绿色荧光蛋白(GFP) 的特性及其在分子生物学研究中 的应用

合集下载

GFP及其在植物分子生物学研究中的应用

GFP及其在植物分子生物学研究中的应用
图!
[%] 多管水母中 "#$ 生色团的化学结构和附近序列
通过调整光圈减少进光量, 或选择适合的滤光片就 可以消除背景, 从而检测出 "#$ 荧光。所以检测 "#$ 时一般不会出现假阳性结果。如要观察组织 内部 "#$ 荧光, 又不损伤材料, 可以使用激光扫描 共聚焦显微镜 ( 4E+FE4*7 7*@6/ @4*++9+, 094/E@4EGH) , 它 可以对组织内部进行分层扫描, 也可进行三维显 示, 是目前理想的荧光检测仪器。另外, 荧光激活 的细胞分选仪 (也叫流式细胞仪) 也可检出转化细
光的 "#$, 之后, "#$ 越来越受到人们的广泛关注。 由于野生型 "#$ 具有一定的缺点, 如用蓝光激发 时, 其荧光强度较低, "#$ 合成及折叠产生荧光的 过程慢, 蛋白质折叠受温度影响大, 表达量较低等,
[!!] 限制了 "#$ 的应用。!’’- 年, 采用定点 L690 等
突变方式, 把第 (- 位丝氨酸换为苏氨酸 ( 1(-2) 或 胱氨酸 ( 1(-?) , 生色团形成速度比野生型 "#$ 快 & 倍, 荧光强度提高了 & M ( 倍, 而且激发光谱和发射 光谱红移, 与 N6+977* "#$ 相似。此后, 人们根据不 同的研究需要, 不断地对 "#$ 进行改造, 以改善其 性能。表 ! 是在植物基因工程中最常用的 "#$ 变 种。 # "! &’( 的毒性 人们曾一度认为 "#$ 对植物 [!%] 细胞有毒。L*@67EFF 和 C0E@ 报道, 转 "#$ 基因拟 南芥的愈伤组织不能分化成再生植株, 推测绿色荧 光的光子干扰会产生自由基, 对细胞核造成氧化损 伤。但许多研究人员并没有观测到 "#$ 对植物细 胞明显的毒性, 认为 "#$ 对植物细胞有毒的证据不 足。动物和植物的适应性不同, 植物的形态、 生理 特征使其能适应光线, 而动物细胞可能会受到灼

