红外热像仪在煤矿中的红外检测应用

红外热像仪在煤矿中的红外检测应用
红外热像仪在煤矿中的红外检测应用

FLIR红外热成像仪在煤矿中的红外检测应用案例

随着红外技术的不断发展,红外热像仪在煤矿应用方面也越来越广泛,为解决煤层自燃和搜救矿工方面提供了更为先进的技术装备。

谱盟光电代理的FLIR在研发生产红外热像仪方面有着卓越的技术表现,具有自动寻找热点、安全防爆等性能,为我国煤矿的安全生产起到了十分重要的作用。

红外热像仪原理

红外热成像仪是利用红外探测器和光学成像物镜接受被测煤层或者人体的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得煤层分布或者人体的红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。

红外热像仪的选用

在煤矿应用中,谱盟光电提供了两种红外热像仪可使用,便携式红外热像仪和在线式红外热像仪。这两款红外热像仪在寻找隐蔽性高温的煤自燃区域、检测矿井电气设备、搜救遇险矿工时都可发挥重要的作用。

实际应用

1、寻找煤层自燃区

当煤发生自燃时,煤层表面的温度升高,但肉眼并不能观察到。美盛便携式红外热像仪采用640*480探测器,其像素是常规320*240热像仪的4倍,距离是其2倍。所以,在探测煤层温度时,可以在很远的距离就可检测到煤层表面的温度,以图像的形式呈现出来,在热像仪显示屏上可以清晰的看到高温和低温用不同的颜色标示,显示的高温区就是隐性火区,在发现后即可采取相应措施以防治煤层自燃。

2、检测矿井电气设备

矿井中有很多大功率电气设备,如电机、大型液压泵站、变电站、反复运转的轴承、绞车,长时间运转后会产生高温,但很难发现,采用红外热像仪就很直观的检查设备发热、超温、事故隐患,机电部门使用较为广泛。同时采用无线模式传输图像,可将设备固定在危险区域,不需要人工值守,减少了危险环境对人的伤害。

3、搜救遇险矿工

FLIR红外热像仪,是一款专业用于搜救人员的热像仪。该红外热像仪可穿透烟雾与黑暗,将其戴在头上,无需双手操作,即可很方便的进行搜救工作。并且该款红外热像仪还具有激光指示功能,在发现遇险人员时,可使用激光指示功能定位人员位置,以便于及时将其救出。

红外热像仪市场分析要点

红外热像仪的市场应用和前景分析 新产品开发部 2013年3月 红外热像仪是一种用来探测目标物体的红外辐射,并通过光电转换、电信号处理等手段,将目标物体的温度分布图像转换成视频图像的高科技产品。红外热像仪具有很高的军事应用价值和民用价值。在军事上,红外热像仪可应用于军事夜视侦查、武器瞄具、夜视导引、红外搜索和跟踪、卫星遥感等多个领域。在民用方面,红外热像仪可以用于材料缺陷的检测与评价、建筑节能评价、设备状态热诊断、生产过程监控、自动测试、减灾防灾等诸多方面。 一、红外热像仪在各行业的应用 红外热像仪行业是一个发展前景非常广阔的新兴高科技产业,被广泛应用于军民两个领域。在现代战争条件下,该技术已在卫星、导弹、飞机等军事武器上获得了广泛的应用。同时,随着非制冷红外热成像技术的发展,尤其是随着产业化过程中生产成本的大幅度降低,红外热像仪已在电力、消防、工业、医疗、安防等国民经济的各个部门得到了非常广泛的应用。 1、电力设备检测 电力、电信设备过热故障预知检测,在电力系统和设备维修检查中,红外线热像仪被证明是节约资金的诊断和预防工具。测量电气设备,非接触红外热像仪可以从安全的距离测量一个物体的表面温度,使其成为电气设备维修操作中不可缺少的工具。红外热像仪可以有效防止设备故障和计划外的断电事故的发生。 ①输电设备:接头、绝缘子、夹板、跳线、高压线、压接套管、瓷瓶引线; ②变电系统:互感器、隔离开关、空气断线器、油断路器、少油量断路器、避雷

器、电容器、电抗器、变压器、总线、套管、整流器、绝缘子、线夹、阻波器; ③配电系统:配电盘、开关箱、变压器、断电器、接触器、保险丝、电缆; ④发电厂:发电机碳刷绕组装备、发电机、变压器、油枕、发电机馈电线、电压调节器、发电机马达控制中心电盘、UPS; 下面是需要采用红外热像仪进行检查的部分设施: A:电气装置:可发现接头松动或接触不良,不平衡负荷,过载、过热等隐患。这些隐患可能造成的潜在影响是产生电弧、短路、烧毁、起火。 B:变压器:可以发现的隐患有接头松动、套管过热、接触不良(抽头变换器)、过载、三相负载不平衡、冷却管堵塞不畅。空冷器件的绕组可直接用红外热像仪测量以查验过高的温度,任何热点都表明变压器绕组的损坏。其影响为产生电弧、短路、烧毁、起火。 C:电动机、发电机:可以发现的隐患是轴承温度过高、不平衡负载、绕组短路或开路、碳刷、滑环和急流环发热、过载过热、冷却管路堵塞。其影响为有问题的轴承可以引起铁心或绕组线圈的损坏;有毛病的碳刷可以损坏滑环和集流环,今儿损坏绕组线圈。检查发热点,在出现的问题导致设备故障之前定期维修或更换。 电动机线圈绝缘层:通过测量电动机线圈绝缘层的温度、延长它的寿命。还可能引起驱动目标的损坏。为了保持电动机的寿命期,检查供电连接线和电路断路器(或者保险丝)温度是否一致。 D:连接器:电连接部位会逐渐放松连接器,由于反复地加热(膨胀)和冷却(收缩)产生热量、或表面赃物、碳沉积和腐蚀。非接触红外热像仪可以迅速确定表明有严重问题的温升。 电动机轴承: E:各相之间的测量:检查感应电动机、大型计算机和其它设备的电线和连接器各相之间的温度是否相同。 F:不间断电源:确定UPS输出滤波器上连接线的发热点。一个温度低的点表明可能直流滤波线路是开路。 备用电池:检查低压电池以确保连接正确。与电池接头接触不良可能会加热到足以烧毁电池芯棒。

