第10章 谐振式传感器
传感器(第6版)第10章 谐振式传感器

2l l
2l l
T
第一节 原理与类型
因为ΔT/T< < 1,所以可将上式中括弧里的项展开为幂级数,则上式为
f
f0[1
1 2
T T
1 ( T )2 1 ( T )3 ] 8 T 16 T
f0[11 2T T1 ( T )2] 8T
单根振弦测压力时的非线性误差δ为
f0
1 ( T )2 8T
第二节 应用举例
双管式的特点: ①两根管子的振动频率相同但方向相反,因此它们对固定基座的作用相 互抵消,不会引起基座的运动,从而提高了振动管振动频率的稳定性。 ②被测介质流过传感器的两根平行的振动管,管子的端部固定在一起, 形成一个振动单元。 ③振动管与外部管道采用软性联结(如波纹管),以防止外部管道的应力 和热膨胀对管子振动频率的影响。 ④激振线圈和拾振线圈放在两根管子中间,管子以横向模式振动,通常 是一次振型,如图中虚线所示。
图10-3 差动式振弦传感器原理
第一节 原理与类型
(二)振膜式谐振传感器
1
f f0[1 c1(Wp / h)]2
Wp
/ h c(Wp
/ h)3
3(1 2 )
16
r4 Eh4
p
f
3 f0c1(1 2 )r4
32Eh4
p
1 ( f )
2 f0
第一节 原理与类型
(三)振筒式谐振传感器
②标 准 计 量 仪 器 对 其 他 压 力 传 感器标定。
1、微型应变片 2、平膜片(振子)3、电磁线圈 4、环状壳体5、压力室6、参考压力腔 7、基座8、导管
图10-8 振膜式压力传感器原理结构
第二节 应用举例
(三)振筒式传感器 优点:迟滞误差和漂移误差小,稳定性好,分辨率高以及轻便、成本低。 测量对象:气体的压力和密度。
谐振式压力传感器的原理

谐振式压力传感器的原理
谐振式压力传感器利用了振动系统的谐振特性来测量压力大小。
其基本原理如下:
1.传感器内部安装了一个谐振器,包括质量块、支撑座和压电陶
瓷片等元件。
2.当压力作用在传感器的敏感部位时,压力作用力将会改变质量块、支撑座的位置和压电陶瓷片的强度,从而改变谐振器的固有频率。
3.传感器内置电子元件会测量谐振器的固有频率,并将其转换为
电压信号输出。
4.通过计算谐振频率的变化量,可以确定压力的大小。
总之,谐振式压力传感器的原理是利用一定形式的振动谐振来实
现压力测量。
传感器与检测技术习题与参考答案

传感器与检测技术习题与参考答案1、在典型噪声干扰的抑制方法中,采用RC吸收电路的目的是()A、克服串扰B、抑制共模噪声C、抑制差模噪声D、消除电火花干扰答案:D2、传感器输出量的变化量△Y与引起此变化的输入量的变化量△X之比,称为( )A、灵敏度B、阈值C、分辨力D、满量程输出答案:A3、压电陀螺的作用是检测运动物体的()A、角速度B、线速度C、线位移D、角位移答案:A4、属于传感器静态特性指标的是()A、稳定时间B、阻尼比C、时间常数D、重复性答案:D5、压电式传感器属于( )A、电流型传感器B、结构型传感器C、物性型传感器D、电压型传感器答案:C6、气敏传感器检测气体的( )A、温度和成份B、温度和浓度D、成份和浓度答案:D7、下列线位移传感器中,测量范围大的类型是()A、变极距型电容式B、差动变压器式C、自感式D、电涡流式答案:B8、为了进行图像识别,应当先消除图像中的噪声和不必要的像素,这一过程称为()A、前处理B、编码C、压缩D、后处理答案:A9、下列传感器,不适合于静态位移测量的是( )A、电感式位移传感器B、压电式位移传感器C、涡流式位移传感器D、压阻式位移传感器答案:B10、圆筒电容式液位高度传感器属于()A、变面积型B、变介质型C、变间隙型D、变极距型答案:B11、属于传感器静态特性指标的是( )A、阻尼比B、稳定性C、固有频率D、时间常数答案:B12、热敏电阻式湿敏元件能够直接检测()B、温度差C、温度D、相对湿度答案:A13、心电图信号为( )A、离散信号B、共模信号C、模拟信号D、数字信号答案:C14、霍尔式转速传感器测量转速时,当被测物上的标记数2:4,传感器输出周期信号的频率f=200Hz时,则轴的转速为()A、1500r/minB、2000r/minC、2500r/minD、3000r/min答案:D15、在标定传感器时,正行程的最大偏差与反行程的最大偏差可用于确定传感器的A、重复性B、线性度C、分辨率D、迟滞特性答案:A16、用电涡流式速度传感器测量轴的转速,当轴的转速为50r/min时,输出感应电动势的频率为50 Hz,则测量齿轮的齿数为()。
