电子器件的散热分析共23页

合集下载

电子电路PCB的散热分析与设计

电子电路PCB的散热分析与设计

电子电路PCB的散热分析与设计随着科技的不断发展,电子设备已经成为了我们生活中不可或缺的一部分。

然而,在电子设备运行过程中,由于电路板上的元器件会产生大量的热能,如果散热不良,会导致设备性能下降、可靠性降低甚至出现安全问题。

因此,针对电子电路PCB的散热分析与设计至关重要。

本文将结合实际案例,对电子电路PCB的散热问题进行分析和讨论。

电路板的热阻:热阻是表示热量传递难易程度的物理量,值越小表示热量传递越容易。

电路板的热阻主要包括元器件的热阻和电路板本身的热阻,其中元器件的热阻受到其功耗、结点温度等因素的影响。

自然对流:自然对流是指空气在温度差的作用下产生的流动现象。

在电子设备中,自然对流可将热量从电路板表面传递到周围环境中,从而降低电路板温度。

然而,自然对流的散热效果受到空气流动速度、环境温度等因素的影响。

强迫通风:强迫通风是通过风扇等装置强制空气流动,以增强电子设备的散热能力。

强迫通风的散热效果主要取决于风扇的功率、风量等因素。

选择合适的导热材料:导热材料具有将热量从高温区域传导到低温区域的能力,常用的导热材料包括金属、陶瓷、石墨烯等。

在电路板设计中,应根据元器件的功耗和结点温度等因素,选择合适的导热材料。

提高电路板表面的散热能力:提高电路板表面的散热能力可以有效降低电路板的温度。

常用的方法包括增加电路板表面积、加装散热片、使用热管等。

合理安排元器件的布局:元器件的布局对电路板的散热效果有着重要影响。

在布局时,应尽量将高功耗元器件放置在电路板的边缘或中心位置,以方便热量迅速散出。

同时,应避免将高功耗元器件过于集中,以防止局部温度过高。

增强自然对流:自然对流是电路板散热的重要途径之一。

在电路板设计中,应尽量减少对自然对流的阻碍,如避免使用过高的结构、保持电路板表面的平整度等。

可在电路板下方或周围增加通风口或风扇等装置,以增强自然对流的散热效果。

采用强迫通风:强迫通风可以显著提高电子设备的散热能力。

电力电子器件及其装置的散热结构优化研究共3篇

电力电子器件及其装置的散热结构优化研究共3篇

电力电子器件及其装置的散热结构优化研究共3篇电力电子器件及其装置的散热结构优化研究1电力电子器件及其装置的散热结构优化研究随着电力电子技术的进步和应用的广泛,电力电子器件在电力系统的使用越来越频繁。

在实际应用中,电力电子器件发热是不可避免的问题,通常需要进行散热处理,以保证器件的稳定、可靠运行。

散热结构的设计和优化是提高电力电子装置的散热性能和可靠性的重要手段。

本文将介绍电力电子器件及其装置的散热结构优化研究。

1. 电力电子器件的散热问题电力电子装置通常由多个电力电子器件组成。

由于电力电子器件在工作时会产生大量的热量,如果不能及时有效地散热,就会导致器件温度升高,甚至烧毁,从而使整个装置失效。

因此,在电力电子器件的设计和使用过程中,必须考虑散热问题。

电力电子器件一般有IGBT、MOSFET、二极管等,不同器件的散热方法也有所不同。

常用的散热方法有天然风冷却、强制风冷却、液冷却、热管散热等。

这些散热方法都需要设计合理的散热结构来实现。

2. 电力电子装置的散热结构电力电子装置的散热结构一般由散热器、风扇、散热片等组成。

其中,散热器是散热结构的核心组成部分,其散热性能的好坏直接影响整个装置的散热效果。

散热器的设计需要考虑多个因素,包括散热器的材料、结构、流体力学等。

常见的散热器材料有铝合金、铜等。

铝的价格相对较低,但其导热系数相对较低;铜的导热系数较高,但价格也较贵。

因此,在选择散热器材料时需要综合考虑成本和性能。

散热器的结构也需要进行优化,以提高散热效率。

一般来说,散热器的表面积越大,则散热效率越高。

同时,散热器内部的流体力学结构对散热效果也有较大影响。

风扇的作用是加速空气流动,降低散热器表面的温度。

设计风扇时需要考虑其噪音、功率等指标。

一般来说,风扇转速越高,则散热效果越好,但噪音也会相应增加。

在电力电子装置的实际应用中,通常会根据具体情况进行风扇参数的优化。

散热片的作用是将热量从电力电子器件传递到散热器上,因此其导热性能对散热效果至关重要。

电路实习报告4篇(共23页)