全球红外热像仪品牌排名

全球红外热像仪品牌排名 红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。 作为世界最先进的高科技产品,红外热像仪的知名品牌主要集中在美国。近年来,我国在红外热像仪领域也取得了巨大进步,但是在技术上相对美国还有一定差距,相信国内品牌再经过几年的发展,一定能够和美国品牌抗衡。 2012年4月,美国知名的Thermal infrared imager TIMES,发布了2011年全球红外热像仪品牌排名,排名情况如下: 一.美国RNO RNO公司于1940年成立于美国芝加哥,是全球历史最为悠久的热像仪生产企业,在二战中,RNO 热像仪曾广泛应用美国军方。经过70年的发展,RNO下设了美国RNO红外热像仪公司,美俄合资RNO夜视仪公司。RNO是全球最为专业的热像仪公司,其下属的RNO夜视仪,在3,4代高端夜视仪领域拥有极大的知名度。 70年来,RNO一直专门致力于热像技术的开发,RNO热像仪工厂分别设在美国、英国、日本和中国。RNO夜视仪则将工厂设立在俄罗斯。 页脚内容1

目前RNO 在全球拥有近5000名雇员,其授权分销商及服务分公司遍布全球100多个国家。 美国RNO一直是全球热像仪技术的领导者。引领全球热像技术的发展。 RNO以生产中高端热像仪为主,2011年,美国RNO以高达50%的市场份额位居全球红外热像仪首位,其传奇产品PC-160以高达30%的市场份额连续5年位居全球红外热像仪销售宝座。这款售价不到5000美元的产品,以高达60HZ的帧频,-20-600度两温区选择,以及移动点移动区高温自动捕捉等功能,让其成为最具性价比产品,成为红外热像仪的一代神话。 二.美国FLIR FLIR Systems Inc, (NASDAQ: FLIR) 作为创新成像系统制造领域的领军企业,其产品范围涉及红外热像仪、航空摄像机和机械检测系统等。FLIR产品已在全球60余个国家内的工商业及政府领域中发挥了重要作用。 50多年来,FLIR公司一直致力于为科研、工业、执法机关及军工领域提供红外热像仪和夜视仪设备,堪称商用红外热像仪领域中无可辩驳的领导者。FLIR 产品系列应用极为广泛,涵盖预防性维护、状态监控,无损测试、研发、医疗科学、温度测量、热测试、执法机关、监视、安保及生产过程控制等各 页脚内容2

红外热成像仪检测人体温度

疫情的爆发,鉴于其特征之一即发热咳嗽这一典型症状,当下在公共区域的疫情监控与防治环节,非接触式人员测温筛查成为关键的防疫手段。相较于传统的接触式体温筛检设备,非接触式设备可以依托红外线强度对目标体进行在线温度监测,实现了有效快速的筛检人群,大幅提升了筛选效率。在本次疫情防控当中,基于红外热成像技术的测温筛查设备红外热像仪装备需求旺盛。 红外热成像仪怎么实现人体测温? 正常人体的温度分布有一定的稳定性和特征性,机体各部位温度不同,形成了不同的热场,当人体某处发生疾病或功能改变时,该处血流量会相应发生变化,导致人体局部温度改变,表现为温度偏高或偏低,通常人体体表的比较高的温度一般处于鼻根部周围及眼窝、口腔内部等部位,该部位的血管较多且表皮较薄,可以很好地反映被测人体的温度状态,故红外热像仪检测人脸部的位置为宜。 根据这一原理,通过热成像系统采集人体红外辐射,并转换为数字信号,形成伪色彩热图,利用专用分析软件,经专业医师对热图分析,判断出人体病灶的部位、疾病的性质和病变的程度,为临床诊断提供了可靠依据。

为什么要用红外热成像仪做体温初筛呢? 1.提示炎症:鼻炎、副鼻窦炎、口腔炎症、咽喉炎、甲状腺炎、肺炎、胆囊炎、阑尾炎、胃肠炎、前列腺炎、附件炎等全身各部位的炎症。 2.肿瘤的早期预警:鼻咽癌、甲状腺癌、肺癌、乳腺癌、肝癌、胃癌、肠癌、皮肤癌等癌症的预警作用。 3.周围神经疾病的提示:面瘫、面肌痉挛、偏头痛、三叉神经痛的提示。皮肤疾病的提示与研究,烧伤与冻伤面积与深度的测定,植皮疗效的观察。 4.血管疾病的提示:人的肢体温度主要由血液循环状态所决定,当存在血管病变时,血循环发生障碍,皮温降低。如闭塞性脉管炎、动脉栓塞、动脉瘤等,通常表现为病变部位温度异常,用红外热像仪可清楚显示出病变部位及范围。用红外热成像技术,不但能显示出病变的存在,而且能看出各趾病变的程度和范围,通过早期诊断和及时治疗,可避免肢体发生严重损害,如溃疡和坏死。 红外热像仪,契合疫情防控对高效安全测温的要求,最近备受各方关注。

红外热像仪在煤矿行业的应用

红外热成像技术在矿业的应用 1、检查井下隐性火区分布、火源位置 煤层漏氧导致 氧化,释放一氧化碳 和热量,热量逐渐累 积,达到着火点发生 自燃,造成井下火 灾。煤层总有一些微 细缝,微气体的热传 导、热对流和热扩散,使煤层表面局部产生温度变化,使用红外热像仪可以即时观察巷道煤壁,通过声光报警,及时发现存在温度过热的区域,从而采取有效措施,避免自燃的发生;红外热像仪采用整体实时成像技术,能将所观测物体的热分布情况完美地显现出来,从而能较好地区分出温度过高区域找出隐患点(优于红外线测温仪的点测取),大大提高了工作效率,同时减少了误判的几率。红外热像仪具有图像存储功能,可冻结图像存储后在电脑中进行准确分析。 2、预防煤炭堆积引发的自然 煤矿在开采后会被按等级在不同的区 域堆放。我们并不能排除煤堆由于温度的 上升引发的自然。使用红外热像仪,您可 以连续监测煤堆的热点,当发现火灾隐患 时,红外热像仪会自动定位温度过高点, 同时自动触发报警。接获报警后可对温度过高点采取淋水等降温措施,避免火灾的发生。 3、检查顶板冒落和采取透水 矿用红外热像仪拍取热图不需要可见光,它能够快速检查出煤壁表面的温度变化,并进行温场分析,找出温度最高点或最低点,特别适用于密闭墙、煤层