谐振式传感器

第五章 谐振式传感器
一 概述 二 谐振式传感器的理论基础 三 振动筒压力传感器 四 振动膜式传感器 五 振动弦式传感器 六 振动梁式传感器 七 硅微结构谐振式传感器
二、谐振式传感器的理论基础
1 基本结构 2 闭环自激 3 敏感机理 4 谐振子的Q值 5 设计要点 6 特征与优势
1 基本结构 2 闭环自激 3 敏感机理 4 谐振子的Q值 5 设计要点 6 特征与优势
综上所述,相对其它类型的传感器,谐振式传感器的本质特 征与独特优势是: ① 输出信号是周期的,被测量能够通过检测周期信号而解 算出来。这一特征决定了谐振式传感器便于与计算机 连接,便于远距离传输; ② 传感器系统是一个闭环结构,处于谐振状态。这一特征 决定了传感器系统的输出自动跟踪输入;
将式(5-2)代入式(5-器使用的振动系统总是有振荡的,故式(5-3)的解应写 为
1, 2 n i d (5-4)
n k m c 2 km
在谐振式传感器中,谐振子的品质因素Q值是一个极其重要的指 标,针对能量的定义式为:
每周平均储存的能量 Q 每周由阻尼损耗的能量
(5-16)
1 0 ,利用图5-6所示的谐振子 对于弱阻尼系统, 的幅频特性可给出: 1 Q Am (5-17) 2 n 1 Q (5-18) 2 1 p 2 p1
二、谐振式传感器的理论基础
1 基本结构 2 闭环自激 3 敏感机理 4 谐振子的Q值 5 设计要点 6 特征与优势
实际应用的谐振敏感元件多为弹性敏感元件。在讨论其振动 特性时,可以用一个等效的单自由度有阻尼的系统来描述(如下 图5-2)。图中k,m,c分别为等效刚度、等效质量和等效阻 尼。其自由振动的运动方程为:
谐振式传感器的类型及优缺点

谐振式传感器的类型及优缺点谐振式传感器的种类许多,大体分为两类:一类是基于机械谐振结构谐振式传感器;另一类是MOS环振式谐振传感器。
其中机械式谐振式传感器应用最广。
机械式谐振传感器的振子可以有不同的结构形式,图所示为常见的 a 张丝状、b 膜片状、c 筒状、d 梁状等,相应的有振动弦式、振动膜式、振动筒式、振动梁式等谐振传感器之分。
通常振子的材料采纳诸如铁镍恒弹合金等具有恒弹性模量的所谓恒模材料。
但这种材料较易受外界磁场和四周环境温度的影响。
石英晶体在一般应力下具有很好的重复性和最小的迟滞,其谐振子的品质因素Q值极高,并且不受环境温度影响,性能长期稳定,因此采纳石英晶体作为振子可制成性能更加优良的压电式谐振传感器。
其振子通常采纳振膜或振梁外形,但按振子上下表面外形它又分为e 扁平形、f 平凸形和g 双凸形三种,如图2所示。
表1给出了各种类型机械式谐振传感器的优缺点及应用领域。
图振子的结构类型表1 各种类型机械式谐振传感器的优缺点及应用领域类型优点缺点应用领域振弦式传感器结构简洁坚固、测量范围大、灵敏度高、测量电路简洁对传感器的材料和加工工艺要求很高,精度较低广泛用于大压力的测量,也可用来测量位移、扭矩、力和加速度等振膜式传感器具有很好的稳定性、重复性和较高的辨别率(一般可达0.3~0.5kPa/Hz)。
精度可达0.01%,重复性可达十万分之几的数量级,长期稳定性可达每年0.01~0.02%对传感器的材料和加工工艺要求很高,精度较低航空航天技术中大气参数(静压及动压) 的测量;它还常用来做标准计量仪器标定其它压力传感器或压力仪表。
