综合评价中确定权重向量的几种方法比较
赋权的方法

五种赋权法及其比较摘要:本文介绍了五种确定评估指标权重的方法及其比较。
权重是综合评价中的一个重要的指标体系,合理地分配权重是量化评估的关键,权重的构成是否合理,也直接影响到评估的科学性。
为了更好地选择确定权重的方法,我们给出了几种方法的详细计算过程,以便进行精确对比。
关键词:权重统计平均法变异系数法层次分析法德尔菲法排序法一、权重的概念权重是一个相对的概念,是针对某一指标而言。
某一指标的权重是指该指标在整体评价中的相对重要程度。
权重表示在评价过程中,是被评价对象的不同侧面的重要程度的定量分配,对各评价因子在总体评价中的作用进行区别对待。
事实上,没有重点的评价就不算是客观的评价,每个人员的性质和所处的层次不同,其工作的重点也肯定是不能一样的。
因此,相对工作所进行的业绩考评必须对不同内容对目标贡献的重要程度做出估计,即权重的确定。
二、3种主要的确定权重的方法(一) 统计平均法统计平均数法(Statistical average method)是根据所选择的各位专家对各项评价指标所赋予的相对重要性系数分别求其算术平均值,计算出的平均数作为各项指标的权重。
其基本步骤是:第一步,确定专家。
一般选择本行业或本领域中既有实际工作经验、又有扎实的理论基础、并公平公正道德高尚的专家;第二步,专家初评。
将待定权数的指标提交给各位专家,并请专家在不受外界干扰的前提下独立的给出各项指标的权数值;第三步,回收专家意见。
将各位专家的数据收回,并计算各项指标的权数均值和标准差;第四步,分别计算各项指标权重的平均数。
如果第一轮的专家意见比较集中,并且均值的离差在控制的范围之内,即可以用均值确定指标权数。
如果第一轮专家的意见比较分散,可以把第一轮的计算结果反馈给专家,并请他们重新给出自己的意见,直至各项指标的权重与其均值的离差不超过预先给定的标准为止,即达到各位专家的意见基本一致,才能将各项指标的权数的均值作为相应指标的权数。
(二) 变异系数法变异系数法(Coefficient of variation method)是直接利用各项指标所包含的信息,通过计算得到指标的权重。
权重确定方法归纳

2.构造判断矩阵
构造所有相于不同准则的方案层判断矩阵 (1)相对于景色
(2)相对于费用 (3)相对于居住 (4)相对于饮食
(5)相对于旅途
3. 层次单排序及一致性检验 3.1用matlab求得判断矩阵的最大特征根与特征向量: ,对应于的正规化的特征向量为: 判断矩阵的最大特征值与特征向量 判断矩阵的最大特征值与特征向量 判断矩阵的最大特征值与特征向量 判断矩阵的最大特征值与特征向量 判断矩阵的最大特征值与特征向量
0.251 0.016 0.021 0.122 0.117 1
计算过程如下: (1)先根据各个国家的指标数据,分别计算这些国家每个指标的 平均数和标准差; (2)根据均值和标准差计算变异系数。 即:这些国家人均GNP的变异系数为:
农业占GDP比重的变异系数:
其他类推。 (3)将各项指标的变异系数加总:
人均 指 GNP 标
表1-1 现代化水平评价指标的权重
农业 第三
非农
大学生 每千
占 产业
人口自
成人
业劳 城市人
平均预
占适龄 人拥
GDP 占
然增长
识字
总
动力 口比重
期寿命
人口比 有医
的比 GDP
率
率
比重
重
生
重 比重
(美元) (%) (%) (%) (%) (%) (岁) (%) (%) (人) 和
平 均 11938.4 9.352 54.86 0.826 69.792 0.7214 72.632 93.34 36.556 2.446 —
层次分析法根据问题的性质和要达到的总目标,将问题分解为不同 的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同 层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结 为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权 值的确定或相对优劣次序的排定。
确定权重的7种方法

确定权重的7种⽅法确定权重的7种⽅法表7-1 地质环境质量评价定权⽅法⼀览表序号定权⽅法1 专家打分法2 调查统计法1.重要性打分法2.“栅栏”法3.“⽹格”法4.列表打勾ü集合统计法T1.频数截取法2.聚类求均值法3.中间截取求均值法.3 序列综合法1.单定权因⼦排序法2.多定权因⼦排序法4 公式法1.三元函数法2.概率法3.信息量法4.相关系数法5.⾪属函数法5 数理统计法1.判别分析法2.聚类分析法3.因⼦分析法6 层次分析法7 复杂度分析法⼀、专家打分法专家打分法即是由少数专家直接根据经验并考虑反映某评价观点后定出权重,具体做法和基本步骤如下:第⼀步选择评价定权值组的成员,并对他们详细说明权重的概念和顺序以及记权的⽅法。