gfp绿色荧光蛋白序列_概述及解释说明

gfp绿色荧光蛋白序列_概述及解释说明

gfp绿色荧光蛋白序列概述及解释说明1. 引言1.1 概述GFP(绿色荧光蛋白)是一种具有独特发光特性的蛋白质,被广泛应用于细胞和分子生物学领域。

其绿色荧光可以通过外源激活而观察到,使得科学家们能够可视化细胞内发生的过程,并实时跟踪靶标分子的定位与转移。

GFP的序列是理解其结构、功能以及应用关键的基础。

1.2 文章结构本文将从多个方面对GFP绿色荧光蛋白序列进行概述及解释说明。

首先,我们将介绍GFP的历史和发现过程,以及其在现代生物学中的重要性。

随后,我们将详细探讨GFP序列的组成和编码基因信息,并解析与功能相关性方面的研究进展。

最后,我们将阐述GFP序列在生物学研究中的广泛应用,并就目前存在的问题和未来发展进行思考。

1.3 目的本文旨在提供有关GFP绿色荧光蛋白序列的全面概述及解释说明,深入探讨其组成、结构、功能和应用,并对其未来发展进行展望。

通过本文的阐述,读者将能够更好地理解和应用GFP序列在生物学领域中的价值,为相关研究提供指导和启示。

同时,我们也希望通过此文促进对GFP技术的探索和创新,推动生物科学的不断发展。

2. GFP绿色荧光蛋白序列概述2.1 GFP简介GFP(Green Fluorescent Protein)绿色荧光蛋白是一种来自于海洋水母的蛋白质。

它的主要特点是能够发出绿色荧光,并且在非生物致死条件下仍然保持稳定。

由于这些特性,GFP成为了生物学领域中一种广泛使用的标记工具。

2.2 GFP的发现历程GFP最早是在1960年代末期由奥斯汀·盖因斯、罗德南·麦迪安和道格拉斯·普里肯特等科学家在研究水母Aequorea victoria时发现的。

他们观察到当GFP暴露在紫外线下时会发出绿色荧光,并且将其提取出来进行进一步研究。

随后,科学家们发现GFP能够自身形成一个染色体,而不需要其他辅助物质。

2.3 GFP的结构特征GFP的序列长约238个氨基酸残基,具有高度保守性。

绿色荧光蛋白

绿色荧光蛋白

绿色荧光蛋白GFP的研究与应用摘要:绿色荧光蛋白(GFP)是一种极具潜力的标记物,有着广泛的应用前景。

通过阅读吴沛桥的《绿色荧光蛋白GFP的研究进展及应用》这篇文献,对GFP有了进一步了解。

关键词:绿色荧光蛋白(GFP);性质;原理;应用1 引言发光是海洋无脊椎动物中普遍存在的现象,一些腔肠动物包括水母、水螅和珊瑚等受到机械性干扰时都可发射绿色荧光,而栉水母类发射蓝色荧光。

绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于这些腔肠动物体内的生物发光蛋白。

1962 年,Shimomura 等从维多利亚多管水母(Aequoria victoria)中分离纯化生物发光蛋白质——水母蛋白, 并观察到一个在紫外光下发出“非常明亮, 浅绿色荧光”的副产物。

1974 年,Shimomura等纯化得到了这种自发荧光的蛋白(即GFP)。

2008年10月8日,瑞典皇家科学院诺贝尔奖委员会将2008年度诺贝尔化学奖授予日裔美国科学家下村修(Osamu Shimomura)、美国科学家马丁·查尔非(Mratin Chalfie)以及美国华裔科学家钱永健(Rorge Y.Tsien),他们三人因为在绿色荧光蛋白的发现以及改造方面做出了突出成就。

2 GFP的理化性质从水母体内分离到的GFP基因,长达2.6kD,由3个外显子组成,分别编码69、98和71个氨基酸。

GFP本身是一种酸性,球状,可溶性天然荧光蛋白。

GFP性质极其稳定,耐高温,甲醛固定和石蜡包埋不影响其荧光性质。

其变性需在90℃或pH<4.0或pH>12.0的条件下用6mol/L盐酸胍处理,一旦恢复中性环境或去除变性剂,虽然变性的蛋白质并不能完全复性,但是复性蛋白质同天然蛋白质对温度、pH变化的耐受性、抗胰蛋白酶消解的能力是相同的。

更重要的是,它们在pH7.0~pH12.2的范围内的吸收、发射光谱也是相同的。

绿色荧光蛋白作为报告基因在分子生物学中的应用

绿色荧光蛋白作为报告基因在分子生物学中的应用

绿色荧光蛋白作为报告基因在分子生物学中的应用绿色荧光蛋白作为报告基因在分子生物学中的应用摘要:随着科学技术的不断更新和发展,绿色荧光蛋白在动物学、植物学、微生物学等领域的应用研究越来越广泛。

绿色荧光蛋白(green fluorescent protein,GFP)可作为报告基因,且具有分子量较小、荧光性质稳定、对生物体无毒性作用、检测时不需要底物等的特点。

本文就对荧光蛋白在分子生物学中的应用做一综述。

关键词:绿色荧光蛋白;报告基因;应用The Application of GFP As Reporter Gene In the Molecular Biology Abstract: With the upgrade and development of science and technology, the application of green fluorescent protein used in Zoology, Botany and microbiology is more extensive. As a reporter gene, GFP have some characteristics, such as low molecular weight, good fluorescent stability, non- toxicity to organisms. This paper reviews the application of GFP in the molecular biology. Key words: green fluorescent protein, reporter gene, application of GFP绿色荧光蛋白(green fluorescent protein,GFP)是一类来自于海洋生物如水母、水螅和珊瑚等腔肠动物内的一种生物发光蛋白,当受到紫外或蓝光激发时,能发射出绿色荧光。

