流体力学及其应用论文
流体力学在工程中的应用

流体力学在工程中的应用流体力学是一门研究流体(液体和气体)运动及其与周围环境相互作用的科学。
这门学科不仅对于基础科学研究具有重要意义,同时也在工程技术中扮演着至关重要的角色。
无论是在航空航天、汽车、土木工程还是化工等领域,流体力学的原理和应用都渗透在多个方面。
本文将探讨流体力学在不同工程领域中的应用实例,并解释这些应用所依赖的基本理论。
航空航天工程中的流体力学航空航天工程是流体力学应用最为显著的领域之一。
在飞行器设计过程中,必须考虑气动性能,确保飞行器能够在高速流动的空气中平稳飞行。
流体力学在这一领域的主要应用包括:气动外形设计:飞机和导弹等航空器的外形设计需要确保良好的气动特性,以减少阻力和增加升力。
为了实现这一目标,工程师们运用计算流体动力学(CFD)技术,模拟不同形状对气流的影响,优化外形设计。
风洞测试:为了验证航空器设计的有效性,往往需要在风洞中进行测试。
通过对模型施加不同风速并测量空气压力分布,研究人员可以获得关于升力、阻力及气流分离等关键参数的数据。
这些实验结果为实际飞行器的设计提供了重要依据。
飞行控制:现代飞机使用高度复杂的控制系统,流体力学在其开发中起到关键作用。
例如,通过分析控制面(如副翼、升降舵等)的气动效果,可以改善飞机的操控性能,提高安全性。
汽车工程中的流体力学汽车行业同样受益于流体力学的研究。
在设计车辆时,工程师需要关注车辆与空气之间的相互作用,从而降低燃油消耗和提高车辆性能。
具体应用包括:空气动力学优化:汽车设计过程中,对车身形状进行优化以减少空气阻力,是提高燃油经济性的重要手段。
通过数值模拟与实际风洞试验相结合,工程师能够评估不同车身设计对空气阻力的影响,从而选择最佳方案。
冷却系统设计:发动机及其部件在工作过程中会产生大量热量,因此必须有效冷却。
流体力学原理被用于设计散热器和冷却通道,以确保引擎在最佳温度范围内运行,从而提高性能和可靠性。
排放控制:随着环保要求日益严格,汽车排放控制愈发重要。
流体力学小论文

流体力学论文流体力学是研究流体的力学运动规律及其应用的学科。
主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。
流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。
在生活、环保、科学技术及工程中具有重要的应用价值。
一:流体力学中的数学问题用于描述流体力学模型及流体与边界相互作用。
流体力学中的数学问题用于描述流体力学模型及流体与边界相互作用的方程组问题常见的湍流问题,在理论上的描述要求助于偏微分,在大多数情况下是属于半经验的,只适用于少数几种流动类型,范围相当...流体力学中的数学问题用于描述流体力学模型及流体与边界相互作用的方程组问题常见的湍流问题,在理论上的描述要求助于偏微分,在大多数情况下是属于半经验的,只适用于少数几种流动类型,范围相当小。
理想流体的模型,即一种忽略流体枯性的模型一一对求解许多类型的问题都非常有效。
用这种近似法,很多流体力学问题可以简化为经典的位势理论问题。
因此,固体在静止的无限大区域的流体中运动的问题就可以简化为纽曼问题。
然而,这种近似法只能在少数情况求解实际流体的速度和压力场。
一个重要的实例是速度环量为常数的流线型剖面的平面流体运动。
在枯性流体中,由于流体粘性的影啊,在靠近固体表面的边界层上就会产生旋涡,在固体的尾部就会产生切向尾流。
如果物体表面为流线型(如,尾部边缘尖锐的机翼,以小攻角运动),且雷诺数很大,尾流就很薄。
如果模型在理想流体中,可以用位势场的不连续面(即间断面)来代替旋涡层。
这样,就产生了在机翼外部确定位于机翼边缘的后面,具有间断面的速度势问题(其位置事先不知道),它只有通过解题才能确定。
这个问题只有在对薄的机翼作线性近似并使它化为简单的平面图形(圆或椭圆)后,才有解析解。
而这一问题的数值解可以适用于其它形状机翼的定常运动及非定常运动。
流体力学对液体流动的研究与应用