第⼆步列表。
列出对应于每个评价因⼦的权值范围,可⽤评分法表⽰。
例如,若有五个值,那么就有五列。
⾏列对应于权重值,按重要性排列。
第三步发给每个参予评价者⼀份上述表格,按下述步骤四~九反复核对、填写,直⾄没有成员进⾏变动为⽌。
第四步要求每个成员对每列的每种权值填上记号,得到每种因⼦的权值分数。
第五步要求所有的成员对作了记号的列逐项⽐较,看看所评的分数是否能代表他们的意见,如果发现有不妥之处,应重新划记号评分,直⾄满意为⽌。
第六步要求每个成员把每个评价因⼦(或变量)的重要性的评分值相加,得出总数。
第七步每个成员⽤第六步求得的总数去除分数,即得到每个评价因⼦的权重。
第⼋步把每个成员的表格集中起来,求得各种评价因⼦的平均权重,即为“组平均权重”。
第九步列出每种的平均数,并要求评价者把每组的平均数与⾃⼰在第七步得到的权值进⾏⽐较。
第⼗步如有⼈还想改变评分,就须回到第四步重复整个评分过程。
如果没有异议,则到此为⽌,各评价因⼦(或变量)的权值就这样决定了。
⼆、调查统计法具体作法有下⾯四种。
1.重要性打分法:重要性打分法是指要求所有被征询者根据⾃⼰对各评价因⼦的重要性的认识分别打分,其步骤如下:a.对被征询者讲清统⼀的要求,给定打分范围,通常1~5分或1~100分都可。
确定权重的7种方法

确定权重的7种方法主观赋权德尔菲专家法简介依据“德尔菲法”的基本原理,选择企业各方面的专家,采取独立填表选取权数的形式,然后将他们各自选取的权数进行整理和统计分析,最后确定出各因素,各指标的权数。
德尔菲法的主要缺点是过程比较复杂,花费时间较长。
实现方法选择专家。
一般情况下,选本专业领域中既有实际工作经验又有较深理论修养的专家10-30人左右,需征得专家本人同意。
将待定权重的p个指标和有关资料以及统一的确定权重的规则发给选定的各位专家,请他们独立给出各指标的权数值。
回收结果并计算各指标权数的均值和标准差。
将计算的结果及补充资料返还给各位专家,要求所有的专家在新的基础上确定权数。
重复3和4步骤,直至各指标权数与其均值的离差不超过预先给定的标准为止,也就是各专家的意见基本趋于一致,以此时各指标权数的均值作为该指标的权重。
此外,为了使判断更加准确,令评价者了解己确定的权数把握性大小,还可以运用“带有信任度的德尔菲法”,该方法需要在上述第5步每位专家最后给出权数值的同时,标出各自所给权数值的信任度。
这样,如果某一指标权数的任任度较高时,就可以有较大的把握使用它,反之,只能暂时使用或设法改进。
AHP层次分析法简介层次分析法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各指标的重要程度。
但该方法主观因素对判断矩阵的影响很大,当决策者的判断过多地受其主观偏好的影响时,结果不够客观。
实现方法构建层次评价矩阵构造判断矩阵构造判断矩阵就是通过各要素之间相互两两比较,并确定各准则层对目标层的权重。
简单地说,就是把准则层的指标进行两两判断,通常使用Santy的1-9标度方法给出。
对于m 个指标,构建m*m的判断矩阵,并使用确定的标度方法完成该判断矩阵A。
3. 层次单排序根据构成的判断矩阵,求解各个指标的权重。
有两种方式,一种是方根法,一种是和法。
指标权重的确定方法

指标权重的确定方法ij表示第i个指标相对于第j个指标的重要性,然后通过计算得出每个指标的权重。
具体步骤如下:1)建立层次结构模型,将评价指标分为若干层次,形成层次结构模型。
2)构造判断矩阵,由决策者对所有评价指标进行两两比较,得到判断矩阵。
3)计算特征向量,通过计算得出每个指标的特征向量。
4)计算权重,将各指标的特征向量进行归一化处理,得到各指标的权重。
二)客观赋权法客观赋权法是指通过统计学或数学方法,根据指标本身的性质和指标之间的关系,计算各指标的权重。
常用的方法有熵权法、主成分分析法等。
三)组合集成赋权法组合集成赋权法是指将主观赋权法和客观赋权法进行组合,得到更加准确的权重。
常用的方法有TOPSIS法、灰色关联度法等。
总之,权重的确定方法需要根据实际问题的情况选择合适的方法,以确保评价结果的准确性和可靠性。
客观赋权法是一种基于各方案评价指标值的客观数据的差异来确定各指标权重的方法。
目前,主要研究成果有基于“差异驱动”原理的赋权方法,包括突出整体差异的“拉开档次法”和突出局部差异的“均方差法”、“嫡值法”以及“极差法”、“离差法”。
其中,主成分分析法是一种将多项评价指标综合成z个主成分的方法,再以这z个主成分的贡献率为权数构造一个综合指标,并据此作出判断。
这种方法能消除指标间信息的重叠,根据指标所提供的信息,通过数学运算而主动赋权。
