处的机械能最小C .在水平直径右端b 处的机械能最大D .在水平直径左端d 处的机械能最大【解析】①由题意知,小球受的重力与电场力的合力沿∠bOc 的角平分线方向,故小球在a 、d 两点的动能相等;②小球在运动过程中,电势能与机械能相互转化,总能量守恒,故在d 点处机械能最小,b 点处机械能最大. [答案] C二、非选择题(共60分)11.(7分)图甲是“研究平抛物体的运动”的实验装置图.(1)图乙是正确实验取得的数据,其中O 为抛出点,则此小球做平抛运动的初速度为______________m/s .(2)在另一次实验中将白纸换成方格纸,每小格的边长L =5 cm ,通过实验,记录了小球在运动途中的三个位置,如图丙所示,则该小球做平抛运动的初速度为________m/s ;B 点的竖直分速度为________m/s .【解析】(1)方法一 取点(19.6,32.0)分析可得:0.196=12×9.8×t120.32=v0t1 解得:v0=1.6 m/s .方法二 取点(44.1,48.0)分析可得:0.441=12×9.8×t220.48=v0t2 解得:v0=1.6 m/s .(2)由图可知,物体由A→B 和由B→C 所用的时间相等,且有:Δy =gT2 x =v0T 解得:v0=1.5 m/s ,vBy =yAC2T=2 m/s .[答案] (1)1.6 (2分) (2)1.5 (3分) 2 (2分)12.(8分)图甲为测量电动机转动角速度的实验装置,半径不大的圆形卡纸固定在电动机转轴上,在电动机的带动下匀速转动.在圆形卡纸的旁边安装一个改装了的电火花计时器.下面是该实验的实验步骤:①使电火花计时器与圆形卡纸保持良好接触; ②启动电动机,使圆形卡纸转动起来;③接通电火花计时器的电源,使它工作起来;④关闭电动机,拆除电火花计时器,研究卡纸上留下的一段痕迹(如图乙所示),写出角速度ω的表达式,代入数据得出ω的测量值.(1)要得到角速度ω的测量值,还缺少一种必要的测量工具,它是________. A .秒表 B .游标卡尺 C .圆规 D .量角器(2)写出ω的表达式,并指出表达式中各个物理量的含义:_____________________________________________________________________________. (3)为了避免在卡纸连续转动的过程中出现打点重叠,在电火花计时器与盘面保持良好接触的同时,可以缓慢地将电火花计时器沿圆形卡纸半径方向向卡纸中心移动.这样,卡纸上打下的点的分布曲线不是一个圆,而是类似一种螺旋线,如图7-4丙所示.这对测量结果有影响吗?____________(填“有影响”或“没有影响”)理由是:____________________________________________________________________________________________________________________________________.【解析】(1)角速度ω=θt,需量角器测量转过的夹角,故选项D 正确.(2)ω=θ(n -1)t ,θ是n 个点的分布曲线所对应的圆心角,t 是电火花计时器的打点时间间隔(3)没有影响,因为电火花计时器向卡纸中心移动时不影响角度的测量. [答案] (1)D (2分)(2)ω=θ(n -1)t ,θ是n 个点的分布曲线所对应的圆心角,t 是电火花计时器的打点时间间隔 (3分)(3)没有影响 (1分) 电火花计时器向卡纸中心移动时不影响角度的测量 (2分) 13.(10分)火星和地球绕太阳的运动可以近似看做是同一平面内同方向的匀速圆周运动.已知火星公转轨道半径大约是地球公转轨道半径的32.从火星、地球于某一次处于距离最近的位置开始计时,试估算它们再次处于距离最近的位置至少需多少地球年.[计算结果保留两位有效数字,⎝ ⎛⎭⎪⎫3232=1.85]【解析】由G Mm r2=m 4π2T2r 可知,行星环绕太阳运行的周期与行星到太阳的距离的二分之三次方成正比,即T∝r 32所以地球与火星绕太阳运行的周期之比为: T 火T 地=(r 火r 地)32=(32)32=1.85 (3分) 设从上一次火星、地球处于距离最近的位置到再一次处于距离最近的位置,火星公转的圆心角为θ,则地球公转的圆心角必为2π+θ,它们公转的圆心角与它们运行的周期之间应有此关系:θ=2πt T 火,θ+2π=2πt T 地(3分)得:2π+2πt T 火=2πt T 地 (2分) 最后得:t =T 火T 地T 火-T 地=1.850.85T 地≈2.2年 (2分)[答案] 2.214.(11分)若宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图所示. 为了安全,返回舱与轨道舱对接时,必须具有相同的速度. 已知:该过程宇航员乘坐的返回舱至少需要获得的总能量为E(可看做是返回舱的初动能),返回舱与人的总质量为m ,火星表面重力加速度为g ,火星半径为R ,轨道舱到火星中心的距离为r ,不计火星表面大气对返回舱的阻力和火星自转的影响. 问:(1)返回舱与轨道舱对接时,返回舱与人共具有的动能为多少?(2)返回舱在返回轨道舱的过程中,返回舱与人共需要克服火星引力做多少功? 