电路实习报告4篇(共23页)

电路实习报告4篇[范文仅供参考,自行编辑使用]电路实习报告篇1经过两个星期的电工电子实训,,使我对电子工艺的理论有了初步的系统了解。

我们了解到了焊普通元件与电路元件的技巧、印制电路板图的设计制作与工艺流程、收音机的工作原理与组成元件的作用等。

这些知识不仅在课堂上有效,对以后的电子工艺课的学习有很大的指导意义,在日常生活中更是有着现实意义;也对自己的动手能力是个很大的锻炼。

实践出真知,纵观古今,所有发明创造无一不是在实践中得到检验的。

没有足够的动手能力,就奢谈在未来的科研尤其是实验研究中有所成就。

在实习中,我锻炼了自己动手技巧,提高了自己解决问题的能力。

比如做收音机组装与调试时,印制板上铜片的间距特别小,稍不留神,就焊在一起了,但是我还是完成了任务。

我觉得自己在以下几个方面与有收获:一是学到了很多课堂上没法学到的东西,比如学习电路板的制作过程,熟悉了运用Protel制作流程。

二是动手能力的提高,我们从没有这样专业性的使用过电烙铁,这次可亲身体验了一回电焊师的滋味,真是受益匪浅啊!三是提高了我们的细心度,因为在焊接过程中,我们不仅要注意在间距小时不要将两个引脚焊在一起,还要注意相同的元件会因为不同的标值而位置和功能不同,还有,在读固定电阻的阻值时,要牢记各个色圈所代表的含义。

电路实习报告篇2一:实习目的目前protel电路板是一个热门技术,很多高校学生选择与此相关的毕业设计,同时高校也有与此相关的项目。

通过对一只正规产品 GWL—100 单片机学习开发板的安装、焊接、调试、了解电子产品的装配全过程,训练动手能力,掌握元器件的识别,简易测试,及整机调试工艺,从而有助于我们对理论知识的理解,帮助我们学习专业的相关知识。

培养理论联系实际的能力,提高分析解决问题能力的同时也培养同学之间的团队合作、共同探讨、共同前进的精神。

本周实习具体目的如下:1、学习并掌握 Protel 99 SE 软件,在实操过程中能灵活使用该软件。

电子设备常用散热方式的散热能力分析

电子设备常用散热方式的散热能力分析

电力电子设备常用散热方式的散热能力分析1 引言随着电子组装技术的不断发展,电子设备的体积趋于微型化,系统趋于复杂化,高热密度成了一股不可抗拒的发展趋势。

为了适应高热密度的需求,风扇、散热器等传统的散热手段不断推陈出新,新颖高效的散热方法层出不穷。

在众多散热方式面前,区分各种散热方式的散热能力,从而选择既经济又可靠的散热方法成为设计人员极为关注的问题。

本文针对风冷和水冷两种常用的散热方式,综合国内外文献中对这两种散热方式的研究结果,总结出这两种散热方式的散热能力,为热设计人员选择经济合理的散热方式提供参考依据。

2 各种传热方式的传热能力分析各种传热方式传热系数的大致范围如附表所示[1]。

对空气而言,自然风冷时的传热系数是很低的,最大为10w/(m2k),如果散热器表面与空气的温差为50℃,每平方厘米散热面积上空气带走的热量最多为0.05w。

传热能力最强的传热方式是具有相变的换热过程,水的相变过程换热系数的量级为103~104。

热管的传热能力之所以很大,就是因为其蒸发段和冷凝段的传热过程都是相变传热。

附表各种传热方式的传热系数文献[2]给出了根据散热体积和热阻选择散热方式的参考依据,如图1所示。

例如对于热阻要求为0.01℃/w的散热方式,如果体积限制在1000 in3(1in3=16.4 cm3),可以选择风冷散热方式,但必须配备高效的风冷散热器;而如果体积限制在10 in3,只能选择水冷的散热方式。

