动态规划法求解背包问题
动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
动态规划——背包问题python实现(01背包、完全背包、多重背包)

动态规划——背包问题python实现(01背包、完全背包、多重背包)参考:⽬录描述:有N件物品和⼀个容量为V的背包。
第i件物品的体积是vi,价值是wi。
求解将哪些物品装⼊背包,可使这些物品的总体积不超过背包流量,且总价值最⼤。
⼆维动态规划f[i][j] 表⽰只看前i个物品,总体积是j的情况下,总价值最⼤是多少。
result = max(f[n][0~V]) f[i][j]:不选第i个物品:f[i][j] = f[i-1][j];选第i个物品:f[i][j] = f[i-1][j-v[i]] + w[i](v[i]是第i个物品的体积)两者之间取最⼤。
初始化:f[0][0] = 0 (啥都不选的情况,不管容量是多少,都是0?)代码如下:n, v = map(int, input().split())goods = []for i in range(n):goods.append([int(i) for i in input().split()])# 初始化,先全部赋值为0,这样⾄少体积为0或者不选任何物品的时候是满⾜要求dp = [[0 for i in range(v+1)] for j in range(n+1)]for i in range(1, n+1):for j in range(1,v+1):dp[i][j] = dp[i-1][j] # 第i个物品不选if j>=goods[i-1][0]:# 判断背包容量是不是⼤于第i件物品的体积# 在选和不选的情况中选出最⼤值dp[i][j] = max(dp[i][j], dp[i-1][j-goods[i-1][0]]+goods[i-1][1])print(dp[-1][-1])⼀维动态优化从上⾯⼆维的情况来看,f[i] 只与f[i-1]相关,因此只⽤使⽤⼀个⼀维数组[0~v]来存储前⼀个状态。
那么如何来实现呢?第⼀个问题:状态转移假设dp数组存储了上⼀个状态,那么应该有:dp[i] = max(dp[i] , dp[i-v[i]]+w[i])max函数⾥⾯的dp[i]代表的是上⼀个状态的值。
动态规划解决背包问题和旅行商问题

动态规划解决背包问题和旅行商问题动态规划(Dynamic Programming)是一种解决复杂问题的算法思想,它通过将问题划分为多个子问题,并记录子问题的解来解决原始问题。
在背包问题和旅行商问题中,动态规划是一种常见且高效的解决方法。
1. 背包问题背包问题是一个经典的优化问题,可以用动态规划的方法解决。
给定一组物品,每个物品有自身的价值和重量,同时给定一个背包的容量,要求在不超过背包容量的前提下,选择物品放入背包,使得背包中物品的总价值最大化。
动态规划的思路是定义一个二维数组dp[i][j],其中i表示从第1个到第i个物品,j表示背包的容量。
dp[i][j]表示在前i个物品中,容量为j的背包中能够放入的物品的最大价值。
通过状态转移方程可以求解dp[i][j],其中状态转移方程为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
通过计算dp[i][j],最终可以得到在背包容量为j的情况下的最大价值。
可以通过回溯的方法找到具体放入背包的物品。
2. 旅行商问题旅行商问题是一个典型的组合优化问题,它要求在给定的一组城市中,寻找一条最短的路径使得旅行商经过每个城市一次后返回起始城市。
动态规划可以通过建立一个二维数组dp[S][i]来解决旅行商问题,其中S表示城市的集合,i表示当前所在的城市。
dp[S][i]表示从起始城市出发经过集合S中的城市,最后到达城市i的最短路径长度。
对于dp[S][i],可以通过以下状态转移方程来计算:dp[S][i] = min(dp[S-{i}][j] + d[j][i])其中S-{i}表示从集合S中去除城市i,d[j][i]表示从城市j到城市i的距离。
通过计算dp[S][i],最终可以得到从起始城市出发经过所有城市一次后返回起始城市的最短路径长度。
同样可以通过回溯的方法找到具体的最短路径。
利用动态规划解决01背包问题01背包问题动态规划

利用动态规划解决01背包问题01背包问题动态规划背包问题是一个经典的动态规划模型,很多关于算法的教材都把它作为一道例题,该问题既简单又容易理解,而且在某种程度上还能够揭示动态规划的本质。
将具有不同重量和价值的物体装入一个有固定载重量的背包,以获取最大价值,这类问题被称为背包问题。
背包问题可以扩展出很多种问题,而01背包问题是最常见、最有代表性的背包问题。
一、问题描述给定一个载重量为M的背包及n个物体,物体i的重量为wi、价值为pi,1≤i≤n,要求把这些物体装入背包,使背包内的物体价值总量最大。
此处我们讨论的物体是不可分割的,通常称这种物体不可分割的背包问题为01背包问题。
二、基本思路01背包问题的特点是:每种物体只有一件,可以选择放或者不放。
假设:xi表示物体i被装入背包的情况,xi=0,1。
当xi=0时,表示物体没有被装入背包;当xi=1时,表示物体被装入背包。
根据问题的要求,有如下的约束方程(1)和目标函数(2):三、利用动态规划法求解01背包问题(一)动态规划算法的基本思想动态规划算法通常用于求解具有某种最优性质的问题。
在这类问题中,可能会有许多可行解。
每一个解都对应于一个值,我们希望找到具有最优值的解。
动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。
若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算很多次。
如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。
我们可以用一个表来记录所有已解的子问题的答案。
不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中,这就是动态规划法的基本思路。
具体的动态规划算法多种多样,但它们具有相同的填表格式。
(二)算法设计假定背包的载重量范围为0~m。
蛮力法、动态规划法、回溯法和分支限界法求解01背包问题【精选】