拉开档次”法的基本原理是将n个被评价对象看成是由m个评价指标构成的m维评价空间中的n个点(或向量),寻求n个被评价对象的评价值就相当于把这n个点向一维空间做投影。
选择指标权系数,使得各被评价对象之间的差异尽量拉大,也就是根据m维评价空间构造一个最佳的一维空间,使得各点在此一维空间上的投影点最为分散,即分散程度最大。
该方法的特点为综合评价过程透明,评价结果与系统或指标的采样顺序无关,评价结果毫无主观色彩,评价结果客观、可比,权重不具有“可继承性”,权重不再体现评价指标的相对重要程度。
权重确定方法归纳

权重确定方法归纳多指标综合评价是指人们根据不同的评价目的,选择相应的评价形式据此选择多个因素或指标,并通过一定的评价方法将多个评价因素或指标转化为能反映评价对象总体特征的信息,其中评价指标与权重系数确定将直接影响综合评价的结果;按照权数产生方法的不同多指标综合评价方法可分为主观赋权评价法和客观赋权评价法两大类,其中主观赋权评价法采取定性的方法由专家根据经验进行主观判断而得到权数,然后再对指标进行综合评价,如层次分析法、综合评分法、模糊评价法、指数加权法和功效系数法等;客观赋权评价法则根据指标之间的相关关系或各项指标的变异系数来确定权数进行综合评价,如熵值法、神经网络分析法、TOPSIS法、灰色关联分析法、主成分分析法、变异系数法等;两种赋权方法特点不同,其中主观赋权评价法依据专家经验衡量各指标的相对重要性,有一定的主观随意性,受人为因素的干扰较大,在评价指标较多时难以得到准确的评价;客观赋权评价法综合考虑各指标间的相互关系,根据各指标所提供的初始信息量来确定权数,能够达到评价结果的精确但是当指标较多时,计算量非常大;下面就对当前应用较多的评价方法进行阐述;一、变异系数法一变异系数法简介变异系数法是直接利用各项指标所包含的信息,通过计算得到指标的权重;是一种客观赋权的方法;此方法的基本做法是:在评价指标体系中,指标取值差异越大的指标,也就是越难以实现的指标,这样的指标更能反映被评价单位的差距;例如,在评价各个国家的经济发展状况时,选择人均国民生产总值人均GNP作为评价的标准指标之一,是因为人均GNP不仅能反映各个国家的经济发展水平,还能反映一个国家的现代化程度;如果各个国家的人均GNP没有多大的差别,则这个指标用来衡量现代化程度、经济发展水平就失去了意义;由于评价指标体系中的各项指标的量纲不同,不宜直接比较其差别程度;为了消除各项评价指标的量纲不同的影响,需要用各项指标的变异系数来衡量各项指标取值的差异程度;各项指标的变异系数公式如下:式中:是第项指标的变异系数、也称为标准差系数;是第项指标的标准差;是第项指标的平均数;各项指标的权重为:二案例说明例如,英国社会学家英克尔斯提出了在综合评价一个国家或地区的现代化程度时,其各项指标的权重的确定方法就是采用的变异系数法;案例:利用变异系数法综合评价一个国家现代化程度时的指标体系中的各项指标的权重;数据资料是选取某一年的数据,包括中国在内的中等收入水平以上的近40个国家的10项指标作为评价现代化程度的指标体系,计算这些国家的变异系数,反映出各个国家在这些指标上的差距,并作为确定各项指标权重的依据;其标准差、平均数数据及其计算出的变异系数等见表1-1;i ii x V σ=()n i ,,2,1 =iV i i σi i xi ∑==ni iii VV W 1计算过程如下:1先根据各个国家的指标数据,分别计算这些国家每个指标的平均数和标准差;2根据均值和标准差计算变异系数; 即:这些国家人均GNP 的变异系数为:农业占GDP 比重的变异系数:其他类推;3将各项指标的变异系数加总:4计算构成评价指标体系的这10个指标的权重: 人均GNP 的权重:农业占GDP 比重的权重:其他指标的权重都以此类推; 三变异系数法的优点和缺点当由于评价指标对于评价目标而言比较模糊时,采用变异系数法评价进行评定是比较合适的,适用各个构成要素内部指标权数的确定,在很多实证研究中也多数采用这一方法;缺点在于对指标的具体经济意义重视不够,也会存在一定的误7 966.270.66711 938.4ii iV x σ===782.0352.9316.7===iii x V σ0.6670.7820.2360.560.537 4.59+++++=145.059.4667.01===∑=ni iii VV W 1704.059.4782.01===∑=ni iii VV