绿色荧光蛋白及其在细胞生物学研究中的应用

绿色荧光蛋白及其在细胞生物学研究中的应用

绿色荧光蛋白及其在细胞生物学研究中的应用近几十年来,绿色荧光蛋白(GFP)被广泛用于生物学的研究,特别是在细胞生物学领域,它在基因表达分析、膜蛋白研究,以及定位和追踪细胞外状态变化等方面提供了有力的工具。

绿色荧光蛋白最初是从拟南芥中分离出来的,它是一种可以在生物细胞中发出可见的绿光的蛋白质。

GFP可以与其他蛋白质结合在一起,可以用来检测特定蛋白质的表达和定位。

利用绿色荧光蛋白的特性,我们可以实现转基因技术的可视化,同时实现基因的定位,这使得细胞的动态变化以及基因调控可以被直观定量地观察出来。

在GFP的研究过程中,科学家发现GFP本身也有可以改进的特性,不仅可以让它发出绿色的光,也可以被用来实现转基因技术的可视化。

它的发光强度与温度变化和环境改变有关,当温度提升或温度较高时,GFP的发光强度会增强。

GFP还可以用来检测特定的一种或多种蛋白质,能够实现精确的蛋白质定位。

同时,研究人员还发现GFP的表达能力可以被亚细胞定位,发现细胞内部基因表达的动态变化。

GFP也被用于膜蛋白研究,可以很好地实现膜蛋白在细胞表面的定位,从而有助于我们更好地分析膜结构和功能,为细胞生物学研究带来新的视角。

此外,GFP还可以被用于探索和分析细胞外状态变化,它能够通过显示细胞的迁移、聚类、分离等状态变化来揭示细胞的行为和表型特征,成功地帮助了许多细胞生物学研究。

绿色荧光蛋白是一种重要的细胞生物学研究工具,它的出现使得细胞的研究变得更加容易,提高了生物学研究的效率。

它不仅可以被用于基因表达分析和定位,也可以用于膜蛋白研究,使我们更好地了解细胞的行为和表型特征,实现细胞外状态变化的追踪,进而发现基因调控的模式,目前,GFP的技术已经成为细胞生物学研究技术的重要组成部分,将为未来更多的细胞生物学研究带来更多的帮助。

综上所述,GFP在细胞生物学研究中具有重要的意义,它提供了一种强大的分析工具,可以实现基因表达分析、膜蛋白研究和细胞外状态变化的定量观察。

绿色荧光蛋白及其在细胞生物学研究中的应用

绿色荧光蛋白及其在细胞生物学研究中的应用

绿色荧光蛋白及其在细胞生物学研究中的应用绿色荧光蛋白(Green Fluorescent Protein, GFP)是一种从水母Aequorea victoria中分离出来的荧光蛋白质,可以发射绿色荧光。