【解析】(1)在火星表面有:GMR2=g (2分) 设轨道舱的质量为m0,速度大小为v ,则有 : GMm0r2=m0v2r(2分) 返回舱和人应具有的动能Ek =12mv2 (1分)联立解得Ek =mgR22r. (1分)(2)对返回舱在返回过程中,由动能定理知: W =Ek -E (2分)联立解得:火星引力对返回舱做的功W =mgR22r -E (2分)故克服引力做的功为:-W =E -mgR22r . (1分)[答案] (1)mgR22r (2)E -mgR22r15.(11分)中国首个月球探测计划嫦娥工程预计在2017年送机器人上月球,实地采样送回地球,为载人登月及月球基地选址做准备.设想机器人随嫦娥号登月飞船绕月球飞行,飞船上备有以下实验仪器:A .计时表一只;B .弹簧秤一把;C .已知质量为m 的物体一个;D .天平一台(附砝码一盒).在飞船贴近月球表面时可近似看成绕月球做匀速圆周运动,机器人测量出飞船在靠近月球表面的圆形轨道绕行N 圈所用的时间为t .飞船的登月舱在月球上着陆后,遥控机器人利用所携带的仪器又进行了第二次测量,利用上述两次测量的物理量可出推导出月球的半径和质量.(已知引力常量为G),要求:(1)说明机器人是如何进行第二次测量的.(2)试推导用上述测量的物理量表示的月球半径和质量的表达式.【解析】(1)机器人在月球上用弹簧秤竖直悬挂物体,静止时读出弹簧秤的示数F ,即为物体在月球上所受重力的大小. (3分) (2)在月球上忽略月球的自转可知: mg 月=F (1分) G MmR2=mg 月 (1分) 飞船在绕月球运行时,因为是靠近月球表面,故近似认为其轨道半径为月球的半径R ,由万有引力提供物体做圆周运动的向心力可知: G Mm R2=mR 4π2T2,又T =t N (2分) 联立可得:月球的半径R =FT24π2m =Ft24π2N2m(2分) 月球的质量M =F3t416π4GN4m3. (2分)[答案] (1)机器人在月球上用弹簧秤竖直悬挂物体,静止时读出弹簧秤的示数F ,即为物体在月球上所受重力的大小. (2)R =Ft24π2N2m M =F3t416π4GN4m316.(13分)如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q(q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(0<θ<π2).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P 相应的速率.(已知重力加速度为g)【解析】据题意可知,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O′.P 受到向下的重力mg 、球面对它沿OP 方向的支持力FN 和磁场的洛伦兹力f 洛,则: f 洛=qvB (1分)式中v 为小球运动的速率,洛伦兹力f 洛的方向指向O′ 根据牛顿第二定律有: FNcos θ-mg =0 (2分)f 洛-FNsin θ=mv2Rsin θ(2分)可得:v2-qBRsin θm v +gRsin2θcos θ=0 (2分)由于v 是实数,必须满足:Δ=(qBRsin θm )2-4gRsin2θcos θ≥0 (2分)由此得:B≥2mq gRcos θ(1分)可见,为了使小球能够在该圆周上运动,磁感应强度B 的最小值为:Bmin =2m qgRcos θ此时,带电小球做匀速圆周运动的速率为: v =qBminRsin θ2m (2分)解得:v =gRcos θsin θ. (1分) 答案 2m qgRcos θgRcos θsin θ。
高一物理鲁科版2第5章万有引力定律及其应用过关检测含解析

(时间:60分钟,满分:100分)一、单项选择题(本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一个选项正确)1.关于万有引力定律和引力常量的发现,下列说法中正确的是( )A.万有引力定律是由开普勒发现的,而引力常量是由伽利略测定的B.万有引力定律是由开普勒发现的,而引力常量是由卡文迪许测定的C.万有引力定律是由伽利略发现的,而引力常量是由牛顿测定的D.万有引力定律是由牛顿发现的,而引力常量是由卡文迪许测定的解析:选D.由物理学史料可知,开普勒总结了开普勒行星运动定律,牛顿发现了万有引力定律,卡文迪许利用扭秤实验测出了万有引力常量,故选项D正确.2.太阳对地球有相当大的引力,地球对太阳也有引力作用,为什么它们不靠在一起?其原因是( )A.太阳对地球的引力与地球对太阳的引力大小相等、方向相反、互相平衡B.太阳对地球的引力还不够大C.不仅太阳对地球有引力作用,而且太阳系里其他星球对地球也有引力,这些力的合力为零D.太阳对地球的引力不断改变地球的方向,使得地球绕太阳运行解析:选D.根据牛顿第二定律,力是相互的,作用力和反作用力分别作用在两个物体上,不能相互抵消.受力情况决定运动情况,太阳对地球的引力提供向心力,不断改变地球的运动方向.3.一颗小行星环绕太阳做匀速圆周运动的轨道半径是地球轨道半径的4倍,则它的环绕周期是( )A .1年B .2年C .4年D .8年解析:选D.由开普勒第三定律可知,错误!=k ,因为地球的环绕周期为1年,因小行星的轨道半径是地球的4倍,故小行星的周期为8年,选项D 正确.4.一飞船在某行星表面附近沿圆轨道绕该行星飞行,若认为行星是密度均匀球体.要确定该行星的密度,只需要测量( )A .飞船的轨道半径B .飞船的运行速度C .飞船的运行周期D .行星的质量解析:选C 。