流体力学对液体流动的研究与应用流体力学是物理学的一个分支,研究的是液体和气体在静止和运动条件下的行为规律。
在工程领域,流体力学的研究和应用非常广泛,特别是对液体流动的研究和应用更加深入。
本文将从液体流动的基本原理、数学模型以及应用方面来探讨流体力学对液体流动的研究与应用。
液体是一种具有粘性和流动性质的物质。
在液体内部,分子之间存在着相互作用力,这种作用力可以使得液体呈现出流动的性质。
流体力学通过研究液体在不同情况下的流动规律,可以为我们提供很多有用的信息。
首先,流体力学研究的一个重要问题是如何描述液体的流动。
为了精确地描述液体的运动状态,需要建立相应的数学模型。
纳维-斯托克斯方程是流体力学中最基本的方程之一,可以描述流体的流动。
这个方程将液体的流速、压力、密度以及粘性等因素考虑在内,形成了一套完整的数学框架。
基于该数学模型,我们可以对液体的流动进行研究,从而解释和预测一系列与液体流动相关的现象。
其次,流体力学的研究对于许多实际问题的解决具有重要意义。
例如,在航空航天领域,流体力学的研究可以帮助我们更好地理解和解决飞行器在空气中的流动问题。
通过分析飞行器表面的气动力原理,可以优化设计,提高飞行的安全性和效率。
同样,在海洋工程领域,流体力学的应用也非常广泛。
研究其在海底管道、海洋平台以及海洋能源资源开发等方面的应用,可以为海洋工程提供科学依据和技术支持,同时减少工程风险。
此外,流体力学的研究还对环境保护和能源开发等领域起到重要作用。
通过研究液体流动的规律,我们可以更好地理解环境中的水资源的分布和流动情况,从而有效地管理和保护水资源。
此外,流体力学在能源开发方面的应用也非常广泛。
例如,研究液体在管道中的流动情况可以优化输油管道的设计和运营,提高能源的传输效率。
流体力学的研究与应用涉及的领域还非常广泛,如汽车工程、化工工程、地下水流动等等。
通过研究和应用流体力学,我们可以更好地理解和控制液体的流动行为,为现代工程和科学研究提供重要的支持。
流体力学结课论文

谈流体力学的研究内容及发展简史流体力学是力学的一个独立分支,是一门研究流体的平衡和流体机械运动规律及其实际应用的技术科学,在许多工业部门中都有着广泛应用,航空工业中飞机的制造离不开空气动力学;造船工业部门要用到水动力学,与土建类各专业有着更加密切的关系,了解流体动力学的研究内容及发展简史对学习流体力学知识具有的一定的引导作用,为以后的学习铺设台阶,引起学习的兴趣。
流体力学的研究内容流体是气体和液体的总称。
在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。
大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。
大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容。
流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。
此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。
在流体力学中为简化计算,对流体模型做出了假设:质量守恒;动量守恒;能量守恒。
在流体力学中常会假设流体是不可压缩流体,也就是流体的密度为一定值。
液体可以算是不可压缩流体,气体则不是。
有时也会假设流体的黏度为零,此时流体即为非粘性流体。
气体常常可视为非粘性流体。
若流体黏度不为零,而且流体被容器包围(如管子),则在边界处流体的速度为零。
流体的主要物理性质:1、流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。
液体有一定的体积,存在一个自由液面;气体能充满任意形状的容器,无一定的体积,不存在自由液面。
2、流体的连续介质模型微观:流体是由大量做无规则运动的分子组成的,分子之间存在空隙,但在标准状况下,1cm3液体中含有3.3×1022个左右的分子,相邻分子间的距离约为3.1×10-8cm。
力学原理的应用论文