W差;二、层次分析法一层次分析法概述人们在对社会、经济以及管理领域的问题进行系统分析时,面临的经常是一个由相互关联、相互制约的众多因素构成的复杂系统;层次分析法则为研究这类复杂的系统,提供了一种新的、简洁的、实用的决策方法;层次分析法AHP法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法;该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题;二层次分析法原理层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最低层供决策的方案、措施等相对于最高层总目标的相对重要权值的确定或相对优劣次序的排定;层次分析法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法;尤其适合于对决策结果难于直接准确计量的场合;三层次分析法的步骤和方法•建立层次结构模型•构造判断(成对比较)矩阵•层次单排序及一致性检验•层次组合排序及一致性检验1. 建立层次结构模型利用层次分析法研究问题时,首先要把与问题有关的各种因素层次化,然后构造出一个树状结构的层次结构模型,称为层次结构图;一般问题的层次结构图分为三层,如图所示;最高层为目标层O :问题决策的目标或理想结果,只有一个元素;中间层为准则层C :包括为实现目标所涉及的中间环节各因素,每一因素为一准则,当准则多于9个时可分为若干个子层;最低层为方案层P :方案层是为实现目标而供选择的各种措施,即为决策方案;一般说来,各层次之间的各因素,有的相关联,有的不一定相关联;各层次的因素个数也未必一定相同.实际中,主要是根据问题的性质和各相关因素的类别来确定;层次分析法所要解决的问题是关于最低层对最高层的相对权重问题,按此相对权重可以对最低层中的各种方案、措施进行排序,从而在不同的方案中作出选择或形成选择方案的原则;2. 构造判断成对比较矩阵构造比较矩阵主要是通过比较同一层次上的各因素对上一层相关因素的影响作用.而不是把所有因素放在一起比较,即将同一层的各因素进行两两对比;比较时采用相对尺度标准度量,尽可能地避免不同性质的因素之间相互比较的困难;同时,要尽量依据实际问题具体情况,减少由于决策人主观因素对结果造成的影响;决策目标o准则1C 1准则2C 2准则m 1C m1子准则1C 11子准则2C 21方案1P 1方案2P 2方案nP n子准则m 2 C m21设要比较n 个因素n C C C ,,,21 对上一层如目标层O 的影响程度,即要确定它在O 中所占的比重;对任意两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响程度之比,按1~9的比例标度来度量),,2,1,(n j i a ij =.于是,可得到两两成对比较矩阵n n ij a A ⨯=)(,又称为判断矩阵,显然0>ij a ,),,2,1,(,1,1n j i a a a ii ijji ===因此,又称判断矩阵为正互反矩阵.比例标度的确定:ij a 取1-9的9个等级,ji a 取ij a 的倒数,1-9标度确定如下:ij a = 1,元素i 与元素j 对上一层次因素的重要性相同; ij a = 3,元素i 比元素j 略重要; ij a = 5,元素i 比元素j 重要; ij a = 7, 元素i 比元素j 重要得多; ij a = 9,元素i 比元素j 的极其重要; 2ij a n =,1,2,3,4n =元素i 与j 的重要性介于21ij a n =-与21ij a n =+之间;1ij a n=,1,2,9n =当且仅当ji a n =;由正互反矩阵的性质可知,只要确定A 的上或下三角的2)1(-n n 个元素即可;在特殊情况下,如果判断矩阵A 的元素具有传递性,即满足),,2,1,,(n k j i a a a ij kj ik ==则称A 为一致性矩阵,简称为一致阵. 3. 层次单排序及一致性检验3.1相对权重向量确定 1和积法取判断矩阵n 个列向量归一化后的算术平均值,近似作为权重,即),,2,1(111n i a a n w n j n k kjiji ==∑∑==类似地,也可以对按行求和所得向量作归一化,得到相应的权重向量; 2求根法几何平均法将A 的各列或行向量求几何平均后归一化,可以近似作为权重,即),,2,1(111111n i a a w nj nk nn j kj nij n j i =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=∑∑∏∏====3特征根法设想把一大石头Z 分成n 个小块n c c c ,,,21 ,其重量分别为n w w w ,,,21 ,则将n 块小石头作两两比较,记j i c c ,的相对重量为),,2,1,(n j i w w a jiij ==,于是可得到比较矩阵111122221212n n n n n n w w w w w w w w w w w w A w w w w w w ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦显然,A 为一致性正互反矩阵,记12(,,,)T n W w w w =,即为权重向量.