电子控制悬架系统的组成与工作

合集下载

电控悬架

电控悬架

2、进行自诊断的方法






在进行电控悬架故障自诊断测试时 ,根据汽车制造厂家 及车型的不同,可采用以下不同的方法: (1)专用诊断开关法 有些汽车装有按钮式诊断开关,按下或旋转专用开关, 即可进入故障自诊断测试状态,进行故障代码的读取。 (2)加速踏板法 有的汽车在规定的时间内,将加速踏板连续踩下5次, 即可使电控悬架进入故障自诊断状态。 (3)点火开关法 有的汽车在将点火开关进行“ON-OFF-ON-OFF-ON” 一次,即可使电控悬架进入故障自诊断状态。如美国克 莱斯勒公司生产的电控悬架就采用这种方法。
4、 悬架控制执行器

悬架控制执行器的功 用是调节减振器的阻 尼力和弹簧的刚度。 采用空气弹簧的悬架, 空气弹簧与减振器为 并联形式,如图所示。
空气弹簧和减震器

悬架控制执行器安装在空气弹簧与减振器总 成的上部、由驱动电机、传动齿轮、小齿轮 和 两根输出轴组成,其外形如图所示。
电控悬架执行器


凌志LS400乘用车悬架控制开关由LRC开关和高 度控制开关组成。两开关都装在中央控制板的、靠 近驾驶座换档杆指示灯处。 LRC开关用于选择减振 器和空气弹簧的工作模式(NORMAL AUTO)或 (SPORT AUTO);高度控制开关用于选择所车 身高度(NORMAL或HIGH)。 LRC开关还可以 选择悬架的刚度和阻尼力。
二 、电控空气悬架的组成及工作原理 Electroni-controlled Air Suspension (ECAS)

功用: 可以根据路面和车辆的运动情况,主动的调节悬架系 统的刚度、减震器阻尼系数、车身高度和姿态。 组成: 电控空气悬架主要有电控系统和空气悬架系统和执行 器三部分组成。 1电控系统 控制单元ECU、高度控制传感器、转向传感器、节气 门位置传感器、车速传感器、悬架控制开关等 2空气悬架系统 空气压缩机、空气弹簧、阻力力可调减振器等 3执行器 悬架控制执行器、高度控制阀等。

电子控制悬架系统PPT课件

电子控制悬架系统PPT课件

2.按照控制方式分
按照控制方式分不同,汽车悬架系统通常分为传统被动式悬 架(Passive Suspension)、半主动式悬架(semi-active suspension)、主动式悬架(Active Suspension)三类。
其中半主动式又分为有级半主动式(阻尼力有级可调)
和无级半主动式(阻尼力连续可调)两种;主动式悬架根据
图5-13 空气弹簧的刚度为“软”
.
21
当空气阀转到如图5-14所示的位置时,主、副气室的气 体通道被关闭,主、副气室之间的气体不能相互流动,此时 的空气弹簧只有主气室的气体参加工作,空气弹簧的刚度为 “硬”。
图5-14 空气弹簧的刚度为“硬”
主气室是可变容积的,在它的下部有一个可伸展的隔膜,
压缩空气进入主气室可升高悬架高度,反之使悬架下降。车
雪铁龙C5液压式可调悬架结构示意图 1-纵向横梁;2-球体;
. 3-上三角叉臂;4-支杆;5-长纵臂 8
通过增减液压油的方式实现车身高度的升或降,也就是 根据车速和路况自动调整离地间隙,从而提高汽车的平顺性 和操纵稳定性。
雪铁龙C5液压式可调悬架在车上的布置
采用液压式可调悬架的代表车型有雪铁龙C5、雪铁龙
. 传统的汽车悬架(麦弗逊式前悬架) 5
5.2.1 电控悬架系统的组成和控制形式
电子控制汽车悬架系统主要由(车高、转向角、加速度、 路况预测)传感器、ECU、悬架控制执行器等组成。
1.空气式可调悬架
空气式可调悬架是指利用空气压缩机形成压缩空气,并 通过压缩空气来调节汽车底盘的离地间隙一种悬架。
一般装备空气式可调悬架的车型在前轮和后轮的附近都 设有离地距离传感器,按离地距离传感器的输出信号,行车 电脑判断出车身高度的变化,再控制空气压缩机和排气阀门, 使弹簧自动压缩或伸长,从而起到减振的效果。

