工业控制网络的发展综述
Controlnet工业网络综述

ControlNet工业网络综述摘要:ControlNet作为符合IEC国际标准的现场总线,综合了现有各种网络的能力,提供了控制器与现场测量控制设备之间的高速通信链路。
它是一种高速确定性网络,适用于对时间有苛刻要求的应用场合,在工业控制系统中,ControlNet 网络得到了很好的推广和应用。
关键词:ControlNet;生产者/消费者模式;控制器1.ControlNet总线协议概述ControlNet基础技术是美Rockwell Automation公司自动化技术研究发展起来的,最早于1995年10月面世。
1997年7月由Rockwell等22家企业联合发起成立了ControlNet International 组织,是个非赢利独立组织,主要负责向全世界推广ControlNet技术(包括测试软件)。
随着国际自动化系统网络技术的不断进步,ControlNet International 到目前为止,成员公司已扩展到50多个,其中不乏世界知名的大公司,如ABB Roboties、Honeywell Inc、Toshiba International。
ControlNet可广泛应用于交通运输、汽车制造、冶金、矿山、电力、食品、造纸、水泥、石油化工、娱乐及其它各个领域的工厂自动化和过程自动化。
2.ControlNet物理层ControlNet网络的主要物理介质是同轴电缆。
这种电缆安装简便,价格便宜.广泛用于电视传输。
一个ControINet物理网络是由这种电缆和连接器、接收器和端子设备组成的,每网段最长可达1000m,还可通过中继器延长。
第二种介质是光纤.可用于户外和危险环境,具有本征安全特性,与电缆组合使用可构成长选25km 的系统。
3.通信模式3.1.信息连接在ControlNet上传输的数据可分成非连接(Unconneted) 和连接(Connected)两种。
非连接信息管理器UCMM(UnconnectedMessage Manager)用于在未建立连接的节点间传输信息,这些信息可以是建立连接的请求或简单的非重复性、无时间苛求的数据。
电子信息工程中的网络与通信技术发展综述

电子信息工程中的网络与通信技术发展综述近年来,随着信息技术的快速发展,电子信息工程中的网络与通信技术也取得了长足的进步。
本文将对网络与通信技术的发展进行综述,以展示其在电子信息工程领域的重要性和应用前景。
一、网络技术的发展1. 互联网技术发展互联网技术是网络技术中最具影响力的一项,它的出现极大地改变了人们的生活方式和工作方式。
互联网的发展经历了从狭义的因特网到广义的互联网的演进过程,现如今已成为人们日常生活的重要组成部分。
互联网的快速发展,推动了电子商务、在线教育、社交媒体等相关产业的繁荣。
2. 无线通信技术的进步随着移动通信技术的不断发展,无线通信已经成为人们日常生活中不可或缺的一部分。
从2G、3G、4G到如今的5G,无线通信技术实现了高速度、低延迟和大容量的数据传输,极大地促进了信息传播和互联互通。
3. 物联网技术的崛起物联网技术是近年来网络技术领域的重要创新,它将各种物体与互联网进行连接,实现了智能化、自动化的管理和控制。
物联网的发展为各行各业带来了巨大的变革,包括智能家居、智慧城市、智能工厂等领域的发展。
二、通信技术的发展1. 光纤通信技术的进步光纤通信技术是目前最快、最可靠的通信传输方式之一。
光纤通信技术以其高带宽、低衰减、抗干扰等优势,广泛应用于电信、广播电视、数据传输等领域。
随着光纤通信技术的不断突破,更高速、更低成本的传输方式将进一步推动通信技术的发展。
2. 卫星通信技术的发展卫星通信技术作为一种远程通信方式,在信息传输、广播电视、天气预报等方面发挥着重要作用。
随着卫星通信技术的不断改进,卫星通信的带宽和数据传输速度逐渐提高,进一步促进了全球通信的无缝连接。
3. 5G通信技术的崛起5G通信技术是近年来通信技术领域的重要突破,具有较低的时延、较高的传输速度和大容量的特点。