飞船绕行星做圆周运动,万有引力提供向心力G 错误!=mR 错误!2,行星的质量M =错误!,行星的密度 ρ=错误!=错误!。
高中物理 第五章 万有引力定律及其应用 5.1 万有引力定律及引力常量的测定同步测试 鲁科版必修2

5.1万有引力定律及引力常量的测定一、单选题(共10题;共20分)1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A. 太阳位于木星运行轨道的中心B. 火星和木星绕太阳运行的速度大小始终相等C. 相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积D. 火星与木星公转周期之比的二次方等于它们轨道半长轴之比的三次方2.关于万有引力定律,以下说法正确的是()A. 牛顿在前人研究基础上总结出万有引力定律,并计算出了引力常数为GB. 德国天文学家开普勒对他导师第谷观测的行星数据进行了多年研究,得出了万有引力定律C. 英国物理学家卡文迪许测出引力常数为G ,并直接测出了地球的质量D. 月﹣﹣地检验表明地面物体和月球受地球的引力,与太阳行星间的引力遵从相同的规律3.已知金星和地球的半径分别为R1、R2,金星和地球表面的重力加速度分别为g1、g2,则金星与地球的质量之比为()A. B.C.D.4.发现了电磁感应现象的科学家是()A. 法拉第B. 奥斯特 C. 库伦 D. 安培5.气象卫星是用来拍摄云层照片,观测气象资料和测量气象数据的。
我国先后自行成功研制和发射了“风云一号”和“风云二号”两颗气象卫星。
“风云一号”卫星轨道与赤道平面垂直,通过两极,每12小时巡视地球一周,称为“极地圆轨道”。
“风云二号”气象卫星轨道平面在赤道平面内称为“地球同步轨道”,则“风云一号”卫星比“风云二号”卫星()A. 运行角速度小B. 运行线速度小 C. 覆盖范围广 D. 向心加速度小6.关于公式=k ,下列说法中正确的是()A. 公式只适用于围绕地球运行的卫星B. 公式只适用太阳系中的行星C. k值是一个与星球(中心天体)有关的常量D. 对于所有星球(同一中心天体)的行星或卫星,k值都不相等7.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A. 太阳位于木星运行轨道的中心B. 火星和木星绕太阳运行速度的大小始终相等C. 火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D. 相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积8.开普勒分别于1609年和1619年发表了他发现的行星运动规律,后人称之为开普勒行星运动定律.关于开普勒行星运动定律,下列说法正确的是()A. 所有行星绕太阳运动的轨道都是圆,太阳处在圆心上B. 对任何一颗行星来说,离太阳越近,运行速率就越大C. 在牛顿发现万有引力定律后,开普勒才发现了行星的运行规律D. 开普勒独立完成了观测行星的运行数据、整理观测数据、发现行星运动规律等全部工作9.关于质量为m1和质量为m2的两个物体间的万有引力表达式F=G ,下列说法正确的是()A. 公式中的G是万有引力常量,它是由牛顿通过实验测量出的B. 当两物体间的距离r趋于零时,万有引力趋于无穷大C. m1和m2所受万有引力大小总是相等D. 两个物体间的万有引力总是大小相等,方向相反,是一对平衡力10.(2015·四川)登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星。
鲁科版高中物理必修二高一单元测试第五章万有引力定律及其应用1.docx

高中物理学习材料(鼎尚**整理制作)第五章《万有引力定律及其应用》单元测试71.我国未来将建立月球基地,并在绕月轨道上建造空间站.如图1所示,关闭动力的航天飞机在月球引力作用下向月球靠近,并将与空间站在B 处对接,已知空间站绕月轨道半径为r ,周期为T ,万有引力常量为G ,下列说法中正确的是 ( )A .图中航天飞机正加速飞向B 处B .航天飞机在B 处由椭圆轨道进入空间站轨道必须点火减速 图1C .根据题中条件可以算出月球质量D .根据题中条件可以算出空间站受到月球引力的大小解析:月球对航天飞机的引力与其速度的夹角小于90°,故航天飞机飞向B 处时速度增大,即加速,A 正确;B 处基本上是椭圆轨道的近月点,航天飞机在该处所受月球引力小于它所需的向心力,而在圆形轨道上运动时要求月球引力等于所需向心力,故B 正确;由G Mm r 2=mr 4π2T 2知月球质量可表示为M =4π2r 3GT 2,C 正确;因空间站的质量未知,故D 错误.答案:ABC2.为纪念伽利略将望远镜用于天文观测400周年,2009年被定为以“探索我的宇宙”为主题的国际天文年.我国发射的“嫦娥一号”卫星绕月球经过一年多的运行,完成了预定任务,于2009年3月1日16时13分成功撞月.如图2所示为“嫦娥一号”卫星撞月的模拟图,卫星在控制点1开始进入撞月轨道.假设卫星绕月球做圆周运动的轨道半径为R ,周期为T ,引力常量为G .根据题中信息,以下说法正确的是( ) 图2A .