电控悬架架构及原理

电控悬架架构及原理
功能 使弹簧刚度和减振力变成“坚硬”状态,能抑制侧倾而使汽车的姿势变化减至最小,以改善操纵性
防点头控制
使弹簧刚度和减振力变成“坚硬”状态,能抑制汽车制动时点头而使汽车的姿势变化减至最小
防下坐控制
使弹簧刚度和减振力变成“坚硬”状态,能抑制汽车加速时后部下坐而使汽车的姿势变化减至最小
高车速控制
不平整路面 控制
点火开关OFF 当点火开关关闭后因乘客和行李质量变化而使汽车高度变为高于目标高度时,能使汽车高度降低至目
控制
标高度,从而改善汽车驻车时的姿势
15
2.雷克萨斯LS400轿车电控空气悬架系统操作 操作选择开关:位置;作用 ➢ 平顺性开关 ➢ 高度控制开关 ➢ 高度控制ON/OFF开关
16
3.雷克萨斯LS400轿车电控空气悬架系统组成及工作原理
跳振控制
自动高度控 制
使弹簧刚度和减振力视需要变成“中等”或“坚硬”状态,能抑制汽车在不平坦路面上行驶时的上下 跳振
不管乘客和行李质量情况如何,使汽车高度保持某一恒定的高度位置,操作高度控制开关使汽车的目 标高度变为“正常”或“高”的状态
高车速控制
当高度控制开关在“HIGH”位置时,汽车高度会降低至”正常”状态,从而改善高速行驶时的稳定性
2
电控悬架架构及原理
1.1 半主动悬架的基本结构和工作原理
控制模型
图2-2 半主动悬架控制模型图
1-控制器; 2-整形放大电路; 3-加速度传感器; 4-悬架质量; 5-阻 尼可调减振器; 6-悬架弹簧; 7-非悬架质量 ; ቤተ መጻሕፍቲ ባይዱ-轮胎的当量质量
3
基本原理:改变阻尼孔的大小 连续可调式:ECU接收速度、位移、加速度等传感器信号,计算出相应的阻尼值,向步进电

《电子控制悬架系统》课件

《电子控制悬架系统》课件
使用场景
电子控制悬架系统广泛应用于高端汽车和飞机,为乘坐者带来更舒适、更安全的行驶体验。
系统组成
传感器
通过感知汽车或飞机 的行驶状态和路面情 况,将数据传输给控 制器,从而实现智能 调节。
控制器
根据传感器提供的数 据,计算出合适的悬 架调节方案,并向电 动调节阀发送指令。
电动调节阀
根据控制器的指令, 调节阀门打开程度, 控制液压系统的工作 状态,从而实现悬架 高度和硬度的调节。
执行器
执行器负责实际调节 悬架的高度和硬度, 根据电动调节阀的指 令对悬架进行精确控 制。
工作原理
1
系统工作流程
传感器感知车辆行驶状态和路面情况 -> 控制器分析数据并制定调节方案 -> 电动 调节阀调节阀门打开程度 -> 执行器实际操控悬架
2
悬架高度调节
根据车辆载荷和行驶情况,智能调节悬架高度,以保持车辆稳定性和乘坐舒适性。
《电子控制悬架系统》 PPT课件
探索电子控制悬架系统的奥秘,了解悬架系统的工作原理、应用实例以及未 来的发展趋势。
概述
什么是电子控制悬架系统
电子控制悬架系统(Electronic Control Suspension System)是一种能够实时调节汽车或飞机 悬架高度和硬度的先进技术。
系统优点
该系统可以提供精准的悬架调节,从而提高行驶舒适性、稳定性和操控性,同时还能适应不 同的行驶环境和路况。
应用前景
技术趋势
电子控制悬架系统的发展趋势包括更智能的系统、更高效的能量利用以及更精准的悬架调节。
发展前景
随着科技的进步和需求的增加,电子控制悬架系统在汽车产业和航空工业中将扮演越来越重 要的角色。
总结