5G通信技术的广泛应用将极大地改变人们的生活和工作方式,推动智能交通、远程医疗、虚拟现实等技术的快速发展。
三、网络与通信技术的应用前景1. 智能化生活随着物联网技术的发展和5G通信技术的普及,智能家居、智能交通等智能化生活方式将更加普及。
PLC文献综述

PLC文献综述PLC(可编程逻辑控制器)文献综述一、引言可编程逻辑控制器(PLC)是一种广泛应用于工业控制领域的设备,它集计算机技术、通信技术、控制技术和电子技术于一体,具有灵活性强、可靠性高、易于编程和维护等优点。
随着工业4.0和智能制造的快速发展,PLC在自动化生产线、机器人控制、过程控制等领域的应用越来越广泛。
本文将从PLC的定义、发展历程、研究现状和未来趋势等方面对其进行文献综述。
二、PLC的定义和发展历程PLC是一种数字运算操作的电子系统,专为工业环境下的应用而设计。
它采用可编程的存储器,用于在其内部存储执行逻辑运算、顺序控制、计时、计数和算术运算等操作的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。
PLC的发展历程可以追溯到20世纪60年代,当时美国汽车工业生产线上出现了一种名为“可编程序控制器”的设备,用于控制生产线的运行。
随着计算机技术和微电子技术的发展,PLC的功能不断增强,应用范围也越来越广泛。
目前,PLC 已经成为工业自动化领域的重要组成部分。
三、PLC的研究现状目前,PLC的研究主要集中在以下几个方面:1.PLC的硬件设计:PLC的硬件设计主要包括中央处理器(CPU)、存储器、输入输出模块等。
随着技术的发展,PLC的硬件设计越来越先进,例如采用多核CPU、高速存储器和大容量输入输出模块等,提高了PLC的处理速度和性能。
2.PLC的软件设计:PLC的软件设计主要包括编程语言、编程环境和应用程序等。
目前,PLC的编程语言主要有梯形图(Ladder Diagram)、指令表(Instruction List)、结构化文本(Structured Text)等,编程环境也越来越友好,例如采用图形化编程方式等。
此外,PLC的应用程序也不断丰富,例如实现运动控制、过程控制、网络通信等功能。
3.PLC的通信技术研究:随着工业自动化和信息化的融合,PLC的通信技术研究越来越重要。
工业以太网在工业控制网络中的应用与发展综述

较 大影 响力的现场总线主 要_ 如下 5种 : 仃 ① F n ain il b s 金 会现 场 总 线 u d t F ed u 基 o ( FF总 线 ) ② P o i u 过 程 现 场 总 线 。 。 r fb s
③ CAN 总 线 。 ④ L0 nW O k 总 线 。 ⑤ r
钺 _
__ Leabharlann T e p p r n rd c s h a pc t n cu lis o te h a e i o ue t e p la i a t a t f h t i o ie f l u o to n t a d n utilE h re i te fe i d s c n rl e n i s r t en t n h id eb d a l
干汽车 内部测 孑 执行部 件之 间的数据通 信协议 ,现 已逐步发展剁机械制造 、数控 机床 、变电站检 测设 备的监控 与应用 卜。 闩前阁内外工 业控制 络还没有形成 统 一的格局 ,协议 多种 多样 ,埘下用户而
言 ,各 种设 备很 难 实现 互 联 互 通 , 刚络 适 接较为 复杂 ,这 尢疑 埘工、 络的应用及
Po n t 8 rf e 共 种现场总线的 1 种类型。② i 0 2 工业 以太 网技 术分析
I 6 0 6包括的 4种现场总线 国际标 准 : EC 2 2 AS Acu trS n o itrae i( t ao e s r n e c )执 行 f 2 1工业以太叫发展现状 . 工 业 以 1 } 术是 普 通 以 太 技 术 仟 人网 支 工 业控 制 络 中的 延伸 。所 谓工 业以太 网 , 是 指 其 在 技 术 上 与 商 用 以 太