可以求出月球的质量B .可以求出月球对“嫦娥一号”卫星的引力C .“嫦娥一号”卫星在控制点1处应加速D .“嫦娥一号”在地面的发射速度大于11.2 km/s解析:由GMm R 2=m 4π2T 2R 可得月球质量M =4π2R 3GT 2,A 正确;但因不知“嫦娥一号”卫星的质量,无法求出月球对“嫦娥一号”的引力,B 错误;“嫦娥一号”从控制点1处开始做向心运动,应在控制点1处减速,C 错误;“嫦娥一号”最终未脱离地球束缚和月球一齐绕地球运动.因此在地面的发射速度小于11.2 km/s ,D 错误.答案:A3.“嫦娥一号”月球探测器在环绕月球运行过程中,设探测器运行的轨道半径为r ,运行速率为v ,当探测器飞越月球上一些环形山中的质量密集区上空时( )A .r 、v 都将略为减小B .r 、v 都将保持不变C .r 将略为减小,v 将略为增大D .r 将略为增大,v 将略为减小解析:当探测器飞越月球上一些环形山中的质量密集区上空时,受到的万有引力即向心力会变大,故探测器的轨道半径会减小,由v = GM r得出运行速率v 将增大,故选C. 答案:C4.一物体从一行星表面某高度处 自由下落(不计阻力).自开始下落计时,得到物体离行星表面高度h 随时间t 变化的图象如图3所示,则根据题设条件可以计算 出( )A .行星表面重力加速度的大小图3B .行星的质量C .物体落到行星表面时速度的大小D .物体受到行星引力的大小解析:从题中图象看到,下落的高度和时间已知(初速度为0),所以能够求出行星表面的加速度和落地的速度,因为物体的质量未知,不能求出物体受到行星引力的大小,又因为行星的半径未知,不能求出行星的质量.答案:AC5.2007年美国宇航员评出了太阳系外10颗最神奇的行星,包括天文学家1990年发现的第一颗太阳系外行星以及最新发现的可能适合居住的行星.在这10颗最神奇的行星中排名第三的是一颗不断缩小的行星,命名为HD209458b ,它的一年只有3.5个地球日.这颗行星以极近的距离绕恒星运转,因此它的大气层不断被恒星风吹走.据科学家估计,这颗行星每秒就丢失至少10000吨物质,最终这颗缩小行星将只剩下一个死核.假设该行星是以其球心为中心均匀减小的,且其绕恒星做匀速圆周运动.下列说法正确的是 ( )A .该行星绕恒星运行周期会不断增大B .该行星绕恒星运行的速度大小会不断减小C .该行星绕恒星运行周期不变D .该行星绕恒星运行的线速度大小不变解析:由于该行星是以其球心为中心均匀减小的,所以其运行的半径不变,由于该行星的质量改变而恒星的质量不变,由GMm R 2=m v 2R 和GMm R 2=4π2mR T 2可知,周期和线速度大小均不改变.选项C 、D 正确.答案:CD6.如图4所示,在同一轨道平面上的三个人造地球卫星A 、B 、C 在某一时刻恰好在同一直线上,下列说法正确的有( ) 图4A .根据v =gr ,可知v A <vB <v CB .根据万有引力定律,F A >F B >F CC .向心加速度a A >a B >a CD .运动一周后,C 先回到原地点解析:由GMm r 2=m v 2r =ma 可得:v =GM r.故v A >v B >v C ,不可用v =gr 比较v 的大小,因卫星所在处的g 不同,A 错误;由a =GM r2,可得a A >a B >a C ,C 正确;万有引力F =GMm r2,但不知各卫星的质量大小关系,无法比较F A 、F B 、F C 的大小,B 错误;由T =2πr v 可知,C 的周期最大,最晚回到原地点,故D 错误.答案:C7.宇宙中两个星球可以组成双星,它们只在相互间的万有引力作用下,绕球心连线的某点做周期相同的匀速圆周运动.根据宇宙大爆炸理论,双星间的距离在不断缓慢增加,设双星仍做匀速圆周运动,则下列说法错误的是 ( )A .双星相互间的万有引力减小B .双星做圆周运动的角速度增大C .双星做圆周运动的周期增大D .双星做圆周运动的半径增大解析:距离增大万有引力减小,A 正确;由m 1r 1ω2=m 2r 2ω2及r 1+r 2=r 得,r 1=m 2r m 1+m 2,r 2=m 1r m 1+m 2,可知D 正确;F =G m 1m 2r 2=m 1r 1ω2=m 2r 2ω2,r 增大F 减小,r 1增大,故ω减小,B 错;由T =2πω知C 正确.答案:B 8.有一宇宙飞船到了某行星上(该行星没有自转运动),以速度v 接近行星表面匀速飞行,测出运动的周期为T ,已知引力常量为G ,则可得 ( )A .该行星的半径为v T 2πB .该行星的平均密度为3πGT2 C .无法测出该行星的质量 D .该行星表面的重力加速度为2πv T解析:由T =2πR v 可得:R =v T 2π,A 正确;由GMm R 2=m v 2R 可得:M =v 3T 2πG,C 错误;由M =43πR 3·ρ得:ρ=3πGT 2,B 正确;由GMm R 2=mg 得:g =2πv T,D 正确.答案:ABD 9.在2003~2008年短短5年时间内,我国就先后成功发射了三艘载人飞船:“神舟五号”于2003年10月15日9时升空,飞行21小时11分钟,共计14圈后安全返回;“神舟六号”于2005年10月12日9时升空,飞行115小时32分钟,共计77圈后安全返回;“神舟七号”于2008年9月25日21时升空,飞行68小时27分钟,共计45圈后安全返回.