电控悬架系统的结构与工作原理

电控悬架系统的结构与工作原理

本文档后面有精心整理的常用PPT编辑图标,以提高工作效率
电控悬架的功能
➢ 电控悬架系统的基本目的是控制调节悬架的刚度和阻尼力。
➢ 基本功能有: ➢ 车高调整:不论负载多少,汽车高度均一定;在坏路面上
行驶时,使车高升高,高速行驶时,车高降低。
➢ 减震器阻尼力控制:调整减震器阻尼系数,防止汽车起步 或急加速时车尾后坐;防止紧急制动时车头下沉;防止急 转弯时车身横向摇动;防止汽车换档时车身纵向摇动等。
控制杆
可变电阻
加速度传感器
上跳
回弹 高度传感器连杆
丰田线性高度传感器
4、信号开关
阻尼模式指示灯和车身高度指示灯 高度控制开关 阻尼模式选择开关
车门开关 停车灯开关
5、模式选择开关
• 【位置】变速器旁。 • 【作用】根据汽车的行
驶状况和路面情况选择 悬架的运行模式,从而 决定减震器的阻尼力大 小。
➢ 丰田加速度传感器
膜片
主要由压电陶瓷盘
和膜片组成。
➢ 两个压电陶瓷盘固 定在膜片两侧,并 支承在传感器中心。 当加速度作用在整 个传感器时,压电 陶瓷盘在其自身重 量作用下弯曲变形。 根据压电陶瓷的特 性,它们将产生与 其弯曲率成正比例 变化的电荷。这些 电荷由传感器内的 电子电路转换成与 加速率成正比例变
• 【钢球位移式加速度传感器原理】汽车转弯、加减速时, 钢球在横向力或纵向力作用下移动,使检测线圈的输出电
丰田车垂向加速度传感器安装位置
• 丰田车垂向加速度传感器:前加速度传感器一般装 在前左及前右高度传感器内;后加速度传感器装在 行李箱右侧的下面。
电路
压电陶瓷盘
膜片
压电陶瓷盘
加 速 度

电压

线控悬架系统的工作原理

线控悬架系统的工作原理

线控悬架系统的工作原理一、引言线控悬架系统是一种高级的汽车悬架系统,它可以通过电子控制单元(ECU)精确地调整每个车轮的悬挂高度和硬度,从而提高汽车的稳定性、舒适性和安全性。

本文将详细介绍线控悬架系统的工作原理。

二、线控悬架系统的组成线控悬架系统由以下几个部分组成:1. 气压供应系统:为悬架系统提供气体压力,通常使用气泵或压缩机。

2. 线控阀组:用于调节气体进出每个气囊,从而调整每个车轮的悬挂高度和硬度。

3. 传感器:用于测量汽车的姿态、加速度和路面情况等参数,以便ECU能够根据这些数据做出正确的调整。

4. 电子控制单元(ECU):负责接收传感器数据,并根据预设参数来调整每个车轮的悬挂高度和硬度。

三、线控阀组的工作原理线控阀组是线控悬架系统中最重要的部分之一。

它由多个电磁阀组成,每个电磁阀都控制着一个气囊的进气和排气。

当ECU接收到传感器数据后,它会根据预设参数来控制每个电磁阀的开关,从而调整每个车轮的悬挂高度和硬度。

具体来说,当ECU需要提高悬架高度时,它会打开相应的电磁阀,使气压进入气囊内部。

这样就可以使车轮上升,从而提高汽车的离地高度。

反之,当ECU需要降低悬架高度时,它会关闭相应的电磁阀,使气囊内部的气体排出。

这样就可以使车轮下降,从而降低汽车的离地高度。

同时,在调整悬架硬度方面,线控阀组也起到了重要作用。

当ECU需要增加悬架硬度时,它会打开相应的电磁阀,并将一部分气体排出到外界。

这样就可以减少气囊内部的空间,并增加悬架硬度。

反之,当ECU需要减少悬架硬度时,则会关闭相应的电磁阀,并让更多的气体进入到气囊内部。

四、传感器的工作原理传感器是线控悬架系统中另一个重要的组成部分。

它们负责测量汽车的姿态、加速度和路面情况等参数,以便ECU能够根据这些数据做出正确的调整。

具体来说,传感器通常包括以下几种类型:1. 加速度传感器:用于测量汽车在加速、刹车和转弯时的加速度。

2. 倾角传感器:用于测量汽车在水平面上的倾斜角度。

第六节_电控悬架系统

凌志LS400电控悬架系统一些故障现象和可能的故障原因如 下: 1 悬架刚度和阻尼系数控制失灵 2 汽车车身高度控制失灵 汽车是通过轮胎与路面之间的相互作用力来完成其转向运动 的。而转向运动又是驾驶员在驾驶室操纵转向系统以控制前 轮、后轮的转动来实现的。一般的转向系统由转向盘、转向 机、转向传动杆系和转向节等构成。
上一页 下一页
第三 典型汽车电控悬架系统介绍