一、实验内容:分别用蛮力法、动态规划法、回溯法和分支限界法求解0/1背包问题。
注:0/1背包问题:给定种物品和一个容量为的背包,物品的重n C i 量是,其价值为,背包问题是如何使选择装入背包内的物品,使得装i w i v 入背包中的物品的总价值最大。
其中,每种物品只有全部装入背包或不装入背包两种选择。
二、所用算法的基本思想及复杂度分析:1.蛮力法求解0/1背包问题:1)基本思想:对于有n 种可选物品的0/1背包问题,其解空间由长度为n 的0-1向量组成,可用子集数表示。
在搜索解空间树时,深度优先遍历,搜索每一个结点,无论是否可能产生最优解,都遍历至叶子结点,记录每次得到的装入总价值,然后记录遍历过的最大价值。
2)代码:#include<iostream>#include<algorithm>using namespace std;#define N 100//最多可能物体数struct goods //物品结构体{int sign;//物品序号int w;//物品重量int p;//物品价值}a[N];bool m(goods a,goods b){return (a.p/a.w)>(b.p/b.w);}int max(int a,int b){return a<b?b:a;}int n,C,bestP=0,cp=0,cw=0;int X[N],cx[N];/*蛮力法求解0/1背包问题*/int Force(int i){if(i>n-1){if(bestP<cp&&cw+a[i].w<=C){for (int k=0;k<n;k++)X[k]=cx[k];//存储最优路径bestP=cp;}return bestP;}cw=cw+a[i].w;cp=cp+a[i].p;cx[i]=1;//装入背包Force(i+1);cw=cw-a[i].w;cp=cp-a[i].p;cx[i]=0;//不装入背包Force(i+1);return bestP;}int KnapSack1(int n,goods a[],int C,int x[]){Force(0);return bestP;}int main(){goods b[N];printf("物品种数n: ");scanf("%d",&n);//输入物品种数printf("背包容量C: ");scanf("%d",&C);//输入背包容量for (int i=0;i<n;i++)//输入物品i 的重量w 及其价值v {printf("物品%d 的重量w[%d]及其价值v[%d]:",i+1,i+1,i+1);scanf("%d%d",&a[i].w,&a[i].p);b[i]=a[i];}int sum1=KnapSack1(n,a,C,X);//调用蛮力法求0/1背包问题printf("蛮力法求解0/1背包问题:\nX=[ ");for(i=0;i<n;i++)cout<<X[i]<<" ";//输出所求X[n]矩阵printf("]装入总价值%d\n",sum1);bestP=0,cp=0,cw=0;//恢复初始化}3)复杂度分析:蛮力法求解0/1背包问题的时间复杂度为:。
蛮力法、动态规划法 求解01背包问题

else
v[i][j]=v[i-1][j];
}
else v[i][j]=v[i-1][j];
}
return v[n][m];
}
int main()
{
int m,n;int i,j;
cout<<"请输入背包的承重量:"<<endl;
2)复杂度分析:2n
2、动态规划法
1)基本思想:Dynamic programming is a technique for solving problems with overlapping subproblems.The function:
V(i,0)=V(0,j)=0;(1)
V(i-1,j)j<w
if (cur_weight <= capacity && cur_value > max_value) {
max_value = cur_value;
}
return;
}
c[d] = 0;
MFKnapsack(capacity, values, weights, c,
d + 1, max_value);
cout << MFKnapsack(capacity, values, weights, n) << endl;
return 0;
}
(2)Dynamic Programming
#include<iostream.h>
#include<string.h>
int v[10][100];//对应每种情况的最大价值
用蛮力法、动态规划法和贪心法求解0 1背包问题

printf("\n");
}
}
以下要依次判断每个子集的可行性,找出可行解:
voidpanduan(inta[][4],intcw[])////判断每个子集的可行性,如果可行则计算其价值存入数组cw,不可行则存入0
{
int i,j;
int n=16;
int sw,sv;
for(i=0;i<16;i++)
用蛮力法解决0/1背包问题,需要考虑给定n个物品集合的所有子集,找出所有可能的子集(总重量不超过背包容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。
所以蛮力法解0/1背包问题的关键是如何求n个物品集合的所有子集,n个物品的子集有2的n次方个,用一个2的n次方行n列的数组保存生成的子集,以下是生成子集的算法:void force(int a[][4])//蛮力法产生4个物品的子集
{
int i,j;
int n=16;
int m,t;
for(i=0;i<16;i++)
{t=i;
for(j=3;j>=0;j--)
{
m=t%2;
a[i][j]=m;
t=t/2;
}
}
for(i=0;i<16;i++)//输出保存子集的二维数组
{
for(j=0;j<4;j++)
{
printf("%d",a[i][j]);
i++;
}
return maxprice;
}
#include<stdio.h>
#include<stdlib.h>
0-1背包问题的动态规划法与回溯法