断面等,其表面温度的变化趋势能够为是否出现大面积渗水、透水做出判断提供依据。 4、检查各种电气及动力设备的运行状态 红外热像仪亦可在供电设备和 采矿设备正常运转的情况下,检测 所有电气设备、电缆的温度变化情 况、根据温场分布及温度变化情况, 根据温升情况判别是否存在故障、 是否需要检修。同时亦可采取非接触方式检测井下中央与采区变电所各种开关、接头、变压器的事故隐患,水泵、局扇、防爆电机及动力设备(动力电缆)的温升,运输机及运输皮带的发热状态,及时判别设备的状态,消除隐患。 5、判定识别瞎炮 煤矿的开采过程中,经常会采取爆破手段进行开采,爆破完成后如何有效地评估爆破效果,清除可能残留的哑炮成为每次爆破实施完毕后亟需解决的问题。有了红外热像仪的帮助,一切变得“so easy”。运用红外热像仪对原铺设的爆破面进行扫描,通过各炮眼残留热量和温度分析,进而排查有无出现瞎炮,如存在瞎炮,准备定位方便采取措施及时清理。

使用红外热像仪应注意的问题

100 温度检测与校准技术计测技术!2010年第30卷增刊使用红外热像仪应注意的问题 乐逢宁,蔡静,马兰,张学聪 (中航工业北京长城计量测试技术研究所,北京 100095) 摘 要:热像仪作为一种红外成像仪器,以其非接触、快速、可对运动目标和微小目标测温等优势在军事和民用方面得到了广泛的应用。本文就红外热像仪的使用及在使用中需要注意的问题进行阐述。 关键词:热像仪;红外辐射;非接触;发射率 中图分类号:TH744 41 文献标识码:B 文章编号:1674-5795(2010)S0-0100-02 0 引言 红外热像仪作为一种红外成像仪器,在军事应用和民用领域发挥着重要的作用。红外热像仪既有一般红外测温仪器的优点,同时还有测温迅速、可对运动目标和微小目标测温、携带和使用方便等独特优势,除此之外还有以下特点: 1)可直观显示被测物体表面的温度场。同一般的红外测温仪只能显示个点或个别区域的温度值相比,热像仪可以同时显示被测物体表面各点温度的高低,并可以以图像形式反映。 2)可以对测温结果的图像进行多种处理。由于热像仪输出的信号中包含了被测物体的大量信息,可以采用多种处理方法以不同的方式显示:既可以对图像进行伪彩色处理,使不同颜色表示不同的温度;又可以对图像进行模数转换,以数字形式显示被测物体不同点的温度值。 3)温度分辨力高。一般的红外测温仪只能分辨0 1?的温差,对于热像仪,由于是同时显示被测物体表面两点间的温度值,温差最高可以达到0 01?。 1 红外热像仪的工作原理 红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,在光学系统和红外探测器之间,有一个光机扫描机构对被测物体的红外热像进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热像图。 这种热像图与物体表面的热分布场相对应,实质上是被测物体各部分红外辐射的热像分布图。实际上为了增加图像的层次感和立体感,也为了更好判断被测物体的整体温度分布,常常采用增加图像亮度、对比度等手段来提高图像的质量和实用性。 2 红外热像仪的使用及注意问题 红外热像仪的测温范围通常在-20~2000?,响应波段为8~14 m。为了尽可能减少环境因素的影响,环境温度通常在(23#5)?,湿度要求为小于85% RH。 红外热像仪在实际使用中,需要经过参数设置、对焦、设置温度水平和跨度、设置混合水平条等步骤后才能进行测温。 红外热像仪在使用过程中,需要注意以下问题: 1)焦距的调整。为了保证第一时间操作的正确性,尽量避免被测物体本身或周围背景的过热或过冷的反射影响到目标测量的准确性,应该在红外图像存储前调整焦距或测量方位。 2)发射率的设定。在测温之前务必设定发射率的值,一般发射率的值都设定在0 95以上。 3)选择正确的测温范围。在测温时,务必设置正确的测温范围,这时对热像仪的温度跨度进行微调将得到最佳的图像质量,否则将会影响温度曲线的质量和测温精度。 4)确定最大的测量距离。测量时务必知道精确测温读数的最大测量距离。因为通过热像仪光学系统的目标图像必须占到9个像素,或者更多。如果热像仪距离测温目标过远,测温结果将无法正确反映被测物体的真

红外热像仪应用——电机检测

红外热像仪应用——电机检测 随着红外技术的不断发展,热像仪逐渐被应用于越来越多的民生行业。美国福禄克热像仪作为行业佼佼者,通过多年的推广和开发,已获得各领域工程师的广泛认可,此文将通过真实案例和热图的解说来阐述美国福禄克热像仪是如何应用于点击检测的。 电机是国民经济各部门大量采用的一种动力机械设备,温度是电机工作的重要指标,超过额定温度时每升高10℃,则电机的寿命将缩短一半。电机是企业维持正常生产的重要保证,使用fluke 红外热成像仪对电机进行检测是保证正常生产系统运行的重要措施。 电机温度异常的主要原因 1 电机电气接线接触不良或老化导致电气接线温度异常; 2 电机外壳由于铁心老化、散热不良导致外壳温度过高或温度不均匀; 3 与电机连接的轴承、连轴器由于润滑不良 电机热缺陷的特征描述 1、电机电气接线 根据以往红外热像测试的经验来看,电机电气接线以及线缆接头缺陷所导致的异常发热比较常见。主要原因是: 散热不良导致电机外壳温度异常

1)氧化腐蚀:金属表面严重锈蚀氧化,造成金属接触面的电阻值乘几十倍到几百倍的增加; 2)导线断股、接头松动:导体连接部位长期受到机械振动,使得导体压接部位的螺丝松动、导线断股电阻值增大。 3) 因为结构设计、安装工艺质量所引起的异常发热 2、电机外壳温度分布 电机是按照绕组绝缘的热容量进行分级的,过高的热量会使绕组绝缘迅速老化失效,外部运行温度通常比内部温度低大约 20C 。电机外壳温度过高主要表现在两个方面: 1)外壳部分区域温度过高:导致的原因可能是内部铁芯、绕组因绝缘层老 化或损坏导致短路。 2)外壳整体温度过高:电机的周围的空气流动不充分,或电机散热系统出现问题,电机外壳整体温度异常。 3)与电机连接的轴承、连轴器:1)过度润滑;2)缺乏润滑;3)未对准通常会导致轴承问题。 AR01 AR01 电机控制器过热 电机外壳温度不均匀