2 弹簧刚度和减振器阻尼力控制 电控空气悬架系统气压缸的结构如图6-21所示。悬架系统 弹簧刚度和减振器阻尼力控制执行器安装在气压缸的上部。 悬架控制执行器电路如图6-22所示,ECU将信号送至悬架 控制执行器以同时驱动减振器的阻尼调节杆和气压缸的气阀 控制杆,从而改变减振器的阻尼力和悬架弹簧刚度。


四、 系统线路及连接
图6-23为LS400轿车电控空气悬架系统的线路连接图。图 6-24为悬架系统ECU连接器。
上一页 返回
图6-21 气压缸的结构
返回
图6-2223 LS400轿车电控空气悬架系统的 线路连接图
返回
图6-24 悬架系统ECU连接器
返回
第四 电控悬架系统的检修
下一页



第四 电控悬架系统的检修


二、 丰田凌志LS400汽车电控悬架系统 的故障自诊断
1 2 3 4 指示灯的检查 故障代码的读取 故障代码的清除 故障代码表


上一页 下一页
第四 电控悬架系统的检修


三、 丰田凌志LS400汽车电控悬架系统 的故障分析及诊断

下一页
图6-2 半主动悬架控制模型图
返回
第二 电控悬架系统的结构与 工作原理

电控悬架系统实验报告

一、实验目的1. 了解电控悬架系统的基本组成与工作原理。

2. 熟悉电控悬架系统各部件的功能与相互关系。

3. 掌握电控悬架系统的实验操作步骤与注意事项。

4. 通过实验验证电控悬架系统在不同工况下的性能表现。

二、实验原理电控悬架系统是一种集传感器、控制器、执行器于一体的智能控制系统,通过实时检测车身高度、车速、转向角度等信号,对悬架系统进行动态调整,以实现车身稳定、乘坐舒适、操纵稳定等目标。

三、实验仪器与设备1. 电控悬架系统实验台架2. 车身高度传感器3. 车速传感器4. 转向角度传感器5. 控制器6. 执行器7. 电脑8. 数据采集与分析软件四、实验步骤1. 系统搭建:按照实验台架说明,连接车身高度传感器、车速传感器、转向角度传感器、控制器和执行器等设备,确保各部件连接正确、可靠。

2. 系统调试:启动电脑,打开数据采集与分析软件,设置实验参数,如车身高度、车速、转向角度等。

3. 实验操作:a. 在平直路面进行车身高度调整实验,观察电控悬架系统是否能够根据设定的高度值进行精确调整。

b. 在弯道进行车身稳定性实验,观察电控悬架系统是否能够抑制车身侧倾,提高操纵稳定性。

c. 在颠簸路面进行乘坐舒适性实验,观察电控悬架系统是否能够有效过滤路面振动,提高乘坐舒适性。

4. 数据采集与分析:记录实验过程中车身高度、车速、转向角度等数据,利用数据采集与分析软件对数据进行处理,分析电控悬架系统在不同工况下的性能表现。

五、实验结果与分析1. 车身高度调整实验:实验结果表明,电控悬架系统能够根据设定的高度值进行精确调整,调整误差在±5mm以内,满足实验要求。

2. 车身稳定性实验:在弯道实验中,电控悬架系统能够有效抑制车身侧倾,提高操纵稳定性。

实验结果显示,侧倾角度小于2°,满足实验要求。

3. 乘坐舒适性实验:在颠簸路面实验中,电控悬架系统能够有效过滤路面振动,提高乘坐舒适性。

实验结果显示,车身垂直加速度小于0.2g,满足实验要求。

电控悬架工作原理

电控悬架工作原理
电控悬架是一种利用电子控制系统来调节车辆悬架的工作原理。

它通过感应车辆的运动状态和外部环境,并根据预设的参数和算法进行实时计算和控制,以实现对悬架的主动调节和控制。

电控悬架的工作原理可以分为以下几个步骤:
1. 感应:电控悬架通过车身加速度传感器、倾斜传感器、液压传感器、路面感应器等,感知车辆的运动状态和外部环境,包括车身姿态、车速、路面状况等参数。