力学原理的应用论文摘要本论文简要介绍了力学原理的基本概念与应用,并探讨了在实际工程中力学原理的重要性和应用效果。
通过列举实际案例,展示了力学原理在各个领域的应用,包括结构设计、材料力学、机械运动与控制、流体力学等。
研究结果表明,合理应用力学原理可以提高工程设计的安全性和效率,满足工程要求。
引言力学原理是研究物体平衡、运动和变形的基本理论。
在工程领域中,力学原理的应用十分广泛。
为了满足不同工程应用的需求,人们研究和发展了各种力学原理和方法,如静力学、动力学、弹性力学、塑性力学等。
本文旨在探讨力学原理在实际工程中的应用,以便更好地理解力学原理的重要性和效果。
力学原理在结构设计中的应用1.静力平衡原理:结构设计中,静力平衡是一个基本要求。
通过静力平衡原理,我们可以确定结构各部分的受力情况,从而进行合理的结构设计。
2.弹性力学原理:弹性力学原理主要用于结构的变形计算。
通过弹性力学原理,可以计算结构在受力时产生的变形,并确定结构的刚度和变形情况,以优化结构设计和满足工程要求。
3.破坏力学原理:在结构设计中,破坏力学原理用于预测结构的破坏状态和承载能力。
通过破坏力学原理,我们可以评估结构的安全性,从而防止结构在使用过程中出现破坏。
力学原理在材料力学中的应用1.应力应变关系:材料力学研究材料的应力和应变关系。
通过力学原理,我们可以得到类似胡克定律的应力应变关系,从而预测材料在受力时的变形情况。
2.破裂力学:破裂力学研究材料在受力时的破裂行为。
通过破裂力学原理,我们可以预测材料破裂的位置和破坏模式,帮助工程师选择合适的材料。
力学原理在机械运动与控制中的应用1.运动学原理:运动学原理用于研究物体的运动规律。
通过运动学原理,我们可以确定机械系统的位置、速度和加速度,并设计合适的运动轨迹和控制方案。
2.动力学原理:动力学原理用于研究物体的力学相互作用。
通过动力学原理,我们可以计算机械系统在受力时的运动状态和力学性能,帮助优化机械系统的设计和运行控制。
流体力学在航空航天工程中的应用毕业论文

流体力学在航空航天工程中的应用毕业论文流体力学是研究流体运动及其力学性质的学科,它在航空航天工程中具有重要的应用。
本文将探讨流体力学在航空航天工程中的应用,并从不同角度分析其对工程设计、推进系统、装备研发和气动载荷等方面的影响。
一、流体力学在航空航天工程设计中的应用1.1 气动设计流体力学在航空航天工程的气动设计中起着关键作用。
通过对空气动力学的基本理论研究以及实验数据的分析,工程师们能够定量地评估飞行器的阻力、升力和稳定性等特性。
同时,流体力学的应用还能指导气动外形的设计,以实现飞行器的高速与高稳定性的要求。
1.2 气动测试在航空航天工程中,进行气动测试是不可或缺的。
通过风洞试验,工程师们可以模拟不同飞行速度和高度下的气动环境,进一步验证气动设计的合理性,并获取飞行器的气动参数。
这些参数对于后续的飞行控制和结构设计至关重要。
二、流体力学在航空航天推进系统中的应用2.1 燃烧室设计航空航天推进系统中,燃烧室是实现燃烧和产生推力的关键部件。
流体力学的应用可以帮助工程师们优化燃烧室的几何形状,以实现更高的燃烧效率和推力输出。
此外,通过流场数值模拟可以对燃烧室内的湍流运动进行研究,进一步提高燃烧效果。
2.2 推进系统管路设计航空航天推进系统中的管路设计需要考虑流动的传输性质和能量损失。
流体力学的应用可以帮助工程师们分析流体的压力、速度和温度变化等参数,以实现管路设计的优化。
同时,流体力学还可以指导工程师们预测管道内的流动阻力和损失,从而选择合适的管道材料和减少能量损失。
三、流体力学在航空航天装备研发中的应用3.1 飞行器设计流体力学在飞行器设计中起着至关重要的作用。
通过流体力学的理论和模拟分析,工程师们能够评估飞行器的飞行性能、气动稳定性和耐飞行环境能力等关键指标。
这对于飞行器的结构设计和工作条件的确定具有重要意义。
3.2 航空航天设备设计航空航天设备的工作环境往往具有极端的压力、温度和流速条件。