三艘载人飞船绕地球运行均可看做匀速圆周运动,则下列判断正确的是 ( )A .它们绕地球飞行时所受的万有引力一定相等B .可以认为它们绕地球飞行的线速度大小相同C .它们在绕地球飞行的过程中,宇航员处于平衡状态D .飞船中的宇航员可使用弹簧测力计来测量自身所受到的重力解析:通过计算发现三艘载人飞船绕地球运行的周期近似相等,根据开普勒第三定律可知:三艘载人飞船绕地球飞行的半径是相等的.所以它们绕地球飞行的线速度大小相同,但三艘载人飞船的质量不一定相等,因而它们所受的万有引力不一定相等.它们在绕地球飞行的过程中,宇航员不是处于平衡状态,而是处于失重状态,因而宇航员不能使用弹簧测力计来测量自身所受到的重力,故只有B 正确.答案:B10.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同 图5步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点(如图5所示).则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是 ( )A .卫星在轨道3上的速率大于在轨道1上的速率B .卫星在轨道3上的角速度小于在轨道1上的角速度C .卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度D .卫星在轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度 解析:卫星在半径为r 的轨道上运行时,速度v = GM r ,可见轨道半径r 越大,运行速度越小,由v =ωr 可得ω= GM r 3,r 越大,ω越小,A 错B 正确;卫星的向心加速度由万有引力产生,在不同的轨道上运动时,由a =GM r2知,在同一点它们的加速度是相同的,故C 错D 正确.答案:BD11.在半径R =5 000 km 的某星球表面,宇航员做了如下实验,实验装置如图6甲所示.竖直平面内的光滑轨道由轨道AB 和圆弧轨道BC 组成,将质量m =0.2 kg 的小球,从轨道AB 上高H 处的某点静止滑下,用力传感器测出小球经过C 点时对轨道的压力F ,改变H 的大小,可测出相应的F 大小,F 随H 的变化关系如图乙所示.求:图6(1)圆轨道的半径及星球表面的重力加速度.(2)该星球的第一宇宙速度.解析:(1)小球过C 点时满足F +mg =m v C 2r又根据mg (H -2r )=12m v C 2 联立解得F =2mg rH -5mg 由题图可知:H 1=0.5 m 时F 1=0;可解得r =0.2 mH 2=1.0 m 时F 2=5 N ;可解得g =5 m/s 2(2)据m v 2R=mg 可得v =Rg =5×103 m/s. 答案:(1)0.2 m 5 m/s 2 (2)5×103 m/s12.中国首个月球探测计划“嫦娥工程”预计在2017年送机器人上月球,实地采样送回地球,为载人登月及月球基地选址做准备.设想我国宇航员随“嫦娥”号登月飞船绕月球飞行,飞船上备有以下实验仪器:A.计时表一只;B.弹簧测力计一把;C.已知质量为m 的物体一个;D.天平一只(附砝码一盒).在飞船贴近月球表面时可近似看成绕月球做匀速圆周运动,宇航员测量出飞船在靠近月球表面的圆形轨道绕行N 圈所用的时间为t .飞船的登月舱在月球上着陆后,遥控机器人利用所携带的仪器又进行了第二次测量,利用上述两次测量的物理量可以推导出月球的半径和质量.(已知引力常量为G ,忽略月球的自转的影响)(1)说明机器人是如何进行第二次测量的?(2)试推导用上述测量的物理量表示的月球半径和质量的表达式.解析:(1)机器人在月球上用弹簧测力计竖直悬挂物体,静止时读出弹簧测力计的读数F ,即为物体在月球上所受重力的大小.(2)设月球质量为M ,半径为R ,在月球上(忽略月球的自转的影响)可知G Mm R 2=mg 月①又mg 月=F ② 飞船绕月球运行时,因为是靠近月球表面,故近似认为其轨道半径为月球的半径R ,由万有引力提供飞船做圆周运动的向心力,可知G Mm R 2=m 4π2T 2R ③又T =t N ④由①②③④式可知月球的半径R =FT 24π2m =Ft 24π2N 2m. 月球的质量M =F 3t 416π4N 4Gm 3. 答案:(1)见解析 (2)R =Ft 24π2N 2m M =F 3t 416π4N 4Gm 3。
鲁科版高中物理必修二第五章 万有引力定律及应用同步练习.doc

高中物理学习材料桑水制作第五章万有引力定律及应用同步练习第一节:万有引力定律及引力常量的测定1、行星绕太阳的运动轨道如果是圆形,它轨道半径R的三次方与公转周期T的二次方的比为常数,设R3/ T2=k,则()A.常数k的大小只与太阳的质量有关B.常数k的大小与太阳的质量及行星的质量有关C.常数k的大小只与行星的质量有关D.常数k的大小与恒星的质量及行星的速度有关2.宇宙飞船围绕太阳在近似圆形的轨道上运动,若轨道半径是地球轨道半径的9倍,则宇宙飞船绕太阳运行的周期是()A.3年 B.9年 C.27年 D.81年3.要使两物体间的万有引力减小到原来的1/4,下列做法不正确的是( )A.使两物体的质量各减小一半,距离不变B.使其中一个物体的质量减小到原来的1/4,距离不变C.使两物体间的距离增为原来的2倍,质量不变D.距离和质量都减为原来的1/44.两个质量均匀的球体,相距r,它们之间的万有引力为108-N,若它们的质量、距离都增加为原来的两倍,则它们之间的万有引力为()(A)4×108-N (B)108-N(C)2×108-N (D)8×108-N5.两个大小相同的实心小铁球紧靠在一起时,它们之间的万有引力为F 。