红外热成像摄像机原理分析以及应用

红外热成像摄像机原理分析以及应用 随着技术的进步,监控系统已经在各个领域得到了广泛的应用。目前的视频监控系统主要采用可见光摄像机和人工监视、录像相结合的方式进行日常的安全防护,但由于可见光摄像机在恶劣天气或照度较低的条件下,很难滤除干扰得到有用的视频图像,因此使得整个安防系统在夜间或恶劣天气条件下的防范能力大打折扣。 同时,由于现在的视频监控系统仍然依托于人工监视,安保人员需要对监控画面进行24小时不间断的监视、人为对视频图像进行分析报警,否则系统就起不到实时报警的功能,而更多的只是事发后取证的作用。从整体上来说,目前的视频监控系统还处于在半天时、半天候和半自动状态。 在伊拉克战争中,美军平均每个士兵拥有1.7台红外热像仪产品 一项统计数据表明,世界上47%的暴力犯罪案件发生在晚6点到早6点之间。原因很简单,在夜幕的笼罩下,犯罪分子容易隐蔽,犯罪场面也不容易被看见——黑暗掩盖了犯罪行为。即使安装了一般的视频监控系统,也有可能让犯罪分子逃之夭夭。因此,如何提高在“夜黑风高”的案件高发时间段的自动报警防范能力,成为安防系统当成亟待解决的难题之一。 在这种情况下,红外热成像技术以其作用距离远、穿透能力强、能识别隐蔽目标等优势被引入安防领域,成为监控领域的一份子。 热成像摄像机的监控原理 在自然界中一切温度高于绝对零度(-273.16摄氏度)的物体都不断地辐射着红外线,这种现象称为热辐射。红外线是一种人眼不可见的光波,无论白天黑夜,物体都会辐射红外线,但红外线不论强弱,人们都看不到。 热成像摄像机(又叫热像仪)就是利用红外探测器、光学成像物镜接收被测目标的红外辐射信号,经过红外光学系统红外探测器的光敏源上利用电子扫描电路对被测物的红外热像进行扫描转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热图像。利用这种原理制成的仪器为热成像摄像机。它通过探测微小的温度差别,将温度差异转换成实时的视频图像,显示在监视器上。与其他需要少量光线产生影像的夜视系统不同,其完全不需要任何光,这使它成为人们在全黑环境、黑暗的夜晚监控的完美工具。

红外热像仪在电机检测的应用讲解

红外热像仪在电机检测的应用 电机是工业的骨架。据美国能源部估计,仅仅在美国,工业中就运转着4000万台电机,这些电机耗用了整个工业所消耗的电力的70%,这就足以说明电机的重要性。将热成像作为一种电机状况监视技术而融入到您公司的维护计划中以避免高昂的故障,可为您带来极大好处。通过使用红外热像仪,您可以二维图像的方式来捕获电机的红外温度测量值。电机的热图像可揭示出由其表面温度所反映出来的运转状况。这种状况监视是一种用于避免对生产、商业电机是工业的骨架。据美国能源部估计,仅仅在美国,工业中就运转着4000 万台电机,这些电机耗用了整个工业所消耗的电力的70 %,这就足以说明电机的重要性。 将热成像作为一种电机状况监视技术而融入到您公司的维护计划中以避免高昂的故障,可为您带来极大好处。通过使用红外热像仪,您可以二维图像的方式来捕获电机的红外温度测量值。 电机的热图像可揭示出由其表面温度所反映出来的运转状况。这种状况监视是一种用于避免对生产、商业和机构过程至关重要的系统中电机发生故障的一个重要方法。这种预测性措施非常重要,因为在关键系统出现故障时,不可避免地会增加成本,需要重新分配工人和材料,从而使生产效率降低,如 理想情况下,您应该在正常运行条件下对正在运转的电机进行检查。与只在单点采集温度的红外温度不同,热成像仪可以针对所有关键部件,一次捕获成千上万个点的温度:电机、联轴器、电机与轴的轴承和减速器。 每台电机都在一个特定的内部温度下运转。其它部件的温度不应与电机外壳的温度一样高。所有电机的铭牌上都应列出标准运转温度。虽然红外成像仪无法看到电机内部,但外部表面温度足以指示出内部温度高低。随着电机内部温度的升高,其外表面的温度也升高。因此,通晓电机的有经验的成像人员可以通过热成像来识别不正常状况,如空气流量不足、轴承即将失效、联轴器出现问题以及电机的定子或转子的绝缘性能恶化等。 一般来说,设计一条将所有关键电机/驱动器组合包括在内的定期检查路径是一个非常好的做法。检查之后,将每个设备的热图像保存到计算机上,并随时间跟踪测量结果。这样,您就会获得可用于比较的基础图像,可以帮助您确定一个热点是否正常,并帮助您在维修之后确认维修是否有效。 存在安全问题的设备状况应该具有最高的维修优先级。NETA(国际电气测试协会)提供的指南规定,当相似负载下相似部件的温度差超 过15 °C(27 °F)时,应该立即进行维修。该组织还建议,当部件与环境空气的温度差超过40 °C(72 °F)时,也要立即进行维修。

FLIRA315红外热像仪中文说明书

FLIRA315红外热像仪使用说明书 代理商:武汉筑梦科技有限公司 2014-1-6

第一章设备简介 1 FLIR红外热像仪原理 1.1红外热像仪 从原理上讲,热像仪包括两部分:光学部件和探测器。光学部件使目标的红外辐射集中到探测器上,探测器对之成像。 1.1.1光学材料 红外辐射和可见光的性质一样能折射和反射。因而,红外热像仪的光学部件设计方法和普通相机的相似。用于普通相机的玻璃对红外线的透射程度不够好,因而不能用于红外热像仪。所以必须寻找别的材料。对红外线透明的材料一般对可见光不透明。象硅和锗就通常对可见光不透明。 从图中可以看出,这两种材料可以作为SW和LW光学材料。通常,硅用于SW系统而锗用于LW热像仪。硅和锗有好的机械性能,即不易破裂,它们不吸水,可以用现代车削法加工成镜头。 1.1.2探测器 对红外辐射敏感的元件称为探测器。这些年来,热像仪采用过许多不同类型的探测器。这些探测器不分类型都有一些典型特点。探测器对入射辐射的探测结果以电信号输出。这信号取决于入射红外辐射的强度与波长。大部分探测器都存在截止波长,这也很典型。如果入射辐射的波长长于探测器的截止波长,探测器将没有信号输出。在1997 年以前,所有的探测器都是制冷型的,根据不同型号,低的至少制冷到–70oC,更有甚者需制冷到–196oC。 1997 年,AGEMA 公司在世界上首先生产出了新一代非制冷微量热型探测器热像仪:Thermovision? 570,现在叫做AGEMA 570。500 系列的另一种热像仪叫做AGEMA 550,它使用制冷型探测器。