由于GFP具有结构简单,对细胞无毒性和较强稳定性等特点,因此被广泛应用于细胞生物学和生命科学研究中。

以下是关于GFP及其在细胞生物学研究中的应用的介绍。

一、荧光蛋白及GFP的来源荧光蛋白质是一种含有环状芳香族氨基酸残基的蛋白质,能够吸收外部能量并将其转化为荧光发射。

GFP最初是在1955年,美国南加州大学的Osamu Shimomura研究水母发光机制时发现的。

GFP由238个氨基酸组成,分子量约27kDa。

GFP基因被克隆后即可在其他生物中表达,使它成为了生物体内最常用的荧光标记物之一。

二、GFP的结构和原理GFP的荧光由3个氨基酸残基Tyr(酪氨酸)、Ser(丝氨酸)和Gly(甘氨酸)构成的环状结构决定。

当氧气与Tyr形成共轭键时,便使荧光激发能量被吸收,并在GFP分子腔内缓慢扩散,直至荧光发射。

三、GFP在细胞生物学中的应用1、荧光定位GFP被广泛用于生命科学中细胞定位的研究。

由于GFP具有细胞膜透性和结构稳定性等特性,可以将其组装到生物体内,使其具有明亮的绿色荧光。

通过转化所需的基因序列来表达GFP,可以使研究人员直接在活细胞中观察到融合GFP蛋白质的定位和空间分布状况。

2、蛋白质交互作用GFP也被用作蛋白质交互作用的研究工具。

在这种情况下,GFP被连接到研究的蛋白质上,而研究人员观察到GFP与其他蛋白质结合的情况,从而确定蛋白质之间是否相互作用。

3、表达和异常行为GFP还可用于研究蛋白质的表达和异常行为。

通过表达GFP基因,可以探究研究对象的分泌情况、活动状态、质量控制和分解情况等。

4、细胞轨迹追踪GFP被广泛应用于细胞追踪研究中。

通过转染GFP基因,可以实时跟踪特定细胞类型的运动和位置,比如细胞分裂、游走和迁移等。

绿色荧光蛋白及其在细胞生物学中的应用

绿色荧光蛋白及其在细胞生物学中的应用

绿色荧光蛋白及其在细胞生物学中的应用绿色荧光蛋白(GFP)是生物学中非常著名的一个标记蛋白,它可以帮助科学家们观察、追踪细胞内部分子的运动和位置变化。

本文将介绍GFP的结构、功能以及在细胞生物学中的应用。

GFP结构与功能GFP来自于海葵(海洋无脊椎动物)中的一种发光蛋白,它的结构中含有一个环状结构(环状柄)和一个β桶(β-barrel)。

环状柄中含有一个色素分子,称为染料环,贡献了GFP的光学特性。

β桶的作用是保护染料环,并使它的光学特性达到最佳状态。

GFP有着非常特殊的性质,它可以在自然光下发出荧光,荧光颜色为绿色。

当其暴露在213-488nm的紫外线照射下,GFP就会发射从蓝、绿到黄的荧光波长。

GFP的这种特性使得它成为了生物学家们进行光学研究的最佳工具。

1. 显微镜下的成像GFP是一种非常强的标记蛋白,通过将其融合到目标物分子上,可以非常清晰地显示该分子的位置和运动。

利用显微镜技术,研究人员可以观察到细胞器、蛋白质、RNA等生命大分子在细胞内的运动和相互作用,从而揭示其在生物学中的重要作用。

2. 基因表达与细胞注释通过将GFP基因转染到细胞中,可以实现在特定细胞和组织中进行特定基因的表达。

同时,在转染GFP的细胞中,人们也可以通过显微镜监测到特定细胞的位置和分布,用于细胞的标记与识别。

3. 胚胎发育研究GFP还可以用于观察和研究胚胎发育过程中各种细胞分子的运动和定位。

通过将GFP融合到发育过程中的标志性分子中,研究人员可以观察到该分子在胚胎发育的不同阶段中的表达和变化,从而揭示胚胎发育的机制。

总结GFP的发现和应用开创了一种全新的标记技术,使科学家们能够更深入地探究生命大分子的运动、位置和相互作用。

GFP的强烈荧光使得其在细胞生物学研究中具有广泛的应用价值,特别是在显微镜下的成像、基因表达与细胞注释以及胚胎发育研究中。

可以预见,在不久的将来,GFP的应用将会更加广泛,并将继续推动生命科学研究的进步。

发光细菌GFP的表达机理及应用

发光细菌GFP的表达机理及应用

发光细菌GFP的表达机理及应用发光细菌GFP是绿色荧光蛋白的简称,是由Aequorea victoria这种水母所产生的一种蛋白质。