流体力学的应用可以帮助工程师们分析和模拟设备内的流动特性,以确定合理的结构和材料选择,确保设备在复杂工况下的可靠性和稳定性。
流体力学在工程中的应用

流体力学在工程中的应用流体力学是研究流体(液体和气体)行为的科学,其基本理论和方法在现代工程技术中扮演着至关重要的角色。
无论是在设计、制造还是运营维护中,流体力学的原理都不可或缺。
本文将详细讨论流体力学在工程中的几种主要应用,包括航空航天、土木工程、机械工程和能源领域,旨在提供一个全面的视角,帮助读者理解流体力学的重要性和应用方式。
一、航空航天工程中的流体力学在航空航天工程中,流体力学的应用尤为显著。
飞机在飞行过程中,周围空气的流动对其升力、阻力、稳定性等特性产生直接影响。
因此,在飞机设计时需要通过流体动力学分析来优化其形状和结构,以提高飞行性能。
1.1 升力和阻力的计算在设计飞机机翼时,计算升力和阻力是非常重要的。
根据伯努利原理,当空气流速增大时,机翼上方的气压降低,从而产生升力。
通过模拟不同机翼形状和攻角,可以获得最佳的升力与阻力比。
这不仅影响到飞机的性能,还关系到燃油效率和航程。
1.2 风洞试验风洞试验是一种常用的方法,用于测试模型在气流中的表现。
在风洞中,研究人员可以实际观察气流与模型之间的相互作用,进而对模型进行改进。
这种实验方法可以有效减少设计过程中可能出现的误差,提高飞行器的整体性能。
1.3 航空发动机设计航空发动机作为航空器最关键的部分之一,流体力学在其设计过程中也至关重要。
在发动机燃烧室内,空气和燃料混合后进行燃烧,因此流体动力学分析可以帮助优化燃烧过程,提升推力效率。
此外,在涡轮和压缩机的设计中,能够精确计算气流状态并预测涡旋和冲击波,从而提高发动机的效能和可靠性。
二、土木工程中的流体力学土木工程通常涉及大量液体系统,例如供水、排水及防洪体系,而流体力学则为这些系统提供了科学基础。
在建筑物及基础设施设计中,对于地基、水文及水资源管理等方面,都离不开流体力学的理论支持。
2.1 水资源管理水资源管理是土木工程的重要组成部分。
在城市规划中,需要合理设计供排水系统以确保水资源的高效利用。
船舶设计中的流体力学优化与应用研究分析

船舶设计中的流体力学优化与应用研究分析船舶作为人类在海洋中航行的重要工具,其性能的优劣直接关系到航行的安全、效率和经济性。
在船舶设计过程中,流体力学的优化与应用是至关重要的环节。
流体力学作为一门研究流体运动规律的学科,为船舶设计提供了理论基础和技术支持,帮助船舶设计师更好地理解船舶在水中的运动特性,从而实现船舶性能的优化。
一、流体力学在船舶设计中的重要性船舶在水中航行时,会受到水的阻力、浮力、升力等多种力的作用。
这些力的大小和分布直接影响船舶的航行速度、稳定性、操纵性和燃油经济性。
流体力学的研究可以帮助我们准确地计算这些力,从而为船舶的设计提供科学依据。
例如,通过流体力学的分析,我们可以优化船舶的外形,减少水的阻力,提高船舶的航行速度和燃油经济性。
同时,流体力学还可以帮助我们设计更加合理的船舶推进系统,提高推进效率,降低噪音和振动。
二、船舶设计中常见的流体力学问题1、阻力问题船舶在水中航行时,水的阻力是影响其性能的主要因素之一。
阻力主要包括摩擦阻力、兴波阻力和粘压阻力。
摩擦阻力是由于水与船舶表面的摩擦产生的,兴波阻力是由于船舶在水中航行时产生的波浪引起的,粘压阻力则是由于水流在船舶尾部的分离和漩涡产生的。
为了减少阻力,船舶设计师通常会采用流线型的外形设计,减少船舶表面的粗糙度,优化船舶的长宽比和吃水深度等参数。
此外,还可以通过安装减阻装置,如球鼻艏、消波鳍等,来降低兴波阻力。
2、稳定性问题船舶的稳定性是指船舶在受到外力作用时保持平衡的能力。
在船舶设计中,需要考虑船舶的横稳性、纵稳性和动稳性。
流体力学的研究可以帮助我们计算船舶在不同装载情况下的重心位置和浮心位置,从而评估船舶的稳定性。
为了提高船舶的稳定性,可以通过调整船舶的重心位置、增加压载水、优化船舶的外形等方法来实现。
3、操纵性问题船舶的操纵性是指船舶按照驾驶员的意图改变航向和速度的能力。