且12111,,,n A W w w w ⎛⎫=⋅ ⎪⎝⎭则12111,,,n A W W W nW w w w ⎛⎫⋅=⋅= ⎪⎝⎭这表明W 为矩阵A 的特征向量,且n 为特征根.事实上:对于一般的判断矩阵A 有max A W W λ⋅=,这里)(max n =λ是A 的最大特征根,W 为m ax λ对应的特征向量.将W 作归一化后可近似地作为A 的权重向量,这种方法称为特征根法; 注:现有软件求得最大特征根与特征向量; 3.2一致性检验通常情况下,由实际得到的判断矩阵不一定是一致的,即不一定满足传递性和一致性.实际中,也不必要求一致性绝对成立,但要求大体上是一致的,即不一致的程度应在容许的范围内.主要考查以下指标: 1一致性指标:1max --=n n CI λ.2随机一致性指标:RI ,通常由实际经验给定的,如表2-1;表2-1 随机一致性指标3一致性比率指标:RICI CR =,当10.0<CR 时,认为判断矩阵的一致性是可以接受的,则m ax λ对应的特征向量可以作为排序的权重向量;此时()1max 111nij jnnj ii i iia wA W nw n w λ===⋅≈=∑∑∑其中(A )i W ⋅表示A W ⋅的第i 个分量; 4.计算组合权重和组合一致性检验 1组合权重向量设第1-k 层上1-k n 个元素对总目标最高层的排序权重向量为()1(1)(1)(1)(1)12,,,k Tk k k k n Wwww-----=第k 层上k n 个元素对上一层1-k 层上第j 个元素的权重向量为()(1)()()()121,,,,1,2,,k Tk k k k jj jn jk P p p pj n --==则矩阵1()()()()12,P ,,P k k k k k n P P -⎡⎤=⎣⎦是1-⨯k k n n 阶矩阵,表示第k 层上的元素对第1-k 层各元素的排序权向量.那么第k 层上的元素对目标层最高层总排序权重向量为()1()()(1)()()()(1)12()()()12,P ,,P ,,,k kk k k k k k k n Tk k k n W P W P W w w w---⎡⎤=⋅=⋅⎣⎦=或k k j n j k ij k in i w p wk ,,2,1,)1(1)()(1==-=∑- 对任意的2>k 有一般公式()()(1)(3)(2)(2)k k k W P P P W k -=⋅⋅⋅⋅>其中(2)W 是第二层上各元素对目标层的总排序向量. 2组合一致性指标设k 层的一致性指标为)()(2)(11,,,k nk k k CI CI CI - ,随机一致性指标为 )()(2)(11,,,k n k k k RI RI RI - 则第k 层对目标层的最高层的组合一致性指标为()1()()()()(1)12,,,k k k k k k n CI CI CI CI W --=⋅ 组合随机一致性指标为()1()()()()(1)12,,,k k k k k k n RI RI RI RI W --=⋅ 组合一致性比率指标为)3()()()1()(≥+=-k RICI CRCRk k k k 当10.0)(<k CR 时,则认为整个层次的比较判断矩阵通过一致性检验.四案例说明实例:人们在日常生活中经常会碰到多目标决策问题,例如假期某人想要出去旅游,现有三个目的地方案:风光绮丽的杭州1P 、迷人的北戴河2P 和山水甲天下的桂林3P ;假如选择的标准和依据行动方案准则有5个景色,费用,饮食,居住和旅途;1.建立层次结构模型目标层 准则层2.构造判断矩阵1234511/2433217551/41/711/21/31/31/52111/31/5311C C A C C C ⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪⎝⎭构造所有相对于不同准则的方案层判断矩阵 1相对于景色O 择旅游地P1桂林C1景色C2费用C3居住C4饮食C5旅途P2黄山P3北戴河12345C C C C C 11231251/2121/51/2`1P B P P ⎛⎫ ⎪= ⎪⎪⎝⎭123P P P2相对于费用3相对于居住4相对于饮食5相对于旅途3. 