AGEMA 550 的探测器由斯特林制冷机制冷。这种PtSi探测器需制冷到–196oC。它需要两分钟来制冷。作为“单一”探测器的换代品,在1995年FPA 探测器被运用于所有的热像仪(AGEMA)上。AGEMA 550的探测器有320 x 240 = 76,800 探测器单元。 2 FLIR红外热像仪组成及接口 2.1、红外热像仪组成 红外热像仪组成:抗反射膜、光学滤片、探测器 2.2 使用说明 2.2.1 红外测温方法 红外热像仪是通过非接触探测红外能量(热量),并将其转换为电信号,进而在显示器上生

红外热像仪使用说明书

红外热像仪使用说明书 在红外热像仪的使用说明书中,以下的指标值得关注: 除了从典型应用的角度之外,还可以快速地从回答3个简单问题,来进行红外热像仪关键指标的选择: 问题一:红外热像仪到底能测多远? 红外热像仪的检测距离= 被测目标尺寸÷IFOV,所以空间分辨率(IFOV)越小,可以测得越远。例如:输电线路的线夹尺寸一般为50mm,若使用Fluke Ti25 热像仪,其IFOV为2.5mRad ,则最远检测距离为50÷2.5=20m 问题二:红外热像仪能测多小的目标? 最小检测目标尺寸= IFOV×最小聚焦距离。所以IFOV越小,最小聚焦距离越小,则可检测到越小的目标。举例: 某品牌热像仪Fluke Ti25 热像仪 空间分辨率(IFOV):2.6mRad 空间分辨率(IFOV):2.5mRad 像素:320×240 像素:160×120 最小聚焦距离:0.5m 最小聚焦距离:0.15m 最小检测尺寸:1.3 mm 最小检测尺寸:0.38 mm 从对比图看,右侧Fluke Ti25,虽像素稍低,但凭借更小的IFOV 及最小聚焦距离优势,实际可以拍摄到0.38mm微小目标,而另一品牌则只能测到1.3mm 的目标。 问题三:热像仪能看得多清晰? 因素一:热灵敏度决定热像仪区分细微温差的能力。同样状况下,右图所用热像仪的热灵敏度更低,画面清晰显示花蕊细节的温度分布,而左图同区域只能看到一片红色。

因素二:最小检测尺寸决定了热像仪捕捉细小尺寸的能力。尺寸越小,相同面积的检测目标画面由更多像素组成,画面更清晰。 由右图可见,像素(马赛克)越小越清晰 什么是空间分辨率(IFOV)? 在单位测试距离下,红外热像仪每个像素能够检测的最小目标( 面积),以mRad 为单位,是一个主要由像素和所选镜头角度所决定的综合性能参数,是热像仪处理空间细节能力的技术指标。 为什么空间分辨率(IFOV)越小越好? 单位距离相同时,IFOV 越小,单个像素所能检测的面积越小,单位测量面积上由更多的像素所组成,图像呈现的细节越多,成像越清晰。

红外热像仪用于管道检测

红外热成像技术用于管道检测 管道是生产的重要设备,利用热像仪检测管道堵塞、减薄、腐蚀、渗漏等故障 ,从而避免 对环境及人员造成伤害;也可以使用热像仪对管道的保温进行检测 和评估,从而减少能耗, 达到节 能效果。 红外热像仪在检测管道中的应用 对管道进行温度检测一般有以下应用: 1管道堵塞,由于堵塞部位和其他部位热容量不同 导致温差,这些温差传递到管线外壳,就可以使用红外热像仪在管 道外部拍摄到故障。2管 道内壁受磨损或是腐蚀导致减薄, 其温度会比正常部位温度偏高, 从而可以检测出故障。3 管道由于局部温度波动较大导致材料热疲劳造成裂纹、 泄漏,故障处会渗漏管道内介质, 如 果管道内介质为低温介 质(如氨气)或是高温介质时,管道渗漏介质与管道外壁温差不同, 可使用红外热像仪拍摄到故障。 4管道保温脱落,其脱落处温度偏大,可在热像图中清晰 显示。热像仪还可检测出管道温度, 作为保温是否达到规定 效果的判断依据。5换热器炉 管堵塞或是内漏,导致换热效率降低,影响正常生产和造成能源浪费, 可以使用热像仪检查 出故障。6加热炉或是反应器炉管在高温高压和腐蚀性强的环境下工作,会造成热斑、龟 裂、渗碳、氧化、热裂、减薄等,严重影响其使用寿命。利用 谱盟光电红外热像仪通过窥视 孔对炉内炉管测试,可得到故障的热图像,为维修炉管的实施方案提 供依据。 典型客户: 石化行业:衢州巨化、独山子石化、扬子石化-巴斯夫等 制药行业:强生制药等 冶金行业:武汉钢铁公司、马鞍山钢铁公司、鞍山钢铁公司等 红外热像仪的优点 1管线的积炭、减薄、裂纹;换热器、反应器等设备炉管内漏、堵塞等故障往往肉眼无法发 现,热像仪可以检测出细微 的温度变化,在此基础上,我们可迅速判断出故障。 2 FLIR 已申请专利的画中画及 MSX 多波段动态成像技术除了拍摄红外图像外, 还同时捕获一幅数字 照片,将其融合在一起,有助于识别和定位故障,从而能够在第一时间正确的修复故障。 3 谱盟光电FLIR T400系列热像仪配备了功能强大的软件, 用于存储和分析热图像并生成专业 报告。通过该软件,可以对存储在从 热像仪下载的图像中发射率、反射温度补偿以及调色 管熾与支按岸按处有 保