流体力学的研究可以帮助我们分析船舶在转向时水动力的变化,从而优化船舶的舵系设计和推进系统布置,提高船舶的操纵性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体力学及其应用论文
流体力学的概念:
流体力学,是研究流体(液体和气体)的力学运动规律及其应用的学科。
主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。
流体力学是连续介质力学的一门分支,是研究流体(包含气体及液体)现象以及相关力学行为的科学。
可以按照研究对象的运动方式分为流体静力学和流体动力学,还可按应用范围分为水力学,空气动力学等等。
流体力学的概述:
理论流体力学的基本方程是纳维-斯托克斯方程,简称N-S方程。
纳维-斯托克斯方程由一些微分方程组成,通常只有通过一些边界条件或者通过数值计算的方式才可以求解。
它包含速度v=(u,v,w),压强,密度,粘度温度等变量,而这些都是位置(x,y,z)和时间t的函数。
通过质量守恒、能量守恒和动量守恒,以及热力学方程f(ρ,P,T)和介质的材料性质我们可以确定这些变量。
/picview/33328/33328/0/6a211233c6f41fbb1b4c ff51.html流体的流动曲线
流体力学中研究得最多的流体是水和空气。
它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和高等数学、物理学、化学的基础知识。
1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学
流体力学的应用领域:
除水和空气以外,流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。
气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,汽车制造(联众集群),以及天体物理的若干问题等等,都广泛地用到流体力学知识。
许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了它不断地发展。
1950年后,电子计算机的发展又给予流体力学以极大的推动
流体力学的理论基础:
19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。
于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。
1822年,纳维建立了粘性流体的基本运动方程;1845年,斯托克斯又以更合理的基础导出了这个方程,并将其所涉及的宏观力学基本概念论证得令人信服。
这组方程就是沿用至今的纳维-斯托克斯方程(简称N-S方程),它是流体动力学的理论基础。
上面说到的欧拉方程正是N-S方程在粘度为零时的特例普朗特学派从1904年到1921年逐步将N-S方程作了简化,从推理、数学论证和实验测量等各个角度,建立了边界层理论,能实际计算简单情形下,边界层内流动状态和流体同固体间的粘性力。
同时普朗克又提出了许多新概念,并广泛地应用到飞机和汽轮机的设计中去。
这一理论既明确了理想流体的适用范围,又能计算物体运动时遇到的摩擦阻力。
使上述两种情况得到了统一。
流体动力学的重大进展:
20世纪初,飞机的出现极大地促进了空气动力学的发展。
航空事业的发展,期望能够揭示飞行器周围的压力分布、飞行器的受力状况和阻力等问题,这就促进了流体力学在实验和理论分析方面的发展。
20世纪初,以儒科夫斯基、恰普
雷金、普朗特等为代表的科学家,开创了以无粘不可压缩流体位势流理论为基础的机翼理论,阐明了机翼怎样会受到举力,从而空气能把很重的飞机托上天空。
机翼理论的正确性,使人们重新认识无粘流体的理论,肯定了它指导工程设计的重大意义。
流体动力学的典例:
空气的流动在日常生活中是看不见的,但低速气流的流动却与水流有较大的相似性。
日常的生活经验告诉我们,当水流以一个相对稳定的流量流过河床时,在河面较宽的地方流速慢,在河面较窄的地方流速快。