层次单排序及一致性检验3.1用matlab 求得判断矩阵A 的最大特征根与特征向量:max 5.073λ=,对应于max 5.073λ=的正规化的特征向量为:(2)(0.263,0.475,0.055,0.099,0.110)T W =判断矩阵1B 的最大特征值与特征向量max 3.005λ=(3)10.5950.2770.129W ⎛⎫ ⎪= ⎪ ⎪⎝⎭122311/31/8311/383`1P B P P ⎛⎫ ⎪= ⎪⎪⎝⎭123P P P 132********/31/3`1P B P P ⎛⎫ ⎪= ⎪⎪⎝⎭123P P P 14231341/3111/41`1P B P P ⎛⎫ ⎪= ⎪⎪⎝⎭123P P P 1523111/4111/4441P B P P ⎛⎫ ⎪= ⎪⎪⎝⎭123P P P判断矩阵2B 的最大特征值与特征向量max 3.002λ=(3)20.2360.682W ⎪= ⎪ ⎪⎝⎭判断矩阵3B 的最大特征值与特征向量max 3λ=(3)30.4290.429,0.142W ⎛⎫ ⎪= ⎪ ⎪⎝⎭判断矩阵4B 的最大特征值与特征向量max 3.009λ=(3)40.6330.193,0.175W ⎛⎫⎪= ⎪ ⎪⎝⎭判断矩阵5B 的最大特征值与特征向量max 3λ=(3)50.1660.166.0.668W ⎛⎫ ⎪= ⎪ ⎪⎝⎭4.一致性检验对于判断矩阵A 进行一致性检验:max 5.07350.01825151nCI n λ--===--查表知平均随机一致性指标RI,从而可检验矩阵一致性:0.018250.0162950.11.12CI CR RI ===< 同理,对于第二层次的景色、费用、居住、饮食、旅途五个判断矩阵的一致性检验均通过;利用层次结构图绘出从目标层到方案层的计算结果:5.层次总排序各个方案优先程度的排序向量为:(3)(2)W W W =0.5950.0820.4290.6330.1660.3000.4750.2770.2360.4290.1930.1660.2460.0550.1290.6820.1420.1750.6680.4560.0990.110 ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭决策结果是首选旅游地为3P 其次为1P ,最后为2P ; 五优点与缺点人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统;层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法;在应用层次分析法研究问题时,遇到的主要困难有两个: i 如何根据实际情况抽象出较为贴切的层次结构;ii 如何将某些定性的量作比较接近实际定量化处理;层次分析法对人们的思维过程进行了加工整理,提出了一套系统分析问题的方法,为科学管理和决策提供了较有说服力的依据;但层次分析法也有其局限性,主要表现在:i 它在很大程度上依赖于人们的经验,主观因素的影响很大,它至多只能排除思维过程中的严重非一致性,却无法排除决策者个人可能存在的严重片面性;ii 当指标量过多时,对于数据的统计量过大,此时的权重难以确定;AHP 至多只能算是一种半定量或定性与定量结合的方法;三、熵值法一熵值法的原理在信息论中,熵是对不确定性的一种度量;信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性越大,熵也越大;根据熵的特性,我们可以通过计算熵值来判断一个事件的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响越大; 二算法实现过程 1.数据矩阵m n nm n m X X X X A ⨯⎪⎪⎪⎭⎫ ⎝⎛=1111其中ij X 为第i 个方案第j 个指标的数值; 2. 数据的非负数化处理由于熵值法计算采用的是各个方案某一指标占同一指标值总和的比值,因此不存在量纲的影响,不需要进行标准化处理,若数据中有负数,就需要对数据进行非负化处理;此外,为了避免求熵值时对数的无意义,需要进行数据平移:对于越大越好的指标:mj n i X X X X X X X X X X X nj j j nj j j nj j j ij ij ,,2,1;,,2,1,1),,,min(),,,max(),,,min(212121' ==+--=对于越小越好的指标:mj n i X X X X X X X X X X X nj j j nj j j ijnj j j ij,,2,1;,,2,1,1),,,min(),,,max(),,,max(212121' ==+--=为了方便起见,仍记非负化处理后的数据为ij X 3.计算第j 项指标下第i 个方案占该指标的比重),2,1(1m j XX P ni ijijij ==∑=4.计算第j 项指标的熵值1e 0,ln 10ln ,0,)log(*1≤≤=≥>-=∑=则一般令有关,与样本数。
多指标综合评价方法及权重系数的选择

多指标综合评价方法及权重系数的选择在许多决策问题中,单一指标所反映的情况可能并不全面,而且往往存在各种指标之间的相互关系。