图1 散热体积与热阻的大致关系3 风冷风冷散热方式成本低,可靠性高,但由于散热能力小,只适用于散热功率小而散热空间大的情况下。

目前风冷散热器的研究热点是将热管与散热器翅片集成在一起,利用热管的高传热能力,将热量均匀地传输到翅片表面,提高翅片表面温度的均匀性,进而提高其散热效率。

空气强制对流冷却方式是目前电力电子元件常用的散热方式,其普通结构是散热器加风扇的形式。

该结构虽然实施方便,成本较低,但其散热能力有限。

电子器件的散热技术及其计算方法

电子器件的散热技术及其计算方法

电子器件的散热技术及其计算方法翁建华;舒宏坤;崔晓钰【摘要】介绍了电子器件散热中常用的部件,包括热管、散热器、微型风扇等,以及为满足不断提高的热流密度而出现的新型散热部件,如振荡热管、微槽道散热器等.同时,结合电子器件散热特点,总结了散热计算的一些方法.这些计算方法是进行产品热设计和热分析的重要工具.【期刊名称】《机电产品开发与创新》【年(卷),期】2015(028)006【总页数】3页(P42-44)【关键词】电子器件;热设计;散热;计算方法【作者】翁建华;舒宏坤;崔晓钰【作者单位】上海电力学院能源与机械工程学院,上海200090;上海电力学院能源与机械工程学院,上海200090;上海理工大学能源与动力工程学院,上海200093【正文语种】中文【中图分类】TK124电子器件的散热方式有导热、对流和辐射,而对流又分为自然对流和强制对流。

按散热所使用的介质,又可分为气体散热和液体散热;按是否使用运动部件,散热又有被动和主动之分。

比如,室内照明用大功率LED主要通过空气自然对流、被动方式进行散热,而微型和小型计算机CPU则主要通过空气冷却、主动方式进行散热[1,2]。

随着电子技术的快速发展,电子元器件的集成度越来越高,热流密度越来越大,散热问题也越来越突出。

因此,电子器件的散热问题也越来越引起产品设计人员的重视。

本文介绍电子产品常用的散热部件及其发展、以及散热问题的一些计算方法,供设计人员参考。

电子器件散热常用部件主要有热管、散热器、微型风扇等,近年来又出现了一些新型散热部件和散热材料,如振荡热管、平板型热管、石墨材料、微槽道等,以满足高热流密度电子元器件散热的需要。

1.1 热管普通热管由管壳、吸液芯等组成,管内充有适量的工作介质。

热管内的工作介质在蒸发段吸收热量,由液态蒸发为汽态,在管的冷凝段释放热量,由汽态凝结为液态,再由吸液芯回流至蒸发段,热量就由热管的一侧传递至另一侧[3]。

热管是一种高效的传热元件,其传热热阻很低,如用于某型号笔记本电脑的热管其传热热阻仅为0.016K/W。

器件的温升与散热PPT课件

器件的温升与散热PPT课件
却方式仍达不到要求,则须采用强迫风冷、水冷,甚至液氮冷却方式。
所采取的散热方式,应能保证半导体材料的结热阻Rθjc小于1℃/W。
第14页/共47页
返回 上页 下页
第九章 器件的温升与散热
9.2.2 暂态热阻抗
变流设备出现负荷的大幅变化,使变流设备的传输功率急剧增加,从而导致变
流设备中功率半导体器件自身的损耗成正比地增加。这些突增的损耗,须通过 功率半导体器件的散热渠道迅速扩散出去。
小一些。
大多数的功率器件拥有大大超过它的平均功率的过载能力。 器件在暂态工作中的散热能力很重要的。 器件的过载能力不仅包括规定的暂态功率额定值,还包括它所能耐受的时间。
过负荷幅值的大小不同,器件能够耐受的时间也不相同。
第25页/共47页
返回 上页 下页
第九章 器件的温升与散热
铝散热片
如散热片采用自然冷却,则它的翼片之 间的距离至少10-15mm, 如再涂上黑色的 涂料,那么它的热阻将下降25%左右。
Tj 结 外壳
隔离层 散热片 Ta
假如用风扇冷却,它的热阻Rq将会更低, 但会减少它的热容Cs。
第26页/共47页
返回 上页 下页
9.3 散热片
第九章 器件的温升与散热
尽量减少器件本身与外壳之间的热阻Rqjc,有利于热功的散失。 在器件外壳与外壳周围之间提供一条良好的散热途径。
铝散热片
如散热片采用自然冷却,则它的翼片之间的距离至少10-15mm, 如再涂上黑
等效 等效 等效 等效
电路中的电阻 电路中的电流 电路中的电位 电路中的电压
第10页/共47页
返回 上页 下页
Tj 结 外壳
隔离层 散热片 Ta
第九章 器件的温升与散热