流过机翼的气流与河床中的流水类似,由于机翼一般是不对称的,上表面比较凸,而下表面比较平,流过机翼上表面的气流就类似于较窄地方的流水,流速较快,而流过机翼下表面的气流正好相反,类似于较宽地方的流水,流速较上表面的气流慢。
根据流体力学的基本原理,流动慢的大气压强较大,而流动快的大气压强较小,这样机翼下表面的压强就比上表面的压强高,换一句话说,就是大气施加与机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了飞机的升力。
简单来说,飞机向前飞行得越快,机翼产生的气动升力也就越大。
当升力大于重力时,飞机就可以向上爬升;当升力小于重力时,飞机就可以降低高度。
流体力学的研究范围:
流体是气体和液体的总称。
在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。
大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。
大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容。
20世纪初,世界上第一架飞机出现以后,飞机和其他各种飞行器得到迅速发展。
20世纪50年代开始的航天飞行,使人类的活动范围扩展到其他星球和银河系。
航空航天事业的蓬勃发展是同流体力学的分支学科——空气动力学和气体动力学的发展紧密相连的。
这些学科是流体力学中最活跃、最富有成果的领域。
石油和天然气的开采,地下水的开发利用,要求人们了解流体在多孔或缝隙介质中的运动,这是流体力学分支之一——渗流力学研究的主要对象。
渗流力学还涉及土壤盐碱化的防治,化工中的浓缩、分离和多孔过滤,燃烧室的冷却等技术问题。
燃烧离不开气体,这是有化学反应和热能变化的流体力学问题,是物理-化学流体动力学的内容之一。
爆炸是猛烈的瞬间能量变化和传递过程,涉及气体动力学,从而形成了爆炸力学。
沙漠迁移、河流泥沙运动、管道中煤粉输送、化工中气体催化剂的运动等,都涉及流体中带有固体颗粒或液体中带有气泡等问题,这类问题是多相流体力学研究的范围。
等离子体是自由电子、带等量正电荷的离子以及中性粒子的集合体。
等离子体在磁场作用下有特殊的运动规律。
研究等离子体的运动规律的学科称为等离子体动力学和电磁流体力学,它们在受控热核反应、磁流体发电、宇宙气体运动等方面有广泛的应用。
风对建筑物、桥梁、电缆等的作用使它们承受载荷和激发振动;废气和废水的排放造成环境污染;河床冲刷迁移和海岸遭受侵蚀;研究这些流体本身的运动及其同人类、动植物间的相互作用的学科称为环境流体力学(其中包括环境空气动力学、建筑空气动力学)。
这是一门涉及经典流体力学、气象学、海洋学和水力学、结构动力学等的新兴边缘学科。
生物流变学研究人体或其他动植物中有关的流体力学问题,例如血液在血管中的流动,心、肺、肾中的生理流体运动和植物中营养液的输送。
此外,还研究鸟类在空中的飞翔,动物在水中的游动,等等。
因此,流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。
此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动
力学;从对不同“力学模型”的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。
流体力学的研究展望:
从阿基米德到二十一世纪,特别是从20世纪以来,流体力学已发展成为基础科学体系的一部分,同时又在工业、农业、交通运输、天文学、地学、生物学、医学等方面得到广泛应用。
今后,人们一方面将根据工程技术方面的需要进行流体力学应用性的研究,另一方面将更深入地开展基础研究以探求流体的复杂流动规律和机理。
后一方面主要包括:通过湍流的理论和实验研究,了解其结构并建立计算模式;多相流动;流体和结构物的相互作用;边界层流动和分离;生物地学和环境流体流动等问题;有关各种实验设备和仪器等。
21242P
组员:束余欢杨柳周兆明。