20-红外热像仪的研究和使用实验

实验二十 红外热像仪的研究和使用 红外热像仪是一种利用红外线辐射而拍摄的摄像仪,热成像显示系统是一种处理热信息的微机处理系统。红外热像技术与X 射线,B 超,CT ,磁共振和核显像原理不同,它不主动发射任何射线,而只接受物体辐射出的“热”线——红外线,从而形成物体的“热”影象,是物体的三维“热”(温度)分布图象。热像处理技术在军事上运用很广,而且即有相当重要的地位,如,夜间跟踪目标,武器瞄准器等。但在民用上的运用是这几年的事,比如,医学上通过热拍摄来分析人体各部分的热分布,从而找出病变的部分;电学中对电路板上各元器件的热分布的合理性的研究,从而改善各元器件的分布结构等等。 【实验目的】 1. 熟悉热像仪的基本结构原理。 2. 学会使用热颜色处理热源的软件包。 3. 观察和分析电路板的热分布特性。 4. 描绘电路板的热分布图。 【实验原理】 自然界存在着一种不为人们所注意的客观现象,这就是任何物体都具有一定的温度,它们都是“热”的,所不同的只是热的程度有差异而已。在物理学中,热是用绝对温度来表示的(即用K 表示)。因此,上述现象又可表示为:自然界不存在绝对温度为零的物体。 绝对温度=摄氏温度+273 热与光,电,磁一样,具有辐射特性(热辐射),只是辐射波长有长短。将热,光,电,磁等的辐射,按其辐射波长的长短依次排列,便是人们熟知的波谱(图1)所示。 10-5 0.2 0.4 0.75 1.00 波长(μm ) 图1 红外线在波谱中的位置 热辐射又称红外辐射,这是因为其辐射波长的位置与可见的红光相临并在其外。红外辐射为英国科学家赫胥尔于1800年所发现。 物体的红外辐射波长与其自身温度有关,服从维恩定律: C T m =λ (1) 式中:λm-----物体红外辐射的峰值波长(um ) T ------物体的绝对温度(K ) C ------常数2898。 从式(1)中可看出,物体绝对温度越高,其辐射波长越短;反之亦然。 物体的绝对温度不仅决定了物体辐射的波长,而且也确定了物体的辐射出射度(单位

红外热像仪帮助玻璃制造工厂精确测量温度

红外热成像技术的应用十分广泛,工业生产、电力、消防、医疗、农业等行业都有红外热像仪的身影。玻璃瓶在生产过程中温度非常高,很多设备都是在高温下工作的,因此对于玻璃生产工厂设备和生产过程中的玻璃温度的检测十分重要,这对于生产出高品质的玻璃有着重要的意义。而红外热成像技术对于非接触式温度检测方面有着非常有效且实用的价值。 一、红外热像仪的工作原理 任何物体只要温度高于绝对零度(-273℃)就会向外发射出红外辐射,物体温度不同,辐射能大小也不相同。红外热像仪是一种能够捕捉到物体表面红外辐射能量,并将其转变为人眼可见的热量分布图像的一种仪器设备。 二、红外热像仪在玻璃制造工厂的应用 凝固的玻璃离开锡浴后,会被送往玻璃退火窑,让其逐渐冷却以除去内应力。冷却速度对于确保玻璃在不会在切割阶段破裂非常重要。因此频繁、精确的温度测量对于此应用至关重要。 因为温度下降的范围较广,在退火窑中进行温度测量会有一定的困难。需要确保在玻璃冷却到环境温度的整个过程中精确测量其温度。严密控制温度可确保完全消除内应力。使用红外热像仪可以获取玻璃离开退火窑时高分辨率的玻璃热图像,有助确保产品质量一致,并及早发现任何工艺问题。同时,进行玻璃的表面测量还有助监测其横向温度分布的均匀性。

1.玻璃瓶罐成型过程中的应用 1)初模 初模温度分布不均匀时,会导致很多瓶身缺陷,如厚薄不均等。若操作工不能及时了解初模的温度,产品的质量会无法提升上去,因此,可以利用红外热像仪检测初模的温度高低,再进行生产调整。 2)芯子 芯子过热或过冷会导致瓶口部裂纹或芯子粘料,在双滴料与三滴料制瓶机上,由于各模腔工况不相同,其芯子冷却风的调整也各不相同。需要利用红外热像仪进行温度测定,再根据工况进行一些微调,以免产生瓶口部裂纹或芯子粘料。 3)闷头 闷头是初型模的模底,它接触玻璃料时间很短,不工作时会上升或摆出,散热情况较好,若闷头的温度与初模的温度温差过大,瓶底将会产生闷头印深、闷头印歪斜、瓶底厚薄不均等缺陷。因此需用红外热像仪检测闷头的温度,若与初模温度差别太大,需要进行一定调整。 2.红外热像仪在玻璃生产厂变压器的温度监测应用 变压器等电气设备是和生产紧密相关的设备,一旦发生异常情况,会直接造成工厂生产设备停止运行,甚至会造成灾难性的故障。但是变压器等电气设备在

优利德(UNI-T)UTi160A 红外热像仪使用

优利德(UNI-T)UTi160A 红外热像仪 优利德(UNI-T)UTi160A 红外热像仪 UTi160A红外热成像仪,以先进的UFPA非制冷焦平面红外探测器 和高质量的光学镜头为核心,结合方便快捷的操作系统、领先水平的 人体工学结构设计、功能完善的拓展配件,为适用用户打造了一款“成 像清晰、测量准确、操作简单、携带轻便”的理想测温工具,是现场 温度检测、预防性维护等应用场合的不二选择。 结构及外观 ● 直立式设计,符合手持式仪表的人体工学原理,易于“掌”握。 ● 可旋转式屏幕设计,即使检测不同角度的物体,轻转屏幕就可以 清晰的将测量结果呈现在用户面前。 ● 合理的按键布局,实现了真正意义上的“单手操作”。 ● 整机重量不到500克,携带及操作更轻便。 ● 核心部件:采用最先进的红外探测器和高质量的光学镜头,使得红外图像刷新更实时,显示更清晰;测温结果更准确,信

息更全面。 探测器类型:UFPA非制冷焦平面。 温度灵敏度:0.08℃@30℃。 工作波段:8-14um。 分辨率:160 x 120。 视场角:20°x 15°。 最小成像距离:0.1 m。 成像功能Array屏幕采用2.5寸TFT液晶显示屏。 图像帧频为50Hz,测量画面更流畅。 支持六种调色板,可满足不同行业/用户的需求。 热像仪拍摄的红外图像使得被测对象的温度分布情况一目了然, 根据被测对象温度分布的标准/经验值,再对比屏幕右侧的色标 图,用户可以快速判断出被测对象是否存在异常。 点测温功能:具备可移动点/最高/最低温度捕捉功能 使用可移动点,用户可以准确地获得图像中任意一点的温度读数 (数字形式)。使用最高/最低温度捕捉功能,用户在测量现场就可 以快速的知道被测对象的温度最高/最低点位置及其对应的温度读 数。这将更好的帮助用户在现场检测、分析并解决问题。

红外热成像仪的介绍及工作原理

1.红外热成像技术 红外成像技术作为一门新技术,在电力设备运行状态检测中有着无比的优越性。红外成像是以设备的热状态分布为依据对设备运行状态良好与否进行诊断,它具有不停运、不接触、远距离、快速、直观地对设备的热状态进行成像。由于设备的热像图是设备运行状态下热状态及其温度分布的真实描写,而电力设备在运行状态下的热分布正常与否是判断设备状态良好与否的一个重要特征。因此采用红外成像技术可以通过对设备热像图的分析来诊断设备的状态及其隐患缺陷。 2.什么是红外热像图 一般我们人眼能够感受到的可见光波长为:0.38—0.78微米。通常我们将比0.78微米长的电磁波,称为红外线。自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。 同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。 3.红外热像仪的原理 热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,热图像的上面的不同颜色代表被测物体的不同温度。红外热像仪的非接触式测温方式,能够在不影响轧辊工作的同时测量其实时温度,并随时采取降温措施。

红外热像仪的原理 4.红外热成像的特点 自然界所有温度在绝对零度(-273℃)以上的物体,都会发出红外线,红外线(或称热辐射)是自然界中存在最为广泛的辐射。大气、烟云等吸收可见光和近红外线,但是对3~5微米和8~14微米的红外线却是透明的。因此,这两个波段被称为红外线的“大气窗口”。我们利用这两个窗口,可以在完全无光的夜晚,或是在烟云密布的恶劣环境,能够清晰地观察到前方的情况。 5.在线式红外热像仪 采用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热像仪。

红外热像仪在工业制造领域的应用

红外热像仪在工业制造领域的应用 一、为何采用红外热像仪进行工业制造领域的诊断? 非接触红外热像仪采用先进的红外技术,快速、准确、方便、直观地显示被测物体表面温度场的分布,测量出物体的表面温度。不需要直接接触被测物体的表面,就能快速测试物体表面温度读数,并能可靠地测量热的、危险的或难以接触的物体表面温度。红外热像仪测量速度非常快,可以直观、连续地测试物体表面的温度变化。 红外热像仪能够展现可能错过的现场情况。在制造工厂,错过不仅仅意味着损失时间和成本,甚至可能会有人失去生命! 几十年来,从事预防性维护的专业人员、负责过程和质量保证的工程师都使用红外热像仪来解决棘手的问题和日常的维护工作。通常的检查目标包括电机、泵、传送机、电气连接和元器件,新设备安装,压力机修理,甚至厂房本身的结构情况。 二、红外热像仪可以对工业制造哪些方面进行故障诊断? 红外热像仪在测试物体表面温度突变时,具有其他仪器不可替代的作用。因此,红外热像仪在对工业制造设备进行故障诊断时,对容易产生温度突变和对温度变化敏感的工业设备零部件进行故障诊断,具有判断准确、快速、便捷的效果,主要应用表现在以下几个方面: ?塑胶工业的生产过程优化与质量控制 ?玻璃工业的生产过程优化与质量控制 ?造纸工业的生产过程优化与质量控制 ?食品行业的生产过程优化与质量控制

三、红外热像仪在塑胶、玻璃、造纸和食品工业设备的具体应用 1、塑胶工业的生产过程优化与质量控制 在塑胶工业的制造过程中,红外热成像系统被成功的应用在模具的温度分布状况分析与优化,部件成型的工艺流程控制。 2、玻璃工业(灯泡)的生产过程优化与质量控制 红外热像仪通过具有“穿透玻璃”和“玻璃表面”等测量滤片对包括生产过程(玻璃制造、玻璃珠测量、玻璃形态)以及最终制成品的测量。例如,卤素灯泡的温度测量与分析,以确保产品的质量合乎要求。通过选择镜头类型和成像速率,实现红外热像仪在玻璃制造过程对不同的工艺流程的优化。 同时,通过红外热像仪对车灯等玻璃模具加工、生产的温度控制,可控制并提高产品的生产质量。 模具和成型部件的温度温度分布 大型塑胶件脱模后的温度分布 一个专用挤压头的温度分布 橡胶挤出

红外热像仪用于火焰监测

应用案例 红外热像仪能够进行全天候24/7自 动化远程监控,是一款理想的监测工 具。除此之外,红外热像仪避免了紫 外线(UV)火炬探测器、火炬电离光 谱分析仪、热电偶和点温仪等监测技 术中相关的技术和成本问题。 FLIR红外热像仪 ? 检查燃烧程度,最大限度降低未 燃烧污染物 ? 通过可视化和有声报警不断报告 不完全燃烧 ? 通过电视或电脑显示器提供远程 可视化监测 ? 提供量化的温度读数 ? 可通过电子邮件和内网连接通知 工厂管理层 ? 可通过以太网连接至中央控制室 ? 每周七天全天候工作 火炬燃烧是一个复杂过程 火炬系统通常是防止危险烃类污染物 进入大气的最后一道防线。例如甲 烷,不仅是可燃气体,而且温室效应 程度是CO2的23倍。工厂经理需即 刻知晓火炬塔是否不完全燃烧,并迅 速点燃未燃烧气体以预防工厂关闭。 在引燃火炬监测与火炬塔检测中屡次 尝试了各种不同技术,取得了不同程 红外热像仪用于火焰监测 许多行业使用火炬塔燃烧多余的废气副产品,或燃烧工厂固定设备意外超 压时由泄压阀释放的易燃气体。 应用范围包括油气钻井操作、炼油厂、石化工艺装置、天然气输送基础设 施和垃圾填埋场。在相当多的案例中,法规要求对火炬塔的火炬或引燃火 炬进行检测,以避免未燃烧的碳氢化合物进入大气。 FLIR A310红外热像仪 尽管肉眼无法看到,但红外热像仪可监测到火炬是 否在燃烧。如果火炬没有燃烧,有害气体会进入大 气层,热像仪会发出报警,相关人员可立即采取行 动。

应用案例 如需了解有关红外热像仪或此应用的更多信息,请联系: FLIR中国公司总部: 前视红外热像系统贸易(上海)有限公司 全国咨询热线:400-683-1958邮箱:info@https://www.360docs.net/doc/7a14672777.html, https://www.360docs.net/doc/7a14672777.html, 图片仅供说明之用,显示图像可能不代表该热像仪的实际分辨率 度的成功。但大多数技术无济于事,或技术薄弱,无法将燃烧效率的重要指标——燃烧烟雾降至最低。其中一个问题是火炬口的气流量大小不一,即从气体净化正常操作期间的小流量,到打开应急泄压阀或工厂大排污期间的大流量。由此引起的火炬大小和亮度以及产生的烟雾量取决于易燃物质的释放量。可以通过在气流中注入空气或蒸汽等辅助气体来提高燃烧率,减少烟雾量。 FLIR红外热像仪提供解决方案 FLIR红外热像仪可识别火炬塔火焰和周围环境(通常是天空或云)热信号中 的温差。除检测火炬塔火炬外,这些热像仪也可用作监测引燃火炬。一般而言,热像仪安装在防水壳体内的基座或其他刚性结构上,从而保护热像仪免遭恶劣天气条件破坏。热像仪的光谱响应和校准功能允许其透过空气中的水汽进行侦测,以获得 T 820230 {E N _u k }_A 火炬塔或引燃火炬的良好图像和相关温度值。使用FLIR红外热像仪获取的图像甚至能使观察者检测到因火炬成分或气流量较小而肉眼看不见的烟囱火焰。 红外热像仪解决了紫外线火炬探测器容易被烟雾遮蔽的相关问题。热图像和可见光图像能以模拟数据或数字化数据的形式实时发送至中央控制室。自动化控制 除对烟囱火焰和烟雾进行可视化监测外,同样还实现了辅助气体对废气比率的自动化控制。如果能正确调整该比率, 就能提高燃烧效率,将烟雾量最小化。情况混乱之时,需要立刻调整风量或蒸汽量,以维持适当燃烧。此外,自动化辅助气体注入控制有助于避免蒸汽消耗过度,节约大量成本。 FLIR A310红外热像仪具有优化自动化控制的多项功能。起初,热像仪能感应到火焰的温度和大小,以及控制方案中的关键因素。校准数据可使用无线接入点、光纤电缆或CAT-6以太网电缆通过A310以太网端口传输至运行辅助气体控制程序的可编程控制器(PLC)或电脑中。如果数据超出用户的预设限制,红外热像仪会通过数据I/O端口向控制室发生报警信号。此外,任何时候只要达到数据设定值,A310红外热像仪也可以配置为自动通过以太网简单邮件传输协议(SMTP)或FTP协议向计算机发送数值数据和图像,从而为后续审查备案。 带外壳和以太网接口的A310红外热像仪 可选通信适配器(无线或有线) 玻璃纤维或CAT-6铜线电缆 以太网端口 数据存储 服务器 用户 用户 工厂网络 火炬检测装置示意图 红外图像可清晰侦测肉眼无法看到的火焰。

指南︱选购科研用红外热像仪的七大须知

指南︱选购科研用红外热像仪的七大须知 致读者: 20世纪60年代中期,我们推出了首台商用红外热像仪。如今,我们已成为全球最大的红外热像仪生产商,拥有全世界最大的培训机构——红外技术培训中心(ITC)。FLIR凝聚了我们在红外热像仪领域50余年的经验和知识,编写成“选购科研用红外热像仪的七大须知”这一手册。我们坚信您定会从中受益,从而选购到性能最佳的研发用红外热像仪。 David C Bursell 科研事业部总监

简介 红外热像仪或热成像仪就是将红外辐射转化为可视图像,从而描绘物体或场景的温度变化。用户可通过非接触测量的形式测得目标物的温度,用于数据采集、分析和生成报告。使用红外热像仪进行数据查看、记录、分析和生成报告的过程称之为热成像技术。 热成像技术现已成为各种研发项目不可或缺的工具。市面有售的红外热像仪琳琅满目,价格与功能参差不齐,因此想正确选购一台满足特定应用的热像仪并非易事。 为了保证您现在和将来都能选购到满足自己使用需求的高质量红外热像仪,FLIR列出了选购研发用红外热像仪的七大须知。它能引导您明确项目需求,帮助您选择最符合特定应用的热像仪。基于7点建议的讨论通过指导您创建需求文件,帮助您缩小红外热像仪的选择范围,为您的最终选购指明方向。

第1点: 您要测量什么温度? 红外热像仪的常见应用就是测量所研究物体的温度变化。测量温度时需考虑的两点是:所测物体的温度范围和希望获得的温度分辨率。回答这两个问题将帮助您缩小选择范围,获得最适合您需求的红外热像仪和探测器类型。 温度范围: 温度范围即测量物体会有多冷或多热。这也可能就是您可以测得的最低或最高温度值。例如,您在拍摄停在跑道上的飞机的引擎。飞机机身的温度可能为25°C左右,而引擎的温度大约为500°C。所以您的温度范围大概是25°C到500°C,那么您就要选择能够一次拍摄到整个温度范围的热像仪系统。 温度分辨率: 温度分辨率是您需要测量的最小温度差,通常被称为红外热像仪的热灵敏度。基于不同的红外热像仪探测器类型,热像仪的热灵敏度可以在0.025 °C以下到0.075 °C以下之间。 红外热像仪的温度分辨率或灵敏度通常又称为噪音等效温差(NETD)。这一参数是红外热像仪能够检测到的高于其本底噪声的最小温度差。简言之,这就是您使用特定热像仪能够检测到的最小温差值。表1显示了不同型号红外热像仪的常见温度范围和温度分辨率。

相关文档
最新文档