此外,它也可以测液体密度、液位等参数振筒式传感器迟滞误差和漂移误差小,稳定性好,辨别率高以及轻巧、成本低对传感器的材料和加工工艺要求很高,精度较低主要用于测量气体的压力和密度等振梁式传感器稳定性好抗干扰强对传感器的材料和加工工艺要求很高,精度较低测静态力和准静态力压电式谐振传感器体积小,重量轻;稳定性好;Q值可达40000;动态响应好;抗干扰力量强( 不受外界磁场干扰,灵敏度稳漂为4% -5%/℃)对传感器的材料和加工工艺要求很高压力压差。
传感器技术及应用 教学大纲

传感器技术及应用——教学大纲一、课程基本信息课程编号:17z8315课程名称:传感器技术及应用Sensor Technology and Application学分/学时:3/42先修课程:主要有:物理、材料力学(工程力学)、电工基础、电子技术基础、自动控制元件、自动控制理论。
二、课程教学目的本课程是仪器科学与光电工程学院测控技术与仪器专业本科生的专业课。
其目标是:提供了解、使用、分析和初步设计常用传感器的敏感元件及系统的理论与实践基础,为后续其他专业课打下较坚实的基础。
三、课程教学任务通过本课程的学习,让学生了解传感器技术的发展现状、特点,在信息技术中的重要地位、作用;掌握信息获取范畴的广义理解;掌握常用传感器的基本工作原理,实现方式与结构;了解传感器技术在国防工业和一般工业领域中的典型应用;同时使学生能够在自动化系统、智能化系统中正确应用常用的传感器技术。
四、教学内容及基本要求本课程理论与实践紧密结合。
主要讲授传感器的性能评估,目前在工业领域中常用的几种典型的、有代表性的传感器的敏感元件的物理效应、变换原理、工作特性、主要结构、信号转换电路、误差及其补偿、合理应用等。
同时本课程也重视对新型传感器技术及应用的介绍。
传感器结构设计、工艺及所用材料只作一般介绍。
本课程主要内容可以分为三部分。
第一部分是关于传感器技术的基础理论与知识,共15个学时;第二部分是关于典型传感器的讨论,这是课程的重点,共21个学时;第三部分是关于近年来出现的新型传感器、应用示例的讨论,共6个学时。
教学的基本知识模块顺序及对应的单元教学任务。
五、教学安排及方式第1章绪论(6学时,基本掌握,讲授为主)1.1 传感器的作用与功能1.2 传感器的分类1.3 传感器技术的特点1.4 传感器技术的发展1.5 与传感器技术相关的一些基本概念1.6 本教材的特点及主要内容第2章传感器的特性(5学时,掌握,讲授为主,讨论为辅)2.1 传感器静态特性的一般描述2.2 传感器的静态标定2.3 传感器的主要静态性能指标及其计算第3章基本弹性敏感元件的力学特性(4学时,掌握,讲授为主)3.1 概述3.2 弹性敏感元件的基本特性3.3 基本弹性敏感元件的力学特性3.4 弹性敏感元件的材料第4章电位器式传感器(1学时,掌握,讨论为主,讲授为辅)4.1 概述4.2 线绕式电位器的特性4.3 非线性电位器4.4 电位器的负载特性及负载误差4.5 非线绕式电位器4.6 典型的电位器式传感器第5章应变式传感器(5学时,掌握,讲授为主,讨论为辅)5.1 应变式变换原理5.2 金属应变片5.3 应变片的动态响应特性5.4 应变片的温度误差及其补偿5.5 电桥原理5.6 典型的应变式传感器第6章压阻式传感器(2.5学时,掌握,讲授为主)6.1 压阻式变换原理6.2 典型的压阻式传感器第7章热电式传感器(2.5学时,掌握,讲授为主,讨论为辅) 7.1 概述7.2 热电阻测温传感器7.3 热电偶测温7.4 半导体P-N结测温传感器7.5 其他测温系统第8章电容式传感器(1学时,掌握,讲授为主,讨论为辅)8.1 基本电容式敏感元件8.2 电容式敏感元件的主要特性8.3 电容式变换元件的信号转换电路8.4 典型的电容式传感器8.5 电容式传感器的结构及抗干扰问题第9章变磁路式传感器(2学时,掌握,讨论为主,讲授为辅)9.1 电感式变换原理9.2 差动变压器式变换元件9.3 电涡流式变换原理9.4 霍尔效应及元件9.5 典型的变磁路式传感器第10章压电式传感器(1学时,基本掌握,讲授为主)10.1 石英晶体10.2 压电陶瓷10.3 聚偏二氟乙烯10.4 压电换能元件的等效电路10.5 压电换能元件的信号转换电路10.6 压电式传感器的抗干扰问题10.7 