GFP不但具有高度的应用价值,而且还是生物学研究中最有用的分子标记之一。

本文将从发光细菌GFP的表达机理、应用以及未来发展等方面进行介绍。

一、发光细菌GFP的表达机理GFP是一种由238个氨基酸组成的蛋白质,主要在海水深处生活的Aequorea victoria珊瑚中产生。

GFP通过吸收紫外线光激发,产生荧光。

GFP能在任何类型的生物组织内发光,不会产生有害影响。

除了绿色之外,GFP还能产生黄色、蓝色、紫色、红色等颜色的荧光。

这些颜色的荧光由不同种类的GFP进行表达,这些不同种类的GFP都具有不同的结构和光学特性。

GFP的结构包含一个由11肽段组成的β桶状结构和一个由α螺旋段组成的关键性结构域。

通过对这个结构域的分子工程改造,研究人员可以对GFP进行改造,使其在其他物种内表达并发光。

二、发光细菌GFP的应用GFP已成为生物医学领域的热门研究课题。

由于GFP可以与其他蛋白质相结合,并且不会对细胞造成任何影响,能够用于实现对生物系统的准确研究。

GFP可以制作成质粒,通过质粒转染等方法,将其导入到需要研究的细胞内。

利用GFP可准确观察到细胞内各种蛋白质分子的定位和表达等情况。

1、生物病理学:GFP在生物病理学领域已经有了广泛的应用。

与其他标记方法相比,GFP标记具有许多优势。

第一,当有多种标记时,GFP在背景噪音中更易于辨认;第二,直接观察细胞在活体状态下的各种功能,例如细胞的表面形态、细胞器的运动等。

2、分子生物学:GFP已经成为分子生物学中最重要的分子标记技术之一。

通过观察GFP标记蛋白分子的表达、定位和交互关系,有助于更好地理解生物化学反应。

利用GFP标记,研究人员可以更好地分离和分析蛋白质、DNA和RNA,进一步深入研究生物化学反应。

3、神经科学:大多数神经科学家利用GFP生物标记技术,将化学物质或电压灵敏的通道与GFP合并。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
4
3 GFP的稳定性
❖ GFP荧光极其稳定,在荧光显微镜强光照射下,GFP抗光漂白(Photobleaching)能力比荧光素
(fluorescein)强[19]。特别在450~490 nm蓝光波长下更稳定,但在340~390 nm或39GFP在不同物种中稳定性不同,在果蝇和斑纹鱼(Zebra
特性无差异。利用维管蛋白(β-tubulin)基因mec-7启动子构
建表达载体,转染线虫(Caenorhabditiselegans),在幼虫的4
种胚性起源触觉受体神经元细胞中,观察到很强、很稳定的
GFP荧光,包括部分2龄幼虫、所有4龄幼虫和绝大多数幼小
成虫。据报道,GFP基因在酵母(Saccharomyces
❖ 形成环状六肽三体, 以共价形式与GFP蛋白肽键骨架相连 。色基形成的机理目前尚不清楚,但在有分子 氧存在的条件下, 酪氨酸氧化成脱氢酪氨酸, 并环化形成六肽, 这可能是形成色基的必然过程。Sh im om u ra 最先推导了水母GFP色基结构,后来Ward等进行了进一步验证与修改。GFP的cDNA克隆序列分析 表明,在2.6kb范围内至少分布有3个启动子,组成色基的SerˉTyrˉGly三体就位于第二个内含子3’端
A
7
2.2 GFP作为报告蛋白用于基因表达的调 控效果研究
❖ Clontech公司构建了一种叫启动子报告载体(Promoter reporter vector)即 没有启动子的GFP质粒,专门用来测试各种启动子对GFP表达的效率,以 及某些增强子对GFP表达的调控效果。发现用玉米C4PPDK基因5′端的 非翻译片段(5′VTR)与花椰菜花叶病毒的35S启动子连接,GFP在玉米原生 质体中的表达效率比对照质粒(只有35S启动子)提高近15倍,因为5′VTR 片段中含转录增强子。用拟南芥菜热体克(Heat-shock)基因启动子构建 GFP表达载体,用以转化玉米原生质体。发现42℃热激处理中50%原生质 体表达GFP荧光;37℃处理的荧光较弱;而常温下培养,则完全观察不到原 生质体中的GFP荧光。