电子元器件散热方法分析

电子元器件散热方法分析

电子元器件散热方法分析[摘要]伴随国内电子科学技术持续进步发展,电子元器件的高速、高频、集成电路逐渐密集化、小型化,以至于元器件总体功率密度及其发热量不断提高,以至于对电子元器件的散热处理层面所提出要求不断提升,鉴于此,本文主要围绕着电子元器件的散热方法开展深入的研究和探讨,期望可以为后续更多技术工作者和研究学者对此类课题的实践研究提供有价值的指导或者参考。

[关键词]元器件;电子;散热方法;前言电子元器件具体使用过程,若能确保其具备良好散热性,则不仅能确保其始终维持正常的使用状态,且还可对其实际使用寿命起到延长作用,因而,综合分析电子元器件的散热方法,有着一定的现实意义和价值。

1.简述电子元器件的散热处理针对电子元器件的散热处理,传统方法只是以单向流体的对流形式散热和强制性风冷散热为主,现阶段已无法满足于多数电子的元器件实际散热需求。

特别是风冷散热方法实际应用期间,需应用扩展散热相应表面,因受实际应用在环境所限制,以至于有效散热无法实现。

故需设计研发出优良性能、有效散热设施设备及方法,充分满足高热流的密度散热需求环境。

在一定程度上,针对于电子的元器件实施散热处理,侧重于把控电子设备温度,确保其温度可维持在可控范围内[1]。

1.散热方法及其科学选用2.1散热方法2.1.1在空气冷却法层面空气冷却法,属于现阶段在电子各类元器件当中所广泛应用的一种散热方法,以自然对流空气冷却、强制对流空气冷却这两种方法为主。

自然对流空气冷却,其主要应用至体积在发热较小功率电子元器件当中,借助设备内部的元器件相互间空隙和机壳实施传热导、对流、复热等,以达到冷却散热目的;自然对流,借助流体密度所产生变化,无较大驱动力层面需求,故和流动路径当中极易受阻力及障碍所限制,以至于流体的流量和冷区速度呈下降趋势。

对于体积发热较大功率电子元器件,一般会选定强制对流空气冷却方法。

强制对流空气冷却方法,通常是借助风扇灯相关设备,确保电子元器件较近区域范围空气有强迫性的流动情况产生,带走元器件所产生能量。

电子元器件散热方法分析

电子元器件散热方法分析

电子元器件散热方法分析摘要:在电子器件的高速发展过程中,电子元器件的总功率密度也不断的增大,但是其尺寸却越来越较小,热流密度就会持续增加,在这种高温的环境中势必会影响电子元器件的性能指标,对此,必须要加强对电子元器件的热控制。

如何解决电子元器件的散热问题是现阶段的重点。

对此,文章主要对电子元器件的散热方法进行了简单的分析。

关键词;电子元器件;散热方法;手段;电子元器件的高效散热问题,受到传热学以及流体力学的原理影响。

电气器件的散热就是对电子设备运行温度进行控制,进而保障其工作的温度性以及安全性,其主要涉及到了散热、材料等各个方面的不同内容。

现阶段主要的散热方式主要就是自然、强制、液体、制冷、疏导、热隔离等方式。

1自然散热或冷却方式自然散热或者冷却方式就是在自然的状况之下,不接受任何外部辅助能量的影响,通过局部发热器件以周围环境散热的方式进行温度控制,其主要的方式就是导热、对流以及辐射集中方式,而主要应用的就是对流以及自然对流几种方式。

其中自然散热以及冷却方式主要就是应用在对温度控制要求较低的电子元器件、器件发热的热流密度相对较低的低功耗的器材以及部件之中。

在密封以及密集性组装的器件中无需应用其他冷却技术的状态之中也可以应用此种方式。

在一些时候,对于散热能力要求相对较低的时候也会利用电子器件自身的特征,适当的增加其与临近的热沉導热或者辐射影响,在通过优化结构优化自然对流,进而增强系统的散热能力。

2.强制散热或冷却方法强制散热或冷却方法就是通过风扇等方式加快电子元器件周边的空气流动,带走热量的一种方式。

此种方式较为简单便捷,应用效果显著。

在电子元器件中如果其空间较大使得空气流动或者安装一些散热设施,就可以应用此种方式。

在实践中,提升此种对流传热能力的主要方式具体如下:要适当的增加散热的总面积,要在散热表面产生相对较大的对流传热系数。

在实践中,增大散热器表面散热面积的方式应用较为广泛。

在工程中主要就是通过翅片的方式拓展散热器的表面面积,进而强化传热效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档