典型的压电式传感器第11章谐振式传感器(6学时,基本掌握,讲授为主)11.1 谐振状态及其评估11.2 闭环自激系统的实现11.3 振动筒压力传感器11.4 谐振膜式压力传感器11.5 石英谐振梁式压力传感器11.6 谐振式科里奥利直接质量流量传感器第12章微机械与智能化传感器技术(5时,基本掌握,讲授为主,讨论为辅)12.1 概述12.2 几种典型的微硅机械传感器12.3 几种典型的智能化传感器12.4 若干新型传感器应用实例分析课程总结(1学时,讲授为主,讨论为辅)六、教学的基本思路“传感器技术及应用”教学以“一条主线、二个基础、三个重点、多个独立模块”的基本原则来进行。
谐振式硅微传感器闭环系统动态特性影响因素

Dy m i na c Cha a t rs i nfue c c or fRe o an l o i r sr c ur e or Cl s d—o p S s e r c e itc I l n e Fa t s o s n tSi c n M c o-t u t e S ns o e l o y t m i XI NG e we W i i, FENG a ya Xi o n, FAN Sha ch ng un, TANG Zhan ya g ng
( col f nt m n Si c Sho o su et c ne& O t— et nc,B in nvrt o A rnui n s oat s B in 0 1 1 C ia I r e p e c oi o l r s eigU iesy f eoat sadA t nui , e ig10 9 , hn ) j i c r c j
i rv n h y a c c a a trs c o h ls d lo y t m frs n n r s u e s n o . mp o i g t e d n mi h r c e t f e co e — p s se o e o a tp e s r e s r i i t o Ke r s e o ae e s r ls d lo y t m;d n mi h rc e si y wo d :r s n t ;s n o ;co e — p s s o e y a c c aatr t i c
Ab t a t y a c c aa trs c i o e o e mo t mp ra t ef r n e i d x so n o . h y a c c aa trs c i u n ef co so s r c :D n mi h r ce it s n f h s i o t n roma c n e e fs s r T e d n mi h r ce t n e c a tr f i t p e i i f l p e s r e s r co e — o y tm a e n t e ma nt d rq e c h r ce si r n lz d a d rl v n x e me th s b e o d ce . r su e s n o ls d l p s s o e b s d o h g i e fe u n y c a a tr t a e a ay e n ee a te p r n a e n c n u td u i c i T e e a e tr e man f co sa c r i gt ep n i l f h l s d lo y t m.Th r t st er s o s i f h e o ao ' n t r l r q e c h r r h e i a tr c od n t r cp e o eco e —o p s s oh i t e ef s h e p n et i i me o er s n tr a u a e u n y t s f t r s u e T e s c n st e s a y vb ain et b i ig t f h e o ao .T els n h i n l n aa p o e sn i .E p r n o p e s r . h e o d i h t d i rt sa l h n i o e rs n tr h a t e i t e sg a dd t r c s ig t e o s me t o s a me x e i me —