在高等植物遗传转化的基因表达调控研究中,已有 很多报告蛋白被应用,包括Lac Z (β-galactosidase )[35]、CAT ( Chloramphenicolacethytransferase)[36]、Luc(荧光虫 Luciferase)[37,38]和GUS(β-glucuronidase)[39]等。但这些报告蛋白都 是酶,其表达产物的检测都需要进行细胞固定、组织切片或蛋白提取等破 坏性处理,很难用于活体观察和检测。GFP作为一种活体报告蛋白[40],用 于研究基因表达的调控,明显具有其它报告蛋白不可替代的优点
绿色荧光蛋白(GFP) 的特性及 其在分子生物学研究中 的应用
A
1
生物发光现象, 在无脊椎动物中很普遍。它是生物能量的一种转换方式 [ 1, 2 ]。在水母(Jellyfish) 中, 当能量从 Ca + + 活化的水母蛋白(A equo rin ) 转移到绿色荧光蛋白(Green F luo rescen t P ro tein, 简称GFP)上以 后,它即发出绿色荧光。活体GFP与纯化的 GFP 具有相同光谱特性, 即吸收蓝光, 放射绿光。可以用紫外灯、荧光显微镜或荧光活化流体分 光光度计进行活体检测 。由于GFP 稳定、灵敏度高、无生物毒性、荧 光反应不需要任何外源反应底物及表达无物种或细胞组织的专一性, 因 此它是一种独特的 报告蛋白(R epo rter p ro tein) , 可广泛用于基因的表 达与调控、蛋白质的定位、转移及相互作用、信号传递、转染与转化, 以及细胞的分离与纯化等研究领域。90年代后, 有关GFP 及其利用的研 究进展较快,已引起分子生物学家极大的兴趣与关注。
质体中的蛋白合成,但通过GFP观察,转染24小时后,仍未发现GFP荧光有明显减弱,仅有部分
GFP被放线菌酮降解。说明GFP在植物活体细胞中比CAT还要稳定[27]。此外,尽管GFP的
消光系数较低,但和荧光素一样,额定含量可高达80%。在荧光显微镜下,GFP融合蛋白的荧
光灵敏度远比荧光素标记的荧光抗体高,抗光漂白能力强,因此更适用于定量测定与分析。
使470 nm吸收峰值下降近4倍。GFP很容易从细胞中分离并结晶[22]。在离体状态下,GFP
蛋白对热(70℃)、碱性、除垢剂、盐、有机溶剂和大多数普通蛋白酶(链霉蛋白酶Pronase
除外)有较强抗性[23]。GFP荧光在pH值为7~12时稳定,在pH值为5.5~7.0时开始受影响[24]。
在纳克级水平,SDS-聚丙烯酰胺电泳凝胶中仍能观察到GFP荧光。在高温、极端pH、或胍
❖ 自Prasher DC从水母(A.victoria)中克隆了GFP的cDNA
后,GFP能在原核和真核细胞中表达的表达载体相继被构建
成功。Chalfie M构建了GFP大肠杆菌表达载体,GFP基因
在T7启动子控制下很容易在大肠杆菌中高效表达。从转染
的大肠杆菌中分离的GFP蛋白与水母的天然GFP离体光谱
fish)中极稳定;在大肠杆菌中会有光漂白;在线虫中10 mM的NaN3将加速光漂白。GFP需要
在氧化状态下产生荧光,强还原剂如5 mM Na2S2O4或2 mM FeSO4能使GFP转变为非荧
光形式,但一旦重新暴露在空气或氧气中,GFP荧光便立即得到恢复。而一些弱还原剂,如2%
巯基乙醇、10 mM DDT、10 mM还原谷胱甘肽、10 mM半胱氨酸等并不影响GFP荧光。
A
2
一 GFP 的结构、特性与功能
❖ 1 GFP 的结构
❖ P rasher DC 首 先 克 隆 了 水 母 Jellyfish(A equorea v ictoria GFP)的cDNA[ 6 ],GFP编码的238个氨 基酸的多肽单体,推导分子量Mr=26888,与先前用变性电泳测得的天然 GFP 分子量 (30 KD a ) 接近。根据DNA序列推导的氨基酸序列与大部分天然GFP的多肽片段相同。只有完整的GFP 分子才会 产生生物荧光, 但与荧光的产生直接有关的是GFP 分子中一小段被称为色基(Ch rom opho re ) 的部位 (图2。在GFP的初级氨基酸序列上, 第65~67个氨基酸(SerˉTyrˉGly)ˉˉˉˉ
A
3
2 GFP 的光谱特性
❖ GFP吸收的光谱, 最大峰值为395nm(紫外),并有一个峰值为470nm的副峰(蓝 光);发射光谱最大峰值为509nm(绿光),并带有峰值为540nm的侧峰 (Shouder).GFP的光谱特性与荧光素异硫氰酸盐(FITC)很相似,因此为荧光素 FITC设计的荧光显微镜滤光片组合同样适用于GFP观察。尽管450~490 nm(蓝 光)是GFP的副吸收峰,但由于长波能量低,细胞忍受能力强,因此更适合于活体检 测。Chroma技术公司(Chroma Technology Corp.Brattlebore,VT 05301,USA)已 研制出一系列适合于GFP观察的滤光片组合。利用重组突变[10,11,12]和数字联 想分光显微镜( Digital ImagingSpectroscopy)技术[13,14,15]可以诱发GFP色基 突变,改变GFP光谱特性。Heim R等[16,17]获得了野生型GFP的一系列随机突变, 其激发波长和发射波长都发生了变化(表1)。如获得的蓝色荧光突变,就是原GFP 分子中第66个氨基酸由酪氨酸突变成的组氨酸,但荧光信号减弱了近50%。 Delagrave S获得的红色漂移(Red-shifed)突变,与野生型GFP相比,其激发波长向 红色方向漂移了近100 nm[18]。具有不同光谱特性的GFP突变体的获得,使在同 一细胞中同时分析两种不同蛋白或启动子成为可能,可以用于发育细胞学、药物 筛选、分析诊断等研究。
基氯化物条件下,GFP会变性,荧光消失。一旦复性,荧光会部分恢复[25],但可能需要某些硫
醇类化合物的作用[26]。GFP在各种生物活体条件下表现稳定。例如氯霉素乙酰转移酶
(CAT)在生物体内很稳定,用35S-甲硫氨酸分别标记CAT和GFP,并转染玉米叶肉原生质体,用
放线菌酮处理原生质体,通过CAT检测,发现5~10μg/ml放线菌酮可完全抑制CAT在玉米原生
中度氧化剂对GFP荧光影响也不大,如生物材料的固定、脱水剂戊二酸或甲醛等,但GFP对
某些封片指甲油特别敏感,苯氧丙烷对GFP荧光也有影响。强氧化剂如1% H2O2,或硫氢基
试剂如1 mM DTNB会造成GFP不可逆性破坏[20]。大多数中等浓度的有机试剂不减弱GFP
荧光,但其最大吸收峰值会改变[21]。在高蛋白、高盐条件下,GFP通过疏水反应形成二聚体,
cerevisiae)、果蝇(Drosophila melanogaster)以及多种哺
乳动物细胞(中国仓鼠卵巢细胞系、人体胚性肾细胞系、猿
猴Cos-1细胞系以及鼠NIH3T3细胞系等)中表达,都相继成
功[20,29,30,31,32]。GFP在高等植物中的利用较晚,表达
成功的例子还不多。Sheen J等报道,通过电击法
(Electroporation)转染玉米叶肉A 原生质体,有50%原生质
6
❖ 体观察到GFP荧光,集中在细胞质或核周围部。紫外光下液 泡显蓝色荧光,蓝光下叶绿体显红色荧光,出现黄色荧光是叶 绿体红色荧光与GFP绿色荧光的重叠效果。HuW也报道,用 电击法和PEG法同时转化玉米和拟南芥菜(Arabidopsis)原生 质体,GFP在玉米原生质体中表达,但PEG介导比电击法转化 效率高,而拟南芥菜原生质体中未观察到GFP表达[33]。不过 Sheen J等利用基因枪(Microprojectile bombardment)轰击 拟南芥菜完整叶片和根组织,观察到活体GFP荧光。Niedz RP等用电击法转化甜橙(Citrus sinensis)原生质体,450~490 nm蓝光下观察到20%~60%原生质体发生较强绿色荧光[34]。 此外,也有GFP在菸草、水稻中表达的报道。GFP在多种原 核和真核生物细胞中表达,表明GFP色基形成的翻译后修饰 过程并非需要原有水母(A.victoria)细胞中任何其它成份或共 因子。亦表明GFP作为报告基因,其表达不受生物类型、基 因型或细胞组织类型的限制,具有广泛的利用前景。
相关文档
最新文档