2. 计算:电控悬架通过电子控制单元(ECU)进行实时计算和控制。

ECU根据预设的参数和算法,结合感知到的车辆运动
状态和外部环境信息,对悬架系统进行调节和控制。

3. 调节:根据计算结果,电控悬架通过电动伺服执行器控制液压系统或气压系统,调节悬架的工作状态,包括悬挂高度、硬度和阻尼等参数。

通过改变悬架的工作状态,电控悬架可以实现对车身姿态的调整,提高车辆的平顺性、稳定性和操控性。

4. 反馈:电控悬架系统将调节后的工作状态,利用传感器对调节效果进行实时监测和反馈。

如果调节效果不理想,系统会进行自动调整,直到达到预设的目标。

总的来说,电控悬架通过感应车辆运动状态和外部环境,通过电子控制系统进行实时计算和控制,调节悬架的工作状态,以提升车辆的悬挂系统性能,提高驾乘舒适性和行驶稳定性。

电控空气悬架工作原理

电控空气悬架工作原理电控空气悬架是一种先进的汽车悬架系统,具有智能、自适应和自动调节的特点。

它通过电子控制单元及其周边传感器,实现了对车身高度的控制和调节,从而提升了汽车的行驶稳定性、安全性和乘坐舒适性。

下面将介绍电控空气悬架的工作原理,主要分为以下几个方面:一、空气弹簧电控空气悬架采用的是空气弹簧,其工作原理是在车身和车轴之间装置充气囊,通过充气和放气来调节车身高度。

当车辆行驶在不同的路况上时,通过传感器采集到车身高度的数据,电子控制单元根据这些数据来控制空气压缩机和电磁阀,从而实现对充气囊的充气和放气控制。

二、电磁阀电磁阀是电控空气悬架的核心部件,它在车身高度发生变化时,通过电子控制单元的信号控制固定时间内开启和关闭,使气囊内的气体进出达到最佳高度,从而调节车身高度的目的。

电磁阀的开启和关闭的快慢也会影响高度的调整效果。

通常情况下,当车速较慢时,开启和关闭时间会更长,而当车速较快时,电磁阀的开启和关闭时间会缩短,以确保高度调节的准确性和稳定性。

三、传感器传感器是电控空气悬架的另一个关键部件,它能够实时感知车身的高度和状态,并将这些信息传递给电子控制单元进行处理和控制。

传感器的种类较多,例如悬架传感器、车身角度传感器、加速度传感器、转向角度传感器等。

这些传感器的精度、灵敏度、抗干扰能力都非常重要,它们的设计和制作必须考虑到电磁干扰、温度变化、振动等诸多因素的影响。

四、电子控制单元电子控制单元是电控空气悬架的大脑,它能够实时地吸收传感器的数据,并根据这些数据来实现高度调节、防倾力控制、防抱死制动等功能。

在实际应用过程中,电子控制单元还可以通过网络连接和其他控制单元进行通信交互,从而实现更加智能和自动化的控制。

总的来说,电控空气悬架可以通过空气弹簧、电磁阀、传感器和电子控制单元等多个部件的协作,实现对车身高度的智能控制和调节,从而提升汽车的整体性能和驾乘体验。

随着汽车科技的不断进步,电控空气悬架将会有更广泛的应用,成为汽车悬架系统的主流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UCF10系列轿车 电子调节空气悬架系统各元件在车上的安 装位置
• 2.丰田凌志LS400 UCF10系列轿车电子调 节空气悬架系统的控制电路
图5-25 丰田凌志 LS400 UCF10系列 轿车电子调节空气悬 架系统的控制电路
• 3.丰田凌志LS400 UCF10系列轿车电子调 节空气悬架系统的控制功能 • 丰田凌志LS400 UCF10系列轿车电子 调节空气悬架系统主要有: • ▲车身高度控制 • ▲悬架刚度控制 • ▲减震器减振力控制三项控制功能。
图5-11 车身高度传感器
光电式车身高度传感器主要光电耦合元件、遮 光板、旋转轴、连杆组成。
图5-12 光电式车身高度传感器原理图
光电式转角传感器的安装位置和结构
光电式转角传感器的工作原理和电路原理
• 2.车身高度控制执行装置 • 图5-14所示为丰田汽车公司电子控制 悬架系统(TOYOTA Electronic Modulated Suspension,即TEMS)的车身高度控制系 统。
课题三 电子控制悬架系统的故 障诊断
• 以丰田凌志LS400 UCF10系列轿车电 子调节空气悬架系统为例,说明电子控制 悬架系统的故障诊断方法。 (1)指示灯检查 首先将点火开关转到ON位,检查 LRC(凌志驾驶控制)指示灯和高度控制 指示灯。正常情况下,指示灯应发光2秒左 右。 (2)故障代码的提取 将点火开关转到ON位,用跨接线连接
• (2)压电式阻尼调节装置 • 压电式阻尼调节装置主要由压电传感器、 压电执行器和阻尼力变换阀三部分组成
图5-23 压电式阻尼调节装置
课题二 典型电子控制悬架系统
• 1.丰田凌志LS400 UCF10系列轿车电子调 节空气悬架系统的组成
图5-24 丰田凌志LS400 UCF10系 列轿车电子调节空气悬架系统各元 件在车上的安装位置
• •
• •
图5-31 诊断代码 (a)正常代码 (b) 故障代码“11”和“31”
• (3)故障代码表 • 丰田凌志LS400系列轿车电子调节空气悬架 系统故障代码见表5-5。 • (4)故障代码的清除 • 丰田凌志LS400 UCF10系列轿车电子调节 空气悬架系统故障代码的清除方法有两种:
• 2.电子控制悬架系统的工作原理 • (1)车身高度控制 • (2)悬架刚度和阻尼力控制
图5-7 车身高度的调整
3.设置有路况预测传感器的电子控制悬架系统
图5-8 设置有路况预测传感器的电子控制悬架系统 1-油箱;2-油泵;3-滤清器;4-单向阀;5-储压器;6-电磁控制阀;7-回油 管;8-油管;9-副节流孔;10-选择阀;11-储压器;12-主节流孔;13-油压 腔;14-单向液压执行器;15-车轮;16-悬架弹簧
电子控制悬架系统的组成与工作原理
• 1.电子控制悬架系统的组成 • 该系统主要由空气压缩机、干燥器、空气 电磁阀、车身高度传感器、带有减振器的 图5-6 电子控制空气悬架系统 1-空气压缩机;2-空气电磁阀; 3-干燥器; 4-节气门位置传感 空气弹簧、悬架控制执行器、悬架控制选 器;5-前右车身高度传感器; 6-带有减振器的空气弹簧; 7择开关和电控单元等组成。 悬架控制执行器;8-转向传感
图5-9 设置有路况预 测传感器(声纳系统) 的汽车
图5-10 路况预测传感器的 输出曲线
三、电子控制悬架系统各主要组件 的结构
• 1.车身高度传感器 • 车身高度传感器的作用是检测车身高度的 变化,将车身高度转变为电信号向电控单 元输入,作为车身高度控制的主要依据。 其实,车身高度是通过检测汽车悬架装置 的位移来确定的。

步进电机的转子为永久磁铁,定子上有两 对磁极。定子上通电状况不同时,磁极的 极性不同,转子的转角也不同。
图5-19 步进电机的工作原理
• 4.悬架系统阻尼调节装置 • 阻尼调节装置是通过改变阻尼孔的大小来 改变悬架系统的阻尼力。 • (1)机电式阻尼调节装置
图5-20 机电式阻尼调节装置
凌志LS400 ucF20型可调减振器
器;9-停车灯开关;10-TEMS 指示灯;11-电子多点视频器; 12-悬架控制开关;13-1号高度 控制阀;14-2号高度控制阀; 15-显示器用ECU;16-诊断用 接线柱;17-后车身高度传感器; 18-悬架用ECU;19-空气管道; 20-车速传感器;21-前左车身 高度传感器
• 电控悬架的组成(从功能上看) 传感器:车高传感器、车速传感器、加速 度传感器、转向盘转角传感器、节气门位 置传感器等。 开关:模式选择开关、制动灯开关、停 车开关、车门开关等。 执行器:可调阻尼力减震器、可调节弹簧 高度和弹性大小的弹性元件等。 ECU • 电控悬架的一般原理: 利用传感器(包括开关)检测汽车行驶时
图5-14 TEMS车身高度控制系统
图5-15 日本富士汽车空气悬架系统车身高度控制执行装置
• 3.空气悬架刚度调节装置 • 空气悬架刚度调节装置主要由刚度调节阀 和悬架控制执行器组成。
图5-16 空气悬架的基本构造
悬架刚度的调节原理
1-阻尼调节杆 2-空气阀控制杆 3-主副气室通路 4-副气 室 5-主气室 6-气阀体 7-小气体通路 8-阀体 9-大气 体通路
相关文档
最新文档