第9章谐振式传感器_2精选全文

9.1.2 谐振式传感器的基本原理
然而阻尼总是存在的,除电磁阻尼外还有空 气阻尼等。振弦在运动过程中切割磁力线产生感 应电势,该电势通过外接闭合回路形成电流,使 振弦受到大小正比于运动速度、方向和运动速度 相反的磁场力的作用,此即电磁阻尼。
设想将上述感应电势测出来,然后通过正反 馈在振弦两端加幅度相同、相位也相同的外接电 势,则不会产生电磁阻尼。若外接电势略大于上 述感应电势,还可消除其他阻尼的影响。
9.1 谐振式传感器的类型与原理
√ 9.1.1 谐振式传感器的类型 9.1.2 谐振式传感器的基本原理
9.1.2 谐振式传感器的基本原理
设振子等效刚度为ke,等效振动质量为me,则 振子谐振频率f可近似表示为
f 1 ke
(9.1)
2π me
若振子受到力的作用或其中的介质质量发生
变化,导致振子的等效刚度或等效振动质量发生
(a)扁平形
(b)平凸形
h
(c)双凸形
9.1.1 谐振式传感器的类型
根据能陷理论,选择谐振子外形的主要依据
是径向尺寸f和晶片厚度h之比值的大小。一般, 在f/h≤15时,采用双凸形。当15<f/h≤45时, 采用平凸形f/h>45时,采用扁平形。
9.1.1 谐振式传感器的类型
石英晶体振荡器的基本原理 在石英晶体的电极上施加交变激励电压时,
变化,其谐振频率也会发生变化。此即机械式谐
振传感器的基本工作原理。
9.1.2 谐振式传感器的基本原理
1.谐振频率 如图所示,一根两端固定,长
度为l,线密度(单位长度质量)为r
的弦,受到张力T作用。其谐振频 率(一次振型)为
x Tl
f 1 1 T 2π 2l 2l r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(10-5)
9
为得到良好的线性,常采用差动式结构,如图10-3所示。上下两弦对称, 初始张力相等,当被测量作用在膜片上时,两个弦张力变化大小相等、方 向相反。通过差频电路测得两弦的频率差,则式(10-3)中的偶次幂项相抵 消,使非线性误差大为减小,同时提高了灵敏度、减小了温度的影响。
图10-3 差动式振弦传感器原理
10
二、振膜式谐振传感器特性
对于图10-2 (b)所示的振膜式传感器,当膜片受压力p作用而产生变形时,其 等效刚度发生变化,膜片的谐振频率f变化。
膜片受力而产生静挠度,其谐振频率f与膜片的中心静挠度Wp的关系可表示为
(10-6)
而膜片的中心静挠度Wp与均布压力p的关系可表示为
式中 l----振弦的线密度(kg/m); l----振弦的有效振动长度。 当弦的张力增加T时,由式(10-2)可得弦的振动频率f为
8
因为T/T< < 1,可将上式中括弧里的项展开为幂级数,
则上式为【其中 f 0为振弦的谐振频率,见(10-2)式】
(10-3) 单根振弦测压力时的非线性误差为
(10-4)
图10-5 压力-频率关系曲线
15
由式(10-12)得到
(10-13)
因为 f/f0< < 1,相比之下( f/f0)2可忽略,所以该传感器的输入输出特性可 近似成如下线性关系
张丝状:图10-2 (a)、膜片状:图10-2 (b) 、筒状:图10-2 (c) 、 梁状:图10-2( d )。因此相应的谐振传感器有:振弦式、振膜 式、振筒式、振梁式 之分。
图10-2 机械振子的基本类型
6
通常振子的材料采用具有恒弹性模量的所谓恒模材料。但这种材料较易 受外界磁场和周围环境温度的影响。而石英晶体在一般应力下具有很好的 重复性和最小的迟滞,并且不受环境温度影响,性能稳定。因此利用石英 晶体具有稳定的固有振动频率,当强迫振动频率等于其固有振动频率时, 便产生谐振这一特性,采用石英晶体作为振子可制成性能更加优良的压电 式谐振传感器。其振子通常采用振膜或振梁形状,但按振子上下表面形状