在这种情况下,就需要采用多指标综合评价方法来对决策对象进行全面地评估。
本篇文章将从多指标综合评价方法的选择和权重系数的确定两个方面进行阐述。
一、多指标综合评价方法的选择1.加权线性组合法(WLC):加权线性组合法是常用的一种多指标综合评价方法。
它通过给各个指标赋予一定的权重,并且将各指标得分与其权重进行加权求和,从而得到综合评价值。
这种方法简单易行,但存在权重主观性强的缺点。
2.层次分析法(AHP):层次分析法是一种基于专家判断的多指标综合评价方法。
它通过构建判断矩阵,由专家对各指标两两之间的重要性进行判断,并利用特征向量法求解最大特征值,从而确定权重。
该方法的优点是能够从专家的角度综合考虑各指标之间的关系,但需要依赖专家判断,且计算过程相对复杂。
3.熵权法:熵权法是一种基于信息理论的多指标综合评价方法。
该方法通过计算各指标的熵值,衡量指标的随机性和不确定性,进而确定权重。
该方法基于严格的数学理论,具有较好的客观性,但对于指标的分布和取值范围要求较高。
权重系数的选择是多指标综合评价的关键环节,直接影响到最终评价结果的准确性和可靠性。
常用的权重系数确定方法有主观赋值法、客观赋值法和组合赋值法。
1.主观赋值法:主观赋值法是依靠决策者主观判断来确定权重系数的方法。
这种方法简单易行,适用于较为简单的问题,但容易受到决策者主观偏见的影响。
2.客观赋值法:客观赋值法是通过其中一种统计方法或专家评价来确定权重系数的方法。
比如,可以通过问卷调查、专家访谈等方式收集数据,运用统计方法进行分析,最终确定权重系数。
这种方法相对客观一些,但需要投入较大的时间和精力。
3.组合赋值法:组合赋值法是综合考虑主观和客观因素来确定权重系数的方法。
可以采用主客观权重相结合的方式,将决策者的主观判断与实际数据结合起来进行权重系数的确定,以提高评价的准确性和可靠性。
确定权重的7种方法

确定权重的7种方法表7-1 地质环境质量评价定权方法一览表一、专家打分法专家打分法即是由少数专家直接根据经验并考虑反映某评价观点后定出权重,具体做法和基本步骤如下:第一步选择评价定权值组的成员,并对他们详细说明权重的概念和顺序以及记权的方法。
第二步列表。
列出对应于每个评价因子的权值范围,可用评分法表示。
例如,若有五个值,那么就有五列。
行列对应于权重值,按重要性排列。
第三步发给每个参予评价者一份上述表格,按下述步骤四~九反复核对、填写,直至没有成员进行变动为止。
第四步要求每个成员对每列的每种权值填上记号,得到每种因子的权值分数。
第五步要求所有的成员对作了记号的列逐项比较,看看所评的分数是否能代表他们的意见,如果发现有不妥之处,应重新划记号评分,直至满意为止。
第六步要求每个成员把每个评价因子(或变量)的重要性的评分值相加,得出总数。
第七步每个成员用第六步求得的总数去除分数,即得到每个评价因子的权重。
第八步把每个成员的表格集中起来,求得各种评价因子的平均权重,即为“组平均权重”。
第九步列出每种的平均数,并要求评价者把每组的平均数与自己在第七步得到的权值进行比较。
第十步如有人还想改变评分,就须回到第四步重复整个评分过程。
如果没有异议,则到此为止,各评价因子(或变量)的权值就这样决定了。
二、调查统计法具体作法有下面四种。
1.重要性打分法:重要性打分法是指要求所有被征询者根据自己对各评价因子的重要性的认识分别打分,其步骤如下:a.对被征询者讲清统一的要求,给定打分范围,通常1~5分或1~100分都可。
b.请被征询者按要求打分。
c.搜集所有调查表格并进行统计,给出综合后的权重。
2.列表划勾法:该方法如图7-2所示。
事先给出权值,制成表格。
由被调查者在认为合适的对应空格中打勾。
对应每一评价因子,打勾1~2个,打2个勾表示程度范围。
这样就完成一个样本的调查结果。
在样本调查的基础上,除采用一般的求个样本的均值作为综合结果外,还可采用如下方法:图7-2 列表划勾法示意图备择程因子序号度W 1 2 3 …m-1 m0.2 √√√0.4 √√√0.6 √√0.8 √1.0a.频数截取法频数截取法的主要步骤如下:第一步:列中值频率分布表,见表7-2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合评价中确定权重向量的几种方法比较
一、本文概述
权重向量在综合评价中占据重要地位,其合理设定直接关系到评价结果的准确性和有效性。
本文旨在探讨和比较确定权重向量的几种常用方法,包括主观赋权法、客观赋权法以及主客观集成赋权法等。
我们将从各种方法的理论基础、操作流程、优缺点以及适用范围等方面进行深入分析,以期为读者提供全面、系统的权重向量确定方法指南。