维普资讯
网络 中的应用与发展综述
工业4.0与工业控制网络

工业4.0与工业控制网络技术摘要第四次工业革命(“工业4.0”)是德国版的再工业化战略,以提高德国制造业的竞争力为主要目的,是从嵌入式系统向信息物理融合系统(CPS)发展的技术进化。
它的主要内容包括“1个核心”、“2重战略”、“3大集成”、“8项举措”。
本文简单介绍了“工业4.0”概念、主要内容、技术基础以及新工业时代所面临问题与挑战。
随后介绍了工业控制网络技术的概念、主要内容包括现场总线技术与工业以太网技术。
最后描述了自己对“工业4.0”与工业控制网络技术之间的关系与相互作用的认识,以及本专业(控制科学与工程)在“工业4.0”下体现。
关键字:工业4.0;工业控制网络技术;控制科学与工程;工业革命一、工业4.0综述1. 工业4.0概念工业4.0(Industry 4.0)是指利用物联信息系统(CPS)将生产中的供应、制造、销售信息数据化、智慧化,最后达到快速、有效、个性化的产品供应。
与国际社会关于第三次工业革命的说法不同,德国学术界与产业界认为,前三次工业革命的发生,分别源于机械化、电力和信息技术。
他们将18世纪引入机械制造设备定义为工业1.0,20世纪初的电气化为2.0,始于20世纪70年代的生产工艺自动化定义为3.0,而物联网和制造业服务化迎来了以智慧制造为主导第四次工业革命,或革命性的生产方法,即为“工业4.0”。
德国“工业4.0”战略旨在通过充分利用信息通讯技术和物联信息系统(CPS)相结合的手段,推动制造业向智能化转型。
2. 工业4.0主要内容工业4.0简单可以概括为“1个核心”、“2重战略”、“3大集成”、“8项举措”。
2.1 “1个核心”工业4.0的核心是“智能+网络化”,即通过虚拟-实体系统(Cyber-PhysicalSystem,CPS),构建智慧工厂,实现智能制造的目的。
CPS系统建立在信息和通讯技术(ICT)高速发展的基础上。
(1)通过大量部署通过大量部署各类传感元件实现信息的大量采集;(2)将IT控件小型化与自主化,然后将其嵌入各类制造设备中从而实现设备的智能化;(3)依托日新月异的通信技术达到数据的高速与无差错传输;(4)无论后台的控制设备,还是在前端嵌入制造设备的IT控件,都可以通过人工开发的软件系统进行数据处理与与指令发送,从而达到生产过程的智能化以及方便人工实时控制的目的。
网络控制系统综述

1 引言
网络控制系统( t r e o to S s msNC ) Newok d C nr l yt , S , e 又称为 网络化 的控制 系统 ,是一种全分布 、 网络化 实时 反馈控制系统 。它 是指某区域现场传感器 、控 制器 及执 行器和通信网络的集合 , 以提供设备之 间的数据传 输 , 用 使该 区域 内不 同地 点 的用户实 现资源共 享和协 调操作 。 它是上世纪 9 0年代初提出的概念 , 是计算机技术 、通信
2 计 算 机 控 制 系统 的 发 展 历 程
2 0世纪 中期的 自动控制生产规模很小 , 数字计算机
支结构的通信网络 。它突破了 D C S系统 中采用专用 网络 的缺 陷 , 把专 用封闭协议 变成标 准开放协议 。 同时它使 系统具有 完全数字计算和 数字通信能力 。结构上 它采用 了全分布式方 案 , 把控制功能彻底 下放 到现场 , 提高了系
A e fh t re nrl y t ms Suv yo eNewo k dCo t se r t oS
XU n - i XU a g y n Fe g q n, Xi n - ua
(ini oyeh i Unvri o ue eh oo ya dAuo tdIs tt,i jn3 0 6 ,hn ) TБайду номын сангаасj P ltc nc i esyC p tr c n lg n tma tue a i 0 1 0C ia n t T e n i Tn
一
3 2 网络 时延 .