14
三、振筒式谐振传感器特性 当系数a和b满足条件a=2/(Bf0)和b=1/(Bf02)时,由上式可得 (10-12) 是压差灵敏度系数,与振筒的材料性质及尺寸有关; r、h、 、E ──振筒的内半径、厚度、泊松比、弹性模量。 可见,振筒式压力传感器的输入压差与输出频率之间近似成抛物线关
系,曲线如图10-5所示。
(10-10) (10-9)
(10-10)
13
三、振筒式谐振传感器特性 对于图10-2 c所示Biblioteka 振筒式传感器,当筒受压力差p作用而
引起筒上的应力发生变化时,其等效刚度发生变化,振筒的谐 振频率f变化。根据材料力学可知,振动频率与压力的关系一般 可以表示成下式
(10-11)
式中 a、b、c 是和振子材料物理性质和结构参数有关的常数, 可由实验求得。 一般系数c很小,故(10-11)式中的 项可忽略。
它又分为扁平形(图e) 、平凸形(图f )和双凸形(图 g )三种。其
中,双凸形振子品质因数Q值最高(可达106 --107),因而较多被采用。
7
第二节 特性
一、振弦式谐振传感器特性 对于图10-2 a所示的振弦式传感器,当振弦受张力T作用时,
其等效刚度发生变化,振弦的谐振频率f 为 (10-2)
第10章 谐振式传感器
10.1 原理与类型 10.2 特性 10.3 转换电路 10.4 应用举例 本章复习题
概述
谐振式传感器是直接将被测量变化转换为物体谐振频率变化的装置, 故也称为频率式传感器。谐振式传感器的特点: 1、优点:因输出是频率信号而具有高精度(目前可做到精度超过万分之一) 、高分辨率、高抗干扰能力、适于长距离传输、能直接与数字设备相连; 因无活动部件而具有高稳定性和高可靠性。 2、缺点:对材料质量要求较高,加工工艺复杂,所以生产周期长,成本 较高;其输出频率与被测量往往是非线性关系,需进行线性化处理才能保 证良好的精度。
(10-7)
式中 c1、c──为与膜片尺寸、材料有关的常数; r、h、m ──膜片的半径、厚度、泊松比。
11
由式(10-6)和(10-7)可以得出振膜式压力传感器谐振频率f与 压力p的关系如图10-4所示。可见,其输入输出特性是近似 抛物线的非线性关系。
图10-4 振膜压力传感器的输入输出特性
12
4
要使振子产生振动,就要外加激振力(激振元件), 要测量振子的振动频率则需要拾振元件,它们之间的关系 如图10-1所示。由激振元件激发振子振动,由拾振元件检 测振子的振动频率,另外将此信号经放大器放大后输送到 激振元件中形成闭环系统,以维持振子持续振动。
谐振式传感器的组成
5
二、振子的基本类型 振子可以有不同的结构形式,图10-2所示。常见的有:
令 f=f- f 0 ,将式(10-6)两边平方之后整理得
通常 f/ f 0 < < 1,所以上式中的偶次项可以忽略。实际中(Wp/h)< < 1,而 c的值又不大,所以公式(10-7)中的c (Wp/h)3次项可以忽略,然后将Wp/h 代入上式,可得忽略高次项后的线性输入输出关系如下:
非线性误差为 灵敏度为
3
一、基本原理 振子即机械振动系统的谐振频率 f 可近似用下式表示 (10-1)
式中:k ──振子材料的刚度(N.m); me──振子的等效振动质量(kg)。
可见,振子的谐振频率f与其刚度k和等效振动质量me 有关,设其初始谐 振频率为f0 ,如果振子受力或其中的介质质量等发生变化,则导致振子 的等效刚度或等效振动质量发生变化,从而使其谐振频率发生变化。这 就是机械式谐振传感器的基本工作原理。但应注意,变化之间的关系一 般是非线性的。
谐振式传感器的种类很多,按照它们谐振的原理可分为:电的、机械 的、原子的。本章只讨论机械式谐振传感器。
2
第一节 原理与类型
机械式谐振传感器将被测量转换为物体的机械 谐振频率,其中振动部分被称为振子。
这种传感器可以测量力、压力、位移、加速度 扭矩、密度、液位等。
机械式谐振传感器主要用于航空、航天、计量、 气象、地质、石油等行业中。