0-1背包问题的动态规划法与回溯法⼀、动态规划状态转移⽅程:1从前往后:2if(j>=w[i])3 m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]);4else5 m[i][j]=m[i-1][j];67从后往前:8if(j>=w[i])9 m[i][j]=max(m[i+1][j],m[i+1][j-w[i]]+v[i]);10else11 m[i][j]=m[i+1][j];算法:1从前往后:2for(int i=1;i<=n;i++)3for(int j=1;j<=c;j++)4 {5if(j>=w[i])6 {7 m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]);8 }9else//这⾥没有考虑j<0的情况,因为算法中j取不到10 {11 m[i][j]=m[i-1][j];12 }13 }1415从后往前:16for(int i=n;i>=1;i--)17for(int j=1;j<=c;j++)18 {19if(j>=w[i])20 {21 m[i][j]=max(m[i+1][j],m[i+1][j-w[i]]+v[i]);22 }23else24 {25 m[i][j]=m[i+1][j];26 }27 }例⼦:例:0-1背包问题。
在使⽤动态规划算法求解0-1背包问题时,使⽤⼆维数组m[i][j]存储背包剩余容量为j,可选物品为i、i+1、……、n时0-1背包问题的最优值。
绘制重量数组w = {4, 6, 2, 2, 5, 1},价值数组v = {8, 10, 6, 3, 7, 2},背包容量C = 12时对应的m[i][j]数组。
(从前往后)例题代码 :1 #include<iostream>2 #include<cmath>3 #include<cstring>4#define N 205using namespace std;6int main()7 {8int w[N]={0,4,6,2,2,5,1},v[N]={0,8,10,6,3,7,2};9int m[N][N];10 memset(m,0,sizeof(m));11int n=6,c=12; //n,c均要⼩于N12for(int i=1;i<=n;i++)13for(int j=1;j<=c;j++)14 {15if(j>=w[i])16 {17 m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]);18 }19else20 {21 m[i][j]=m[i-1][j];22 }23 }24 cout<<m[n][c]<<endl; //从前往后2526/*27 for(int i=n;i>=1;i--)28 for(int j=1;j<=c;j++)29 {30 if(j>=w[i])31 {32 m[i][j]=max(m[i+1][j],m[i+1][j-w[i]]+v[i]);33 }34 else35 {36 m[i][j]=m[i+1][j];37 }38 }39 cout<<m[1][c]<<endl;//从后往前40*/41return0;42 }⼆、回溯法1进⼊左⼦树条件:cw+w[i]<=c //cw为当前重量2进⼊右⼦树条件(减枝函数):cp+r>bestp //cp为当前价值,bestp为当前最优价值,r为当前剩余物品价值总和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1最优解的值,通常采用自底向上的方法;
4.利用计算出的线性构造一个最优解。
实验步骤
方 法
关键代码
((接上页)
实验步骤
方 法
关键代码
测试记录
分 析
结 论
小结
动态规划思想承接了上一次实验的分治算法,对子问题求解,对于背包问题形成一个自下而上的列表进行最优的解答。这样的算法比较省时。关于动态规划还有更多的运用,应当更加透彻的理解,才能更好地解决背包问题以外的应用。
计算机算法实
学号
姓名
班级
实验地点
实验日期
课程名称
实验课时
实验名称
动态规划法求解背包问题
实验目的
通过上机实验,要求掌握动态规划算法的问题描述、算法设计思想、程序设计。
实验环境
Pycharm
实验内容
和原理
动态规划通常是用来求解最优化问题.这类问题可以有很多个可行解,每个解都有一个值,我们希望寻找最优值(最大值或者最小值)的解。我们称这样的解为问题的一个最优解。因为有可能有多个解都达到最优值,但是在求解原问题的最优解的时候只需要找出其中的一个就可以了。就像矩阵链乘法问题中,选择最佳分割位置k的时候,是只需要判断新的代价是否比之前的选中的k时的代价小,如果不小则不变换k的值。这就说明了,是可能出现另外一个分割位置与当前记录的k的位置的代价是一样的,这就说明了k的最佳划分位置不止一个,即原问题的最优解可能不是唯一的,但是动态规划则是求出原问题的一个最优解。
以下由实验教师填写
记 事
评 议
成绩评定
平时成绩_______ 实验报告成绩________ 综合成绩 _________
指导教师签名: