关于地球曲率、大气折射对三角高程测量误差分析

合集下载

三角高程测量的误差分析与大气折光系数的确定

三角高程测量的误差分析与大气折光系数的确定

三角高程测量的误差分析与大气折光系数的确定随着人们对三角高程测量的研究,在平原或丘陵地区三角高程测量已经能够代替三、四等水准测量、跨河水准;在高山地区甚至可以代替一、二等水准测量。

本文在简要介绍三角高测量的基本原理和误差影响因子的基础上重点阐述如何确定大气折光系数K。

标签:三角高程测量误差分析大气折光系数0引言地面高程传递技术主要包括几何水准测量、三角高程测量、液体静力水准等。

用几何水准求地面点的高程其精度较高,但受大气折光、视距及地形的限制;三角高程测量的基本思想是由测站向照准点所观测的竖角和它们之间的水平距离,计算测站点与照准点之间的高差,其受地形条件的限制较少,使用起来相对灵活、高效,广泛用于控制测量、地形测量和工程测量等领域。

1三角高程测量(Trigonometric height surveying)的基本原理全站仪三角高程测量主要分为单向、对向和中点法三角高程测量,文[1]中指出,对向三角高程测量误差最低、精度最高,下面就以对向三角高程测量为例,简要介绍其基本原理。

对向观测又称往返观测,如图1,将全站仪置于A点,棱镜置于B点,测得A、B两点间的高差hAB,hAB称为往测高差:再将全站仪置于B点,棱镜置于A点,测得B、A两点间的高差hBA,hBA 称为反测高差:往返测高差的平均值即可作为最终的测量结果:这种测量方法在导线测量中使用得比较普遍。

式中:S往、S返、α往和α返分别为往返观测的斜距和竖直角;i往、i返、v往和v返分别为往返观测的仪器高和棱镜高;K往和K返分别为往返观测时的大气折光系数;R为椭球半径。

在全站仪进行往返测量时,如果观测是在相同气象条件下进行的,特别是在同一时间进行,则可假定大气折光系数对于反向观测基本相同,因此K往≈K返。

又S2往·cos2α往和S2返·cos2α返同是A、B两点间的平距的平方,也可近似相等。

从(1)~(3)式可以得出对向观测计算高差的基本公式为:2全站仪对向三角高程测量误差分析根据误差传播定律,对(4)进行微分,并转为中误差关系式,则有:从(5)式可以看出,对向三角高程测量的精度主要受边长误差、竖角观测误差、仪器高和目标高的量测误差等诸多因素的影响具体如下:(1)边长误差的大小决定于测量的方法,当今,先进而精密的测距仪器相继问世并得到广泛推广使用,使测距精度显著提高,如Leica TCA2003的测距标称精度达到了1mm+1ppm,能够显著提高短边的测距精度;(2)竖直角观测误差中有照准误差、读数误差、竖盘指标差等,相对来讲,竖角观测误差对高差测定的影响与推算高差的边长成正比,边长越长,影响越大,实际工作中尽量选取测角精度高、能自动照转的仪器进行测量,如Leica TCA的测角精度达0.5″;(3)仪器高和目标高的测定误差,当用光电测距三角高程测量代替四等水准测量时,仪器高和棱镜高的测定要求达到毫米级,可以采用小钢卷尺认真地量测两次取平均值,在实际工作中,我们可以保持往返测过程中棱镜高不变等措施减少其误差。

浅谈三角高程测量误差影响因素分析

浅谈三角高程测量误差影响因素分析

浅谈三角高程测量误差影响因素分析关键词:三角高程误差分析三角高程测量是在地球自然表面进行的。

野外观测时通过量测斜距、垂直角(天顶距)、仪器高、占标高(棱镜高)后利用公式: H=S×Sina+I-V+(1-K)×(S×Cosa)2/2R 其中:H、S、a、I、V分别为高差、斜距、垂直角、仪器高、占标高,K为大气垂直折光系数R为地球平均曲率半径。

对于短程测距而言,垂线偏角和水准面不平行对高差的影响可以不予考虑,坡道弯曲改正也可以忽略不计。

对(1)式进行全微分,并转化为中误差得:m h2=(Sina×m s)2+(S×Cosa/ρ)2×m s2+m i2+ m v2+((S×Cosa)2/(2R))2×m r2下面分别讨论各项误差对三角高程测量误差的影响:1.测距误差对高程误差的影响电磁波测距误差一般可分为仪器系统误差和观测时的对中误差、气象测定误差等,仪器系统误差常指测相误差、加常数的测定误差、光速误差和周期误差等等。

通常情况下,仪器在设计和调试时都可严格控制其数值,但由于运输等原因,造成其值异常。

如果发现其数值较大,可对观测成果进行修正。

对中误差只要作业人员认真操作,一般可以做到:光学对中误差≤±1mm,对一般的测距精度而言对中误差影响不大。

气象因素测定不准,会对大气折射率产生影响,进而影响测距精度。

温度对测距影响最大,其次是大气压,湿度的测定误差对其影响可以忽略不计。

气象参数的测定精度很容易满足测距误差不大于±1mm的要求。

气象参数既可以在测站、镜站分别测定后输入仪器进行自动改正,也可以测记后进行人工改正。

因此,距离的测定误差主要来自仪器的系统误差。

2.垂直角的测定误差垂直角的测定误差主要有照准误差、读数误差、气泡居中误差,当采用全站仪时,由于其水平与垂直度盘采用增量式编码,通过测量莫尔条文的数目,以确定光栅移动的位移量,并经过模数的转换测得微小的角值,仪器竖轴的倾斜误差通过双轴传感器进行自动补偿,因此,其精度稍低于水平角,许多文献研究认为垂直角的观测误差一般比水平角的观测误差大。

地球曲率和大气折光影响的误差

地球曲率和大气折光影响的误差

2.十字丝横丝的检验和校正
(1)目的
使十字丝横丝垂直于仪器 竖轴。当竖轴铅直时,横 丝处于水平位置,横丝上 任何位置读数均相同。
(2)检验方法
①整平水准仪。
②用十字丝交点瞄准远处一明 显标志点,如图2.5-3(a)所 示,拧紧制动螺旋。
③缓缓转动微动螺旋,如果标
志点始终沿着横丝移动,如图
(3)在坑底安置另一台水准仪,设 水准仪在钢尺上读数为a2。
(4为:
b应=(HR+a1)-(b1-a2)-H

(2.4-2)
用同样的办法,亦可从低处向高处测 设已知高程的点。
拓展知识:一、精密水准仪与精密水准尺
1.精密水准仪
特点: (1)用较高灵敏度的水准器,管状水准器格值为 10″/2mm,水准管分划值小,可建立精确的水平视线
②读数误差
读数误差是由于存在视差和水准尺上估读毫米数的误差而产生,此误差与其 人眼的鉴别能力、望远镜的放大倍率以及视线的长度有关,所以在测量作业 中,应遵循不同等级的水准测量对望远镜放大倍率和最大视线长度的规定, 以保证估读精度,视线长度一般控制在50m—100m。
③水准尺倾斜误差
测量时水准尺应扶直,当水准尺倾斜时,其读数总比尺子竖直时的读数大, 而且,视线愈高,水准尺倾斜引起的读数误差愈大,所以在高差大、读数大 时,应特别注意将尺扶直。

(2)具有良好性能的望远镜,将十字丝横丝制成楔形,
便于精确照准。

(3)装有光学测微器,用来精确地在水准标尺上读数,
以提高读数精度,读数可精确到0.1mm或0.05mm。

(4)具有坚固的结构,视准轴与水准管轴间的关系相
对稳定,受外界条件的影响较小。

三角高程测量原理误差分析及应用

三角高程测量原理误差分析及应用

三角高程测量原理误差分析及应用1三角高程测量的基本原理三角高程测量是通过观测两点间的水平距离和天顶距(或高度角)求定两点间的高差的方法。

它观测方法简单,不受地形条件限制,是测定大地控制点高程的基本方法。

目前,由于水准测量方法的发展,它已经退居次要位置,但在山区和丘陵地带依然被广泛采用。

在三角高程测量中,我们需要使用全站仪或者经纬仪测量出两点之间的距离(水平距离或者斜距)和高度角,以及测量时的仪器高和棱镜高,然后根据三角高程测量的公式推算出待测点的高程。

由图中各个观测量的表示方法,AB两点间高差的公式为:h=S0tanα+i1-i2①但是,在实际的三角高程测量中,地球曲率、大气折光等因素对测量结果精度的影响非常大,必须纳入考虑分析的范围。

因而,出现了各种不同的三角高程测量方法,主要分为:单向观测法,对向观测法,以及中间观测法。

1.1单向观测法单向观测法是最基本最简单的三角高程测量方法,它直接在已知点对待测点进行观测,然后在①式的基础上加上大气折光和地球曲率的改正,就得到待测点的高程。

这种方法操作简单,但是大气折光和地球曲率的改正不便计算,因而精度相对较低。

1.2对向观测法对向观测法是目前使用比较多的一种方法。

对向观测法同样要在A点设站进行观测,不同的是在此同时,还在B点设站,在A架设棱镜进行对向观测。

从而就可以得到两个观测量:直觇:hAB=S往tanα往+i往-v往+c往+r往②反觇:hBA=S返tanα返+i返-v返+c返+r返③S——A、B间的水平距离;α——观测时的高度角;i——仪器高;v——棱镜高;c——地球曲率改正;r——大气折光改正。

然后对两次观测所得高差的结果取平均值,就可以得到A、B两点之间的高差值。

由于是在同时进行的对向观测,而观测时的路径也是一样的,因而,可以认为在观测过程中,地球曲率和大气折光对往返两次观测的影响相同。

所以在对向观测法中可以将它们消除掉。

h=0.5(hAB-hBA)=0.5[(S往tanα往+i往-v往+c往+r往)-(S返tanα返+i返-v返+c返+r返)]=0.5(S往tanα往-S返tanα返+i往-i返+v返-v往)④与单向观测法相比,对向观测法不用考虑地球曲率和大气折光的影响,具有明显的优势,而且所测得的高差也比单向观测法精确。

全站仪三角高程测量方法及精度分析

全站仪三角高程测量方法及精度分析

全站仪三角高程测量方法及精度分析摘要:通过结合全站仪和跟踪杆,我们可以大大提升测量高程的准确性,并且随着应用频率的增加,这种方法也会受到越来越多的重视。

相比于传统的三角测量方法,新型的三角测量技术不仅可以克服其局限性,还能够大大降低误差,提升测量精度。

通过采用无需重复测量仪器和棱镜高度的方式,可以大大减轻外部作业的负担,并且提高测量的效率,这种方法在实际应用中表现出色。

关键词:全站仪;三角高程测量;测量方法;精度分析引言通过使用全站仪测量三角高程,我们可以建立一个三维坐标控制网。

这种方法包括对向观测法和中间观测法。

在进行对向观测时,我们通常会将大气折射系数视为一个常数,但是如果我们忽略了不同方向折射系数的差异性,那么我们就无法准确地评估整个系统的精度。

通过中间观测法,我们可以将折光系数作为一个方向变量来考虑大气折射误差对三角高程测量的影响。

因此,本文将详细介绍三角高程测量方法,并对它们的准确性进行比较分析。

1研究背景和现状高程测量是测量工作的重要组成部分,现代高程测量技术包括水准测量、三角测量和GPS高程测量。

然而,GPS 高程测量技术存在测量精度较低的问题,无法满足日常测量的需求。

此外,传统的三角测量技术,如全站仪测量,也存在一定的局限性,无法满足高程测量的需求。

通过使用全站仪进行三角测量,可以获得两点之间的垂直高度差,这种方法比传统的水平测量更加精确,而且由于没有受到地形的影响,可以更加迅速、准确地完成测量任务。

2全站仪的基本测量原理测量是一项重要的技术,它的主要目的是测量物体的位置、倾斜角、高差。

与传统的测量方式不同,全站仪可以快速、准确地完成测量,大大提高了测量效率,并有效地减少了测量结果的偏差。

全站仪望远镜具有独特的优势,它的核心技术就是其精准的视准轴、高精度的测距光波发射与接收光轴的同轴化,以及可靠的双轴自动倾斜补偿,使得它可以一次性完成所有的测量要素,并确保测量结果的准确性。

3全站仪三角高程测量方法特征分析以及研究进程3.1单向观测法使用全站仪三角高程测量单向观测法可以获得较高的水准测量精度,但是在进行测量之前,必须充分考虑地球曲率和大气折射带来的可能影响,这将会对测量结果产生重大影响。

工程测量中三角高程测量的误差分析及解决方法

工程测量中三角高程测量的误差分析及解决方法
科技创新与应用 l 2 0 1 3 年 第3 4 期
应 用 科 技
Hale Waihona Puke 工程测量中三角高程测量的误差分析及解决方法
戚 忠
( 中国水利水 电第四工程局有 限公 司测绘 中心, 青海 西宁 8 1 0 0 0 7 )
摘 要: 通过 对 三 角 高程 测量 公式 的 分析 , 发 现影 响 三 角 高程测 量 精度 的 因子 , 引进 当下较 为 先进 的设备 与方 法 , 从 而提 高三 角 高程 测 量 的精 度 , 使 其 可 以替 代 几何 水 准测 量 。该 方法 的 实现 可 以 弥补 几何 水 准 受地 形 条件 等 因素 限 制使 工 作 效 率慢 , 测 绘 成 本高 , 人 身、 设 备 安全 无 法保 障等 缺 点 。 关键词: 三 角高程 测 量 ; 几何水准; 误 差 分析 ; 大 气折 光 系数 间观 测对 高 程测 量 不利 , 可 以通 过 加 入大 气 折 光误 差计 算 减 弱 三角 高程 测 量误 差 。 3 - 4 采用 同时对 向观 测 。在 控制 网观测 中 , 由于 投 入 的人 员 、 仪 器、 觇标 数量 和 观测 时 间 的原 因 , 采 用 同时 对 向观 测会 耗 时耗 力 。 且 由于 折 光影 响 , 不 同时 间段 对 向观 测 , 往、 返 测 高差 较差 大 多 都 超 出 规范 限 差要 求 。 3 . 5 确定 合 适 的 大气 折 光 系数 。前 面讲 过 , 在 各 种 不 同 的 情况 下, 大气 折光 系 数都 可 能有 很 大 的差异 。 也 就是 说 , 大气 折光 系 数值 是一 个 变值 , 随时 随地都 在 变化 。 我 国经 过 几个 地 区 的统计 资 料 , 大 气折光 系数一般在 0 . 0 9 — 0 . 1 6之间, 而且 , 其变化也是很复杂 的, 因 低 了测 量 成本 。 而完 全 准确 的掌握 其 变化 规 律将 比较 困难 , 只 能根 据 实 验资 料 概 括 2_ 一角 高 程测 量误 差 分 析 出其 一 般规 律 。 常见 的 二 三 角 高程 测 量有 单 向 观测 法 、中间 法 和对 象 观测 法 , 对 4 大气 折光 系数 的测 量方 法 向观测 法 可 以消 除部 分 误差 ,故 在 j 角高 程 测 量 中采 用较 为广 泛 。 由于大气折光系变化的复杂性 , 使我们不可能精确地确定每一 对 向 观测 法 三角 高程 测 量 的高 差公 式 为 : 方 向 的折 光 系数 。 因此 , 在 实际 作业 中 , 应设 法 精确 的测 定 某一 区 域 内的平 均 折光 系 数 , 用 以计算 各 个 单项 观 测 高差 。大气 折光 系数 虽 + 盟 ( 一 U D( 1 ) 然变化无 常, 但可以经过一段时间的观测找 出它的变化规律 , 确定 式 中: D 为两 点 问 的距离 ; a为垂 直 角; ( k : - k O 为 往返 测 大 气垂 直 适合观测时间段的大气折光系数 。 折光 系数差 ; i 为仪器高 ; v 为 目标高 ; R为地球 曲率半径( 6 3 7 0 k m ) ; 大气 折光 系 数可 以通 过 2种 方法 得 到 : ( 1 )在 已知 高差 的两 点 间单 向观测 垂 直 角 、 斜距 , 求 解 大 气折 光 系 数 ; ( 2 ) 根 据 两 点 间 同 时 ( _ U l 一 U J 为 垂线 偏 差非 线性 变 化量 ; 对 向 观测 的垂 直 角和 斜距 , 求 解 大气 折 光 系数 。采用 两 种 办法 求 解 令 : 一k l =△ k ,生 一 A U , - ‰: m- 并 进行 对 比。确 定折 光 系数 时应 注 意 控制 网测 区一 般 相对 较 小 , 可 对式( 1 ) 微分 , 则 由误 差 传播 定 律 可得 高差 中误 差 : 以作 为一 个 测 区来计 算确 定 大气 折 光 系数 。 但 有 的地 区 由于 某些 特 殊 的情况 原 因 , 计 算 的大 气 折光 系数 互 差较 大时 , 就需要分测p ( 来 m i 进 。 分别 计算 大 气折 光 系数 。 5结 束语 : : 一 ) 。 在工程测量 中利用三角高差测量替代高等级几何水准测量 , 提 由式 f 2 ) 可 知 影 响 三 角 高 程 测 量 精度 主要 有 : 1 . 竖直角 ( 或 天 顶 高三角高程测量等级 , 使测量控制的三维坐标精度一致 , 减少高等 距) 、 2 . 距离 、 3 . 仪器 高 、 4 . 目标 高 、 5 . 球 气 差 。第 l 、 2项 可 以通 过 试 验 级几何水准测量劳动强度 , 降低测量成本 , 提高测量速度和效益。 但 观测 数 据分 析 选择 精 度合 适 的仪 器 及其 配 套 的反 光 棱 镜 、温度 计 、 该方 法也 有 一些 需要 改 进 的部 分 , 我们 在 实践 过 程 中总结 了以下 几 气 压表 等 , 我 们 选择 的是 徕 卡 T C A 2 0 0 3 及 其 配 套 的单 棱 镜 、 国产 机 点 , 希望 能 给大 家 以借 鉴 , 使 得 该技 术 在应 用过 程 更加 方便 、 可靠。 械通 J x 【 f湿温 度计 、 盒式 气 压计 ; 第 3 、 4 项, 一 般 要 求建 立 稳定 的观 5 . 1跨河 ( 或障碍物) 任意设站三角高程测量时 , 测量前需对棱 测 墩 和强 制 对 中装 置 , 采 用 游标 卡 尺 在 基座 3个 方 向 量 取 , 使 3个 镜 、 对 中杆进 行 校测 。 方 向 量取 的校 差小 于 0 . 2 m m, 并 在测 前 、 测 后进 行 2次量 测 ; 第 5项 5 . 2 任 意 设 站 三 角程 测 量 , 尽 量 缩 短前 、 后 视 距 离 及 其距 离 之 球气 差 也 就是 大 气折 光差 , 也 是 本课 题 的研 究 重点 。 差; 影 响 三角 高程 测 量 精度 的因 素很 多 , 容 易产 生 粗 差 , 应 进 行 多 次 3 减弱 大 气折 光差 的方 法和 措施 测量 ; 组于组之间变换仪器高时 , 需在不同位置进行 ; 交换棱镜 时 , 大气 折 光 差 : 是 电 磁 波经 过 大 气 层 时 , 由于传 播 路 径 产 生 弯 曲 特别 注意 棱 镜 头不 能从 对 中杆 上取 下 , 此 时 不 必 量取 仪 器 高 、 棱镜 及 传播 速 度发 生 变化 而 引起 观测 方 向或 距 离 的误 差 。 大气 折 光对 距 高 ,往 返 高差 不 进行 对 比 ;组 于组 之 间 高 差互 比应 满 足 ≤± 4的要 离的影响 , 表 现在 电磁 波 测 距 中影 响 的量 值相 对 较 大 , 必 须 在 测 距 求 。 的同 时实 测 测线 上 的气 象元 素 , 再 用 大气 折 光模 型 对距 离 观 测值 进 5 . 3 山 区天 气 突 变 时 候 多 , 天气突变时应停止观测 , 待 天气 稳 行 改 正 。减 弱 大气 折 光差 的方 法和 措 施有 : a . 提 高 观 测视 线 高 度 ; b . 定 时重 新进 行 观测 。 尽 量 选择 短 边传 递高 程 ; c . 选 择有 利 观 测 时 间 ; d . 采用 同时 对 向观 5 . 4折光差测定时 , 应在测区不同高程面上均匀测定 , 如 发 现 测; e . 确 定 合适 的 大气 折光 系 数 。 上述 的 5 种 办法 虽 然都 可 以减 弱大 异 常 , 应在 同 边不 同 的气 象条 件下 多 次进 行测 定 对 比 。 气 折 光对 三角高 程测 量 精 度 的影 响 , 但 在 实 际 工作 中也有 很 多 制约 作者 简 介 : 戚 忠( 1 9 8 6 一 ) , 男, 汉族 , 青海省西宁市, 中 国水 利 水 闪素。下面具体分析 。 电第 四 工程 局 有 限公 司测绘 中心 , 助理 工 程 师 , 本科 , 工程 测 量 \ 地 3 . 1提高观测视线高度 。由于工地地形条件限制 、 抬高视线高 理信 息 系统 度需要造高标增大测量成本 、由于标墩高大影响其它工程施工 , 提 高观 测视 线 高度 的方法 不 可取 。 3 . 2 尽量 选 择 短边 传递 高程 。由三 角高 程测 量 高差 计算 公 式 可 知, 折光 的影 响与距 离 的平 方 成 比例 , 选择 短边 传 递 高程 有利 。 但 控 制 网的边 长 是 由多 种 因素 控制 的 , 不能 随 意增 加 和减 少 。 3 . 3 选择 有 利观 测 时 问 。 中午前 后 ( 1 0 ~ 1 5时 ) 垂直 折 光小 , 观测 垂直角最有利。 日出 l 小时后至上午 1 0点、下午 1 5点至 日 落前 1 小 时水 平折 光 小 , 利于 水 平方 向角 度 观测 。 控制 网观测 是水 平 、 垂 直 方 向角 度 同时 观测 , 不 能 兼顾 。 根据 现 场施 工情 况 , 采 用上 午 9 — 1 1 . 5 时、 下午 1 4 ~ l 7 . 5时 进行 观 测 ( 1 2 点 是 施工 放 炮 时 间 ) 。虽 然此 段 时

大气折光在三角高程测量中的反算及精度分析

大气折光在三角高程测量中的反算及精度分析

1 三 角 高程 测 量原 理
三 角高程 测量是 利用 观测 的竖直 角 、斜 距 和仪 镜高等参 数 ,根据几 何三 角测量 原理计 算两 点之 间
t g +

() 4
式() 4 就是单 向观 测计算 高差 的基本公 式 。
高差 的一 种方 法 。如 图 1 示 。 所
P C是 P E在 P点 的切线 ,P Ⅳ为光 曲线 ,P 与 P N
相 切 。仪器 置 于 点 测 的竖 直 角为 N C,设 为 。 P 从 图 中可 以看 出 A、 点 问的高差 为 :
h8 B d = F= MC+C E E+ F— MN—N B () 1
程 ,尤 其是 当测量 网需跨 越较 宽河 流 、峡谷 、海岛
第2 4卷第 1期
贵卅I 水力发 电
GU Z I HO W AT R P W E U E O R
21 0 0年 2月

地 质与勘 测 ・
大气折光在三角高程测量中的反算及精度分析
李 浩 ,车 国泉
50 8 ) 50 1 ( 中国水 电顾问集团贵阳勘测设计 研究 院 ,贵州 贵 阳
2 大 气折光 系数 K值 的计算
由式 ( ) 4 可以推 导 出大气折 光 系数 值 的计算 公 式为 : K= , ( ×t t —_ h1 s g +h一 l _ . o 一hB +1 ^) () 5
在 实际外业 工作 中 ,由于 值 随 温度 、气 压 、 角度 、时间等 因素 的不 同而改变 ,因此 如果能 根据
面 曲率 半径 。P E、A F为 过 尸点 和 A点 的水 准 面 。
路 、公路 、水 电 、火 电等测 绘部 门被广 泛使用 ,其 中高程 测量 是很重 要 的一项 内容 。当前 ,高程 测量

三角高程测量方法及误差分析

三角高程测量方法及误差分析

百多年 以前 , 人们用三 角高程测量 的方法来测定高差 , 自水 准测量方法出现以后 , 它 已经退居次要地位 , 但因其作业简单, 在 山 区和丘陵地 区仍得到广泛应用 。 随着 高精度测 角测距全站仪 的发 展, 三角高程测量技术在一些精密工程测量 、 变 形 监 测 的 测量 工 作 中又得到了新的应用 , 其精度甚至达到 了二等水准的精度要求 , 在 些 特殊 领域 得 到 了新 的应 用 。
1 . 2 对 向观 测 法 对 向观测的实质 是两次单 向观测 的组合 , 可 以称之 为往返观 测, 原理与单向观测相 同。 在A点安置全站仪 , 在B 点安置棱镜 , 测得 A、 B 两点间的高差 HA B, 称为往测高差 ; 返测时在B 点安置全站仪 , 在A 点安置棱镜 , 测得B、 A两点间的高差HB A, 称为返测高差。 将往 返 测 得 的 高 差 平 均 以后 得 到 AB 点 的 高差 。 1 . 3 中间设站 法 如 图2 所示 , 分别将棱 镜安置在 已知高程点A和待测高程点B 上, 在A、 B 的大致 中间位置D 安置全站仪 , D 与A、 B 均通视。 根据 单向 观测法 , 测得A、 D 高差 以及B、 D 高差H AD、 HB D, 两个高差相互 求代 数 和 即可 求 得 A、 B 高差 。
一 一
原理是一样 的, 只有对象观测和 中间设站法观测两次, 但是这两种方 法可以削弱大气折光以及地球 曲率所带来的大部分误差。 三角高程测 量的误差来源主要有垂直角误差、 水平距离误差、 仪器高 目标高误差。
2 . 1垂 直 角 误 差
垂直角 的误差来源 主要有三个 , 一 是测量仪器本 身的测角误 差, 二 是 测 量 人 员 的 瞄 准 的误 差 , 三 是 大 气 折光 与地 球 曲率 的 误 差 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于地球曲率、大气折射对三角高程测量误差分析
一、三角高程测量一般可以替代四等水准测量,也就是说它可以满足四等水准测量的精度要求!
二、当地形高低起伏太大,导致高差太大不便于水准测量,可以用三角高程测量原理测量两点间的高差和点位的高程;
三、误差来源:由于地球是一不规则椭圆,我们姑且把它看成一个半径为6371km 的圆,我们来看一下水准面的定义:处处与铅垂线(重力线)垂直的连续封闭曲面;而我们假想的是用一个水平面代替水准面(这里大家要注意一下水准面与水平面的区别);受地球曲率影响,导致了一个误差的来源。

所以我们在等级测量中需要计算一个地球曲率改正数对现场测量的高程加以修正。

我们称其为球差改正f
=D2/2R(其实这公式也不难推导)
1
我们来个简单的几何分析:f1=根号下D2+R2-R
举例:0.5km误差达到20mm,则有f1=根号下0.52+63712-6771=20mm;
由上图我们可以看出,所实测点位的高程偏小,所以用全站仪单向观测时,计算高程时应加上球差改正f1;若进行对向或是中间观测时不必考虑球差改正;等精度观测可以抵消误差
(导线测量要求边长大致相等);
大气折射对三角高程测量的影响:由于低层空气密度大于高层空气密度,观测竖直角的视线穿越不均匀的介质时,导致竖直角偏大或偏小。

所有我们在计算高程时需要考虑大气折射的影响。

f2(气差改正数)= -k*D2/2R(k为大气垂直折光系数)但水准测量几乎不受大气折射影响,因为水准测量提供的是一条水平的视线;但水准测量计算高
程时需要考虑地球曲率的影响;
K一般取0.14,由于k受地区、气候、季节等诸多因数的影响,人们很难精确的测定k的值,正是这个原因,《城市测量规范》中规定测量边长不应大于1km。

综合以上:两者误差改正数f=f1+f2=(1-k)*D2/2R;
则有;计算高程时:hAB=S*sin&+i-v+f(S为斜距、注意&有正负之分)
hAB=D*tan&+i-v+f(D为平距、注意&有正负之分)
测量技巧:测量时采用对向观测时可以抵消f;中间观测法能抵消地球曲率影响,但不能抵消大气折射所带来的误差(理论上);
qq:1作(个人观点,如有问题,欢迎指教)。

相关文档
最新文档