我们将概述主观赋权法,包括德尔菲法、层次分析法等,这些方法主要依赖于专家的主观判断和经验积累,因此在一定程度上可能受到主观因素的影响。
我们将介绍客观赋权法,如熵值法、主成分分析法等,这些方法主要基于数据的客观特征进行计算,但可能忽视了某些重要的主观信息。
我们将探讨主客观集成赋权法,如基于博弈论的组合赋权法、基于最优距离的组合赋权法等,这些方法试图将主观和客观信息相结合,以更全面地反映评价对象的实际情况。
通过对比分析,我们期望能够帮助读者更好地理解和应用各种权重向量确定方法,以提高综合评价的准确性和科学性。
我们也希望本文能够为相关领域的研究者和实践者提供有益的参考和启示。
二、权重向量确定方法概述
权重向量的确定是综合评价中的一个重要环节,其选择直接关系到评价结果的公正性和准确性。
在众多的方法中,主要有以下几种常用的权重向量确定方法。
主观赋权法:这类方法主要依赖于专家的经验和主观判断。
例如,德尔菲法(Delphi法)通过邀请多位专家对评价指标进行打分,经过几轮反馈和修正,最后达成一致的意见。
层次分析法(AHP)则通过构建层次结构模型,将复杂问题分解为若干层次和因素,通过两两比较确定各因素的相对重要性。
主观赋权法简单易行,但受主观因素影响较大,可能导致评价结果的偏差。
客观赋权法:这类方法主要基于客观数据和信息来确定权重。
例如,熵值法通过计算各指标的熵值,反映其离散程度,从而确定权重。
主成分分析法(PCA)则通过降维技术,提取出影响评价结果的主要成分,并以其方差贡献率作为权重。
客观赋权法能够减少主观因素的影响,但对数据的要求较高,且可能忽略某些重要但数据不易获取的指标。
组合赋权法:为了克服主观赋权法和客观赋权法的不足,研究者提出
了组合赋权法。
这类方法将主观赋权法和客观赋权法相结合,通过一定的数学模型将两种方法的权重进行融合,以得到更加合理和准确的权重向量。
例如,基于博弈论的组合赋权法通过构建博弈模型,求解各赋权方法的最优权重组合。
组合赋权法能够在一定程度上兼顾主观和客观因素,提高评价的准确性和可靠性。
以上是权重向量确定的几种主要方法概述。
在实际应用中,应根据具体问题和数据特点选择合适的方法。
也应注意各种方法的优缺点和适用范围,避免盲目使用导致评价结果失真。
三、各种方法比较
在综合评价中,确定权重向量的方法多种多样,每种方法都有其独特的优点和适用场景。
以下是对几种常见方法的比较。
主观赋权法主要依赖于专家的经验和主观判断,如德尔菲法、层次分析法等。
这种方法在评价指标难以量化或数据获取困难时非常有用。
然而,主观赋权法的缺点是易受专家主观影响,可能导致权重分配的不合理。
客观赋权法主要基于实际数据,如熵值法、主成分分析法等。
这种方法能够减少主观因素的影响,更客观地反映指标的权重。
但是,当数
据质量不高或样本量不足时,客观赋权法的结果可能不够稳定。
组合赋权法试图将主观赋权法和客观赋权法相结合,如线性加权组合法等。
这种方法旨在兼顾主观和客观因素,使权重分配更加合理。
然而,如何合理地组合主观和客观权重,以及如何处理两者之间的冲突,是组合赋权法需要解决的关键问题。
各种方法都有其优缺点和适用场景。
在实际应用中,应根据具体问题的特点选择合适的方法。
也需要注意方法的局限性和适用条件,以避免出现不合理的权重分配。
四、结论与建议
权重向量的确定是综合评价中的重要环节,其准确性和合理性直接影响到评价结果的可信度和有效性。
本文综述了几种常用的确定权重向量的方法,包括主观赋权法、客观赋权法以及主客观综合集成赋权法。
主观赋权法如德尔菲法、层次分析法等,主要依赖于专家的主观经验和判断,具有较强的灵活性和适应性,但可能存在主观性强、易受人为因素影响等问题。
客观赋权法则基于实际数据和信息,如熵权法、主成分分析法等,具有较强的客观性和科学性,但对数据的依赖性强,且可能忽略某些非量化因素。
主客观综合集成赋权法则试图将主观和
客观因素相结合,如基于博弈论的组合赋权法等,以更全面地反映实际情况,但也需要处理主客观因素之间的平衡和协调问题。
在实际应用中,应根据具体问题和数据特点选择合适的方法。
对于数据丰富、客观信息明确的问题,客观赋权法可能更为合适;而对于涉及较多主观因素、难以量化的问题,主观赋权法可能更具优势。
同时,也可以考虑使用主客观综合集成赋权法,以充分利用主客观信息,提高评价的准确性和科学性。
未来研究可以进一步探索新的赋权方法和技术,如基于机器学习、深度学习等技术的赋权方法,以更好地处理复杂、非线性的问题。
也可以关注赋权方法在实际应用中的优化和改进,如如何提高赋权结果的稳定性和鲁棒性、如何处理异常值和缺失数据等问题。
确定权重向量是综合评价中的关键步骤,需要综合考虑主观和客观因素,选择合适的方法和技术。
未来研究可以进一步探索新的赋权方法和技术,以提高评价的准确性和科学性。