若两个半径为原来2倍的实心大铁球紧靠在一起,则它们之间的万有引力为( ) A .4F B .2F C .8F D .16F6.两个行星的质量分别是1m 、2m ,它们绕太阳运行的轨道长半轴分别是1R 和2R ,则它们的公转周期之比1T ∶2T =________.7.火星的半径是地球半径的一半,火星的质量约为地球质量的1/9,那么地球表面50 kg 的物体,受到地球的吸引力,约是火星表面同质量的物体,受到火星吸引力的________倍。
8.卡文迪许被人们誉为“能称出地球质量的人”,想一想,怎样就能“称出”地球的质量。
设地球的质量为M ,地面上某物体的质量为m ,重力加速度为g ,地球半径为R ,引力常量为G 。
鲁科版高中物理必修二高一第5章《万有引力定律及其应用》单元自测.docx

高中物理学习材料桑水制作高一物理必修2第5章《万有引力定律及其应用》单元自测1.两行星运行轨迹的半长轴之比为4∶9 ,其运行周期之比为 ( ) (A )4∶9(B )2∶3(C )8∶27(D )6∶32.若把地球视为密度均匀的球体,从地面挖一小口井直通地心,将一个小球从井口自由释放,不计其他阻力,下列关于小球的运动的说法中,正确的是 ( ) (A )小球做匀加速下落 (B )小球做加速运动,但加速度减小 (C )小球先加速下落,后减速下落 (D )小球的加速度和速度都增大 3.两个质量均匀的球体,相距r ,它们之间的万有引力为108-N ,若它们的质量、距离都增加为原来的两倍,则它们之间的万有引力为( ) (A )4×108-N (B )108-N (C )2×108-N (D )8×108-N 4.假设火星和地球都是球体,火星的质量M 火和地球的质量M 地之比为M 火/M地= P ,火星的半径R 火和地球半径R地之比为R 火/R地=q ,那么火星表面处的重力加速度g 火和地球表面处的重力加速度g 地之比g 火/ g地等于( ) (A )2q p (B )2pq (C )q p (D )pq5.如果在某一行星上以速度V 。
竖直上抛一小球,测出这小球能上升的最大高度h ,则由此可计算出 ( )(A )这行星的质量和密度 (B )这行星的自转周期 (C )这行星上的第一宇宙速度 (D )绕这行星的卫星的最大加速度6.设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间的开采后,地球仍可看作是均匀的球体,月球仍沿开采前的圆轨道运动,则与开采前相比( )(A )地球与月球间的万有引力将变大(B )地球与月球间的万有引力将变大 (C )月球绕地球运动的周期将变长(D )月球绕地球运动的周期将变短 7.组成星球的物质是靠引力吸引在一起的,这样的星球有一个最大的自转速率.如果超过了该速率,星球的万有引力将不足以维持其赤道附近的物体做圆周运动.由此能得到半径为R 、密度为ρ、质量为M 且均匀分布的星球的最小自转周期T .下列表达式中正确的是( )A.T =2πGM R /B.T =2πGM R /33C.T =ρπG /D.T =ρπG /38.7.1998年8月20日,中国太原卫星发射中心为美国“铱”星公司成功发射了两颗“铱”星系统的补网星.1998年9月23日,“铱”卫星通讯系统正式投入商业运行,标志着一场通讯技术革命开始了.原计划的“铱”卫星通讯系统是在距地球表面780 km 的太空轨道上建立一个由77颗小卫星组成的星座.这些小卫星均匀分布在覆盖全球的7条轨道上,每条轨道上有11颗卫星,由于这一方案的卫星排布像化学元素“铱”原子的核外77个电子围绕原子核运动一样,所以称为“铱”星系统.后来改为由66颗卫星,分布在6条轨道上,每条轨道上11颗卫星组成,仍称它为“铱”星系统.“铱”星系统的66颗卫星,其运行轨道的共同特点是( )A.以地轴为中心的圆形轨道B.以地心为中心的圆形轨道C.轨道平面必须处于赤道平面内D.铱星运行轨道远高于同步卫星轨道9.上题所述的“铱”星系统的卫星运行速度约为( )A.7.9 km/sB.7.5 km/sC.3.07 km/sD.11.2 km/s10.宇航员乘航天飞机来到某天体,用弹簧秤称出质量为1.0kg 的物体重6.0N ,又取样测定天体的密度与地球密度相近,求天体的质量(g 地取10m /s 2,地球质量约为6×1024kg )11.已知太阳光从太阳射到地球需时间5×102s ,地球公转轨道可近似看成圆轨道,地球半径约为6.4×106m ,试估算太阳质量M 与地球质量 m 之比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章万有引力定律及其应用单元测试(90分钟 100分)一、选择题:本题共10小题,每小题4分,共40分,在每小题给出的四个选项中。
至少有一个是正确的,每小题全部选对的得4分,选对但不全的得2分,不选和有选错的均得零分。