网络控 制 中的时 延 ,主要来源 于数据在 网络 上的传 输时延和控制器的运算时延(r , ) 这些时延的位置分布 如图 2所示『l 7。数据在 网络上 的传输 时延由传感器 到控 制器 时延( ) r 以及控制器到执行器时延(r ) 两段构成, 他们具有相 似的特点 , 通常都是时变的 , 控制器执行运算 产生 的时延 r 通 常也 是时变的 。但依据不 同的 网络结 构与协议又 可以分 为周期性 、确定性 时延 以及 随机性 时 延两种情 况。针对 不 同的时 延 , 多人提 出了不同的处 很
网络控制系统发展趋势综述

突 破集 中控制 模 式 的束 缚 ,系 统可靠 性 有 限 。
现场 总线技术 ( C )兴起于2 世纪9 年代 ,其 FS 0 0
适 应 了各行 业 现 场 测 控方 面 的 需 求 ,形 成 了多标 准 并 存 的局 面 。F S 以现 场 总 线 作 为 底 层 网络 ,通 过 网 C是 络 集 成 构 成 的 自动 控 制 系 统 。 它 突 破 了D S 统 中采 C系 用专 用 网络 的缺 陷 ,把 专 用封 闭协 议 变 成标 准 开 放 协 议 ,将 现 场 的 各种 控 制 器 和 仪表 设备 相 互 连接 ,把 控
了三 次 比较 大 的变 革 ,7 年代 无 动 态 流 程 图 、操 作 站 0 是 专用 的 ,通信 网络 采 用 轮询 方 式 。8 年 代通 信 网 络 0
制 系 统和 计 算 机 集 中式 控 制 系 统 的优 点 ,体 现 了 管理 的 集 中性 和 控 制 的分 散 性 。 虽然 与D S 比 ,D S 有 D相 C具
系统扩展和维护 以及能够实现信息资源共享 。随着 自
动控 制 、计 算机 、通 信 、 网络 等 技 术 的 发展 ,企 业 的
信息系统也在不断 的更新发展 ,因此网络控制系统须 满足复杂控制系统和远程控制系统 的客观要求 。
一
由于控制系统的开放性差等原因使得工业以太 网
技 术迅 猛 发 展 。 由于 以太 网具 有广 泛 的技 术 支持 ,传
制单元作为 网络系统连接起来共同完成控制任务的系
统 。网络 控 制 系 统 充分 体 现 了 控制 系 统 向网络 化 、 集
成化、分布化 、节点智能化方 向的发展趋势,在工业
未来网络技术与发展趋势综述

未来网络技术与发展趋势综述一、本文概述随着科技的飞速发展和社会的不断进步,网络技术已成为现代社会不可或缺的重要组成部分。
网络技术不仅改变了人们的生活方式,也极大地推动了经济的发展和社会的进步。
然而,随着网络技术的广泛应用,其面临的挑战和问题也日益凸显。
因此,对未来网络技术及其发展趋势进行深入研究和探讨,具有重要的理论和实践意义。
本文旨在全面综述未来网络技术的主要特点、关键技术和发展趋势,以期为相关领域的研究人员和实践者提供有价值的参考。
文章首先对网络技术的历史发展进行了简要回顾,然后重点分析了未来网络技术的主要特征,包括高速、智能、安全、泛在等方面。
接着,文章深入探讨了支撑未来网络技术发展的关键技术,如5G/6G通信技术、云计算技术、物联网技术、边缘计算技术、技术等。
文章展望了未来网络技术的发展趋势,包括网络融合、网络智能化、网络安全保障等方面。
通过本文的综述,读者可以对未来网络技术的发展有一个清晰、全面的认识,从而更好地把握网络技术的发展方向,为未来的网络建设和应用提供有力支持。
二、未来网络技术的主要特点未来网络技术以其独特的特点和优势,正在塑造一个全新的网络世界。
这些特点主要体现在以下几个方面:超高速度和超大容量:随着科技的不断进步,未来网络技术将实现更高的传输速度和更大的网络容量,以满足日益增长的数据需求。
新的传输技术和协议,如可见光通信、量子通信等,将进一步推动网络速度的提升和容量的扩大。
高度智能化和自动化:人工智能和机器学习等技术的深入应用,将使未来网络具备更强的智能化和自动化特性。
网络将能够自我优化、自我修复,甚至能够预测和应对潜在的问题,大大提升网络的稳定性和可靠性。
高度安全性和隐私保护:随着网络安全威胁的日益严重,未来网络将更加注重安全性和隐私保护。
通过先进的加密技术、身份认证技术和入侵检测技术,未来网络将为用户提供更加安全、私密的网络环境。
全面覆盖和深度融合:未来网络技术将实现更广泛的覆盖,包括偏远地区和深海等难以覆盖的区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014 ~ 2015 学年第2 学期
《工业控制网络》
课程报告
题目:工业控制网络的发展综述
电气工程学院
2015年5月25 日
工业控制网络的发展综述
1.引言
工业控制网络在提高生产速度、管理生产过程、合理高效加工以及保证安全
生产等工业控制及先进制造领域起到越来越关键的作用。
图1总结了工业控制网络的4大主要类型:传统控制网络、现场总线、工业以太网以及无线网络。
传统控制网络现在已经很少使用,目前广泛应用的是现场总线与工业以太网,而工业以太网关键技术的研究是目前工业控制网络研究的热点。
图1 工业控制网络的主要分类
2.现场总线
现场总线控制系统FCS是在基地式气动控制信号控制系统、电动单元组合式模拟仪表控制系统、直接数字控制系统DDC、集散控制系统DCS之后发展起来的新一代控制系统,它将DCS 中集中与分散相结合的模式变成了新型的全分布式控制模式,控制功能彻底下放到现场,现场控制设备通过总线与管理信息层交换信息,代表了工业控制网络技术的发展方向。
2.1现场总线主要技术特点
现场总线打破了传统控制系统的结构形式,图2为现场总线控制系统与传统控制系统的结构对比。
在传统模拟控制系统中采用一对一的设备连线,按控制回路分别进行连接,位于现场的测量变送器与位于控制室的控制器之间,控制器与位于现场的执行器、开关、马达之间均为一对一的物理连接;而在FCS中,所有的设备作为网络节点连接到总线上,不仅节省了电缆,而且还方便了布线。
图2 现场总线控制系统与传统控制系统的结构对比
2.3 主流现场总线的比较
目前现场应用比较广泛的现场总线主要有FF、Profibus-DP、CAN 总线等,这些现场总线在技术上各有特色,目前它们还不能相互代替而应用到所有的领域,几种总线的特性和应用对比见表1。
表1 几种现场总线的比较
3.工业以太网
以太网最早出现在上世纪70年代,是一种总线式局域网,采用CSMA / CD 协议,以太网是现有局域网采用的最通用的通信协议标准,包括在局域网中采用的电缆类型和信号处理方法。
以太网在互联设备之间以100~1000 Mbps 甚至更高的速率传输信息包如图3。
以太网组成的网络节点分为两大类:
图3工业以太网
(1)数据终端设备,如工作站、服务器、智能设备等;
(2)数据通信设备,接收和转发网络中数据包,如中继器、交换机和路由器等。
3.1工业以太网的主要技术特性
l) 系统响应的实时性。
在工业自动化控制中需要及时地传输现场过程信息和操作指令,要能够支持和完成实时信息的通信。
这不仅要求工业以太网传输速度要快,而且响应也要快,即响应实时性要好。
2 ) 网络传输的确定性。
即要保证以太网设备间的传输不能发生冲突或数据的碰撞,让不同设备对网络资源的使用合理有序化。
现在随着以太网速率不断提高,加上确定性调度算法的研究突破,使网络负荷进一步减轻、碰撞减少,系统的确定性已得到了很大的提高。
3) 要求极高的可靠性。
工业控制网络必须连续运行,它的任何中断和故障都可能造成停产,甚至引起设备和人身事故,因此必须具有极高的可靠性。
3.2工业以太网的优点
1)具有相当高的数据传输速率( 目前已达到100Mb/s),能提供足够的带宽;
2)由于具有相同的通信协议,Ethernet 和TCP/IP 很容易集成到IT世界;
3)能在同一总线上运行不同的传输协议从而能建立企业的公共网络平台;
4)在整个网络中,运用了交互式和开放的数据存取技术;
5)沿用多年,已为众多的技术人员所熟悉,市场上能提供广泛的设置、维护和诊断工具,成为事实上的统一标准;
6)允许使用不同的物理介质和构成不同的拓扑结构。
3.3工业以太网技术的发展趋势与前景
未来工业以太网将在工业企业综合自动化系统中的现场设备之间的互连和信息集成中发挥越来越重要的作用。
工业以太网技术的发展趋势将体现在以下几个方面:
(1)工业以太网与现场总线相结合的形式
近一段时间内,工业以太网技术的发展将与现场总线相结合,具体表现在:1)物理介质采用标准以太网连线,如双绞线、光纤等;
2)使用标准以太网连接设备(如交换机等),在工业现场使用工业以太网交换机;3)采用IEEE 802.3物理层和数据链路层标准、TCP/IP协议栈;
4)应用层(甚至是用户层)采用现场总线的应用层、用户层协议;
5)兼容现有成熟的传统控制系统,如DCS、PLC等;
4.无线网络
4.1工业无线网络概述
工业无线网络是从新兴的无线传感器网络发展而来的,具有低成本、低能耗、高度灵活性、扩展性强等特点,已经成为继现场总线技术后的又一个研究热点。
由于工业现场环境复杂以及工业应用的特殊要求,工业无线网络面临着通信实时性、可靠性、安全性以及抗干扰能力等问题。
4.2工业无线网络发展现状
目前, 工业无线网络的研究热点主要集中于网络技术和通信协议方面。
在数据管理、软件开发环境和工具等方面的研究工作还不多, 研究成果很少。
工业无线
网络技术尚缺乏统一的国际标准, 这严重阻碍了无线网络技术的应用和普及。
目前,无线通信在工业自动化领域的研究主要有以下几类:无线总线RFieldbus、无线传感器与执行器网络wSAN、基于IEEE 802.11的无线局域网WLAN以及基于IEEE 802.15的无线个域网WPAN等。
以下对工业无线通讯标准的特点及应用进行简单介绍。
无线HART协议,要求HART无线通信技术保证支持产品的互操作性,与有线HART 仪表的无缝连接,提升HART智能仪表的智能和可连接性。
1个无线HART传感器网络由无线 HART网络设备、至少1个无线HART网关和1个无线HART网络管理器组成。
其组成结构如图4所示。
图4无线HART网络的组成结构
无线HART标准为过程测量与控制、设备资产管理提供了一个健全的无线协议。
无线HART是基于已经被人们熟悉并证实了的有线HART协议,通过与现有设备、工具和系统的兼容,使人们快速简便地感受无线技术的特点。
4.3工业无线网络的发展趋势
无线通信网络技术在工业现场中的应用并不是简单的化有线为无线,它延伸了原有的工业网络的控制范围,并提供了极高的灵活性,成为有线网络、现场总线的一个有效补充。
在未来的若干年内,工业无线网络将会得到快速的发展。
但是无线通讯并不会代替有线通讯,无线只会在有线不能实现或成本比较高的地方代替有线。
两种通讯技术结合起来,有线的稳定性、可靠性和无线的灵活性、经济性互相补充,将会有效地促进我国工业技术的发展。
5.工业控制网络技术未来发展方向
工业控制网络的发展历经了从传统控制网络到现场总线,再到目前广泛研究的工业以太网以及无线网络的过程。
以太网的广泛使用为工业控制的发展提供了良好的基础结构,但如何保证工业通信的实时性是研究的关键。
本文综述了目前广泛
研究的工业控制网络技术的几项关键技术。
最后就工业控制网络未来发展的一些技术难题及相关解决方法进行总结,主要包括:
(1)提高通信的实时性; (2)提高通信的安全性; (3)提高通信可靠性; (4)多总线集成; (5)实时异构网络
6.总结
工业控制网络既是一个开放的通信网络,又是一个全分布控制系统,它作为智能设备的联系纽带,挂接在总线上,作为网络节点的智能设备连接成网络系统,并通过组态进一步构成自动化系统,实现基本控制、补偿计算、参数修改、报警、显示、监控、优化以及测、控、管一体化的综合自动化功能。
工业控制网络是一个以智能传感器、自动控制、计算机、通信、网络等技术为主要内容的多学科交叉的新兴技术,在过程自动化、制造自动化、楼宇自动化、交通、电力等领域都有广泛的应用前景,被誉为21世纪最有希望的自动化技术。