1. 下列说法正确的是( )A.经典力学能够说明微观粒子的规律性B.经典力学适用于宏观物体的低速运动问题,不适用于高速运动问题C.相对论和量子力学的出现,表示经典力学已失去意义D.对于宏观物体的高速运动问题,经典力学仍能适用2.随着“神舟6号”的发射成功,可以预见我国航天员在轨道舱内停留的时间将会逐步增加,体育锻炼成了一个必不可少的环节,下列器材适宜航天员在轨道舱中进行锻炼的是( )A. 哑铃B. 弹簧拉力器C. 单杠D. 跑步机3.下列关于太阳系几个行星的说法,符合实际的是( )A.海王星和冥王星是人们依据万有引力定律计算的轨道而发现的B.天王星是人们依据万有引力计算的轨道而发现的C.天王星的运行轨道偏离根据万有引力计算出来的轨道,其原因是由于天王星受到轨道外面其他行星的引力作用D.以上均不正确4.2003年10月15日我国成功发射了“神舟五号”飞船,总质量为7790公斤,它在太空飞行14圈、历时21小时后成功返回;2005年10月12日又成功发射了“神舟六号”,总质量为8吨多,它在太空飞行77圈、历时115小时33分后成功返回. 假定两飞船的运动近似为匀速圆周运动,两飞船的运行周期近似相等. 比较两飞船的飞行情况可知( )A.两者运行时的角速度相等B.两者运行时离地面的高度相等C.两者运行时的向心加速度大小相等D.两者运行时受到的万行引力大小相等5.设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,地球仍可看作均匀球体,月球仍沿开采前的圆周轨道运动,则与开采前相比( ) A.地球与月球间的万有引力将变大B.地球与月球间的万有引力将变小C.月球绕地球运动的周期将变长D.月球绕地球运动的周期将变短6.如图所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火使其沿椭圆轨道2运行,最后再次点火将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2、3相切于P点.则当卫星分别在1、2、3轨道正常运行时,下列说法中正确的是( )A.卫星在轨道3上的周期大于在轨道1上的周期B.卫星在轨道3上的速率大于在轨道1上的速率C.卫星在轨道2上运行时,经过Q点时的速率大于经过P点时的速率D.卫星在轨道2上运行时,经过Q点时加速度大于经过P点的加速度7. 2007年10月24日18时5分中国研制的”嫦娥一号”探月卫星成功发射. 设想”嫦娥一号”登月飞船贴近月球表面做匀速圆周运动,测得其周期为T. 飞船在月球上着陆后,自动机器人用测力计测得质量为m 的仪器的重力为P. 已知引力常量为G ,由以上数据可以求出的量有( )A .月球的半径B .月球的质量C .月球表面的重力加速度D .月球绕地球做匀速圆周运动的向心加速度8. 如图所示,天文观测中发现宇宙中存在着“双星”. 所谓双星是两颗质量分别为M 1和M 2的星球,它们的距离为r ,而r 远远小于它们跟其它天体之间的距离,这样的双星将绕着它们连线上的某点O 作匀速圆周运动,如图所示. 现假定有一双星座,其质量M 1>M 2,用我们所学的知识可以断定这两颗星( )A. M 1对M 2引力比M 2对M 1的引力大B. M 1运动周期比M 2运动周期长C. M 1运动半径比M 2运动半径小D. M 1运动速率比M 2运动速率大9.1990年5月,紫金山天文台将他们发现的第2752号小行星命名为吴健雄星,该小行星的半径为16km. 若将此小行星和地球均看成质量分布均匀的球体,小行星密度与地球相同.已知地球半径6400=R km ,地球表面重力加速度为g. 这个小行星表面的重力加速度为( ) A. 400g B. g 4001 C. 20g D. g 201 10.假如一做圆周运动的人造地球卫星的轨道半径增大到原来的2倍仍做圆周运动,则( )A .根据公式v=ωr ,可知卫星运动的线速度增大到原来的2倍B. 根据公式2v F m r=,可知卫星所需的向心力将减小到原来的1/2 C. 根据公式2Mm F G r =,可知地球提供的向心力将减小到原来的1/4 D .根据上述选项B 和C二、填空题:本题共3小题,每题4分,满分12分;将正确、完整的答案填入相应的横线中。
11.已知电子的静止质量为m e ,真空中的光速为c. 现有一个观察者测出电子的质量为2m e ,则电子的速度为 .12.一个半径是地球半径的3倍、质量是地球质量36倍的行星,它表面的重力加速度是地面重力加速度的倍.13.中子星是由密集的中子组成的星体,具有极大的密度. 通过观察已知某中子星的自转角速度为ω=60πrad/s ,该中子星并没有因为自转而解体,根据这些事实人们可以推知中子星的密度. 试写出中子星密度最小值的表达式ρ=,计算出该中子星的密度至少为kg/m3.(假设中子通过万有引力结合成球状星体,保留二位有效数字)三、科学探究与实验:本题共2小题,满分10分。
14.(4分)当今的科技发展迅猛,我们设想如果地球是个理想的球体,沿地球的南北方向修一条平直的闭合高速公路,一辆性能很好的汽车在这条高速公路上可以一直加速下去,并且忽略空气阻力,那么这辆汽车的最终速度()A.与飞机速度相当B.小于“神舟”六号飞船的速度C.可以达到7.9km/s D.无法预测15.(6分)一个人曾经提出所谓“登天缆绳”的设想:用一绳竖在赤道正上方,使绳随着地球同步自转,只要这根绳子足够长,就不会坠落. 人们可以沿着这条“登天缆绳”到太空中去游览. 这一大胆的设想已被科学家证实在理论上是可行的,并且其长度也被算出约为1.5×105km.(1) 试利用相关的物理规律说明“登天缆绳”这一设想的理论可行性.(2) 指出“登天缆绳”上哪一点最容易断.四、论述计算题:本题包括4个小题,共38分。
要求写出必要的文字说明,方程式或重要的演算步骤,只写出最后答案的,不能得分。
有数值计算的题,答案中必须明确写出数值和单位。
16.(8分)一卫星在地面的质量为m,在地面的重力为mg,在距地面高为地球半径R的轨道上做匀速圆周运动时,卫星的质量、向心加速度及线速度分别是多少?17.(9分)如果你用卫星电话通过同步卫星转发的无线电信号与对方通话,则在你讲完话后,最短要等多少时间才能听到对方的回话?已知地球的质量为M,地球半径为R,引力常量为G,地球自转周期为T,无线电信号的传播速度为c(最后答案用题目中的符号表示).18.(10分)已知太阳光从太阳射到地球需要8min20s,地球公转的轨道可以看成圆形轨道,由此请你估算出太阳的质量.19.(11分)已知地球半径为R ,—只静止在赤道上空的热气球(不计气球离地高度)绕地心运动的角速度为ω0,在距地面h 高处圆形轨道上有一颗人造地球卫星,设地球质量为M ,热气球的质量为m ,人造地球卫星的质量为m 1 ,根据上述条件,有一位同学列出了以下两条式子:对热气球有:GmM /R 2=m ω02R 对人造卫星有:Gm 1M /(R +h )2=m 1ω2(R +h )进而求出了人造地球卫星绕地球运行的角速度ω.你认为该同学的解法是否正确?若认为正确,请求出结果;若认为错误,请补充一个条件后,再求出ω.参考答案及评分标准1.B 2.B 3.AC 4.ABC 5.BC 6.ACD 7.ABC 8.C 9.B10.CD 提示:A 选项中线速度与半径成正比是在角速度一定的情况下,而r 变化时,角速度也变,所以此选项不正确. 同理B 选项也是如此,F ∝1r是在v 一定时,但此时v 已变化,故B 选项错. 而C 选项中G 、M 、m 都是恒量,所以F ∝21r ,即r ′=2r 时,F ′=F/4,故C选项正确. B 、C 两选项所给的公式结合可得v =v '=,D 选项正确. 11.0.87c 12. 4 13.142103.1,43⨯Gπω 14.C 提示:在理想情况下一直加速,可以达到围绕地球表面做圆周运动,即第一宇宙速度.15. (1) “登天缆绳”的重力提供缆绳随地球同步自转所需的向心力,故不会坠落.(3分)(2) 将缆绳分为无数个小段,在与同步卫星等高的h 处,该小段缆绳所受地球引力正好提供其绕地球同步转动的向心力. 由2rMm G F =引和r m F 2ω=向可知,若r 增大,则引F 减小而向F 增大;反之,若r 减小,则引F 增大而向F 减小. 可见,当r >h 时,各小段缆绳所受地球引力不足以提供其所需的向心力,有远离地球的趋势;而当r <h 时,各小段缆绳所受地球引力大于所需的向心力,有向地球坠落的趋势. 这样,缆绳在h 处就出现了向上、向下两个方向的最大拉力,该处最容易断裂.(3分)16. 物体的质量不随物体的位置和状态而变.因此在轨道上的质量仍为m.(1分)在地面万有引力和重力的大小相等 2R Mm Gmg = (2分) 在距地面高度为R 的轨道上有2)2(R Mm G ma = (2分)所以有14a g = (1分)设卫星在轨道上的线速度的大小为v ,由向心加速度2,2v a R =得v =. (2分) 17.地球同步卫星是相对地面静止的卫星,它绕地球运动的周期与地球自转周期T 相同.设卫星距地面的距离h ,卫星绕地球做匀速圆周运动的向心力是地球对卫星的万有引力,由牛顿运动定律和万有引力定律,可得 222()()()Mm Gm R h T R h π=++ (3分)解得:h R = (3分) 信号传递的最短距离是2 h ,受话人听到发话人的信号后立即回话,信号又需传播2 h的距离后才能到达发话人处,由此可知最短时间为)4(42232R GMT c c h t -⋅=⨯=π.(3分)18. 根据光传到地面的时间求出太阳到地球的距离.m m ct R 118105.1500100.3⨯=⨯⨯== (2分)设地球绕太阳运动的周期为T , T=365×24×3600s(1分)据万有引力等于向心力有:22)2(TR M R M M G π地太地= (3分) 所以2324GTR M π=太 (2分),代入数据得kg M 30100.2⨯=太. (2分) 19.第一个等式(对热气球)不正确.(2分)因为热气球不同于人造卫星,热气球静止在空中是因为浮力与重力平衡,它绕地心运动的角速度应等于地球自转角速度.(讲到浮力与重力平衡就给3分) (3分)①若补充地球表面的重力加速度g ,可以认为热气球受到的万有引力近似等于其重力,则有G mg R Mm =2(3分)与第二个等式联列可得:ω=h R g h R R ++(3分)以下解法可参照①给分.②若利用同步卫星的离地高度H 有:G )()(20/2/H R m H R Mm +=+ω 与第二个等式联到可得:ω=230)(hR H R ++ω. ③若利用第一宇宙速度v 1,有G Rv m R Mm 21/2/=与第二个等式联列可得:ω=31)(h R R v +. 此外若利用近地卫星运行的角速度也可求出ω来.。