MATLAB计算方法迭代法牛顿法二分法实验报告要点

MATLAB计算方法迭代法牛顿法二分法实验报告要点
MATLAB计算方法迭代法牛顿法二分法实验报告要点

姓名实验报告成绩

评语:

指导教师(签名)

年月日

说明:指导教师评分后,实验报告交院(系)办公室保存。

实验一方程求根

一、实验目的

f(x)?0在自变量区间[a,用各种方法求任意实函数方程b]上,或某一点附近的实根。并比较方法的优劣。

二、实验原理

(1)、二分法

b?a?x0?xf()2判在[a,对方程b]内求根。将所给区间二分,在分点b?a?x f(0f(x)?a)?f(x)?02,否则,则有根继续判断是否。;若是,断是否a?xa?x xb?。重复此过程直至求出方程,否则令。否则令若是,则令f(x)?0在[a,b]中的近似根为止。

(2)、迭代法

f(x)?0xx)形式,并建立相应的迭代公式(=ψ将方程等价变换为x?x)。(ψ1k?(3)、牛顿法

xx附近可用一阶泰勒多项的一个近似根,则函数在点若已知方程

可方程近似表示为,来式近似因此0100f(x)0

00p(x)?f(x)?f'(x)(x?x)f(x)?0

0?x))('(xx?f0?x)x()?f'(f?xf'(x)x?x作为原方程新的近,则。设取00000f(x)k

??xxxf'(x)xx。代入上式。迭代公式为:作为,然后将似根0k1?0k11MATLAB 7.0:实验设备三、软件四、结果预测

xxx=0,09052 )=0.09052 (=0.09033 (2)3(1)5112五、实验内容

的近似根,要求误差不上用二分法求方程(1)、在区间

x e?10x?2?0

[0,1]?3105?0.。超过f(x)k?x??x0x)x'(f x02?ex?10?,用迭代公式),求方程、取初值的(2k0?10k?310.5?0。近似根。要求误差不超过x?0x e?10x?2?0的近似根。要求误)3、取初值,用牛顿迭代法求方程(0?310?0.5。差不超过

六、实验步骤与实验程序

(1)二分法

第一步:在MATLAB 7.0软件,建立一个实现二分法的MATLAB函数文件agui_bisect.m如下:

function x=agui_bisect(fname,a,b,e)

%fname为函数名,a,b为区间端点,e为精度

fa=feval(fname,a); %把a端点代入函数,求fa

fb=feval(fname,b); %把b端点代入函数,求fb

if fa*fb>0 error('两端函数值为同号');

end

%如果fa*fb>0,则输出两端函数值为同号

k=0

x=(a+b)/2

while(b-a)>(2*e) %循环条件的限制

fx=feval(fname,x);%把x代入代入函数,求fx

if fa*fx<0%如果fa与fx同号,则把x赋给b,把fx赋给fb

b=x;

fb=fx;

else

%如果fa与fx异号,则把x赋给a,把fx赋给fa

a=x;

fa=fx;

end

k=k+1

%计算二分了多少次

x=(a+b)/2 %当满足了一定精度后,跳出循环,每次二分,都得新的区间断点a和b,则近似解为x=(a+b)/2

end

第二步:在MATLAB命令窗口求解方程f(x)=e^x+10x-2=0,即输入如下

>>fun=inline('exp(x)+10*x-2')

>> x=agui_bisect(fun,0,1,0.5*10^-3)

第三步:得到计算结果,且计算结果为

matlab实现牛顿迭代法求解非线性方程组教学文稿

matlab实现牛顿迭代法求解非线性方程组 已知非线性方程组如下 3*x1-cos(x2*x3)-1/2=0 x1^2-81*(x2+0.1)^2+sin(x3)+1.06=0 exp(-x1*x2)+20*x3+(10*pi-3)/3=0 求解要求精度达到0.00001 ———————————————————————————————— 首先建立函数fun 储存方程组编程如下将fun.m保存到工作路径中: function f=fun(x); %定义非线性方程组如下 %变量x1 x2 x3 %函数f1 f2 f3 syms x1 x2 x3 f1=3*x1-cos(x2*x3)-1/2; f2=x1^2-81*(x2+0.1)^2+sin(x3)+1.06; f3=exp(-x1*x2)+20*x3+(10*pi-3)/3; f=[f1 f2 f3]; ———————————————————————————————— 建立函数dfun 用来求方程组的雅克比矩阵将dfun.m保存到工作路径中: function df=dfun(x); %用来求解方程组的雅克比矩阵储存在dfun中 f=fun(x); df=[diff(f,'x1');diff(f,'x2');diff(f,'x3')]; df=conj(df'); ———————————————————————————————— 编程牛顿法求解非线性方程组将newton.m保存到工作路径中: function x=newton(x0,eps,N); con=0; %其中x0为迭代初值eps为精度要求N为最大迭代步数con用来记录结果是否收敛for i=1:N; f=subs(fun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)}); df=subs(dfun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)}); x=x0-f/df; for j=1: length(x0); il(i,j)=x(j); end if norm(x-x0)

大学物理仿真实验报告牛顿环法测曲率半径

大学物理仿真实验报告-牛顿环法测曲率半径

————————————————————————————————作者: ————————————————————————————————日期:

大学物理仿真实验报告 实验名称 牛顿环法测曲率半径 班级: 姓名: 学号: 日期:

牛顿环法测曲率半径 实验目的 1.学会用牛顿环测定透镜曲率半径。 2.正确使用读书显微镜,学习用逐差法处理数据。 实验原理 如下图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于膜厚度e的两倍。此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为 (1) 当?满足条件(2) 时,发生相长干涉,出现第K级亮纹,而当 (k = 0,1,2…) (3) 时,发生相消干涉,出现第k级暗纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。 如图所示,设第k级条纹的半径为,对应的膜厚度为,则

(4) 在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R>> ek,ek 2相对于2Re 是一个小量,可以忽略,所以上式可以简化为 k (5) 如果rk是第k级暗条纹的半径,由式(1)和(3)可得 (6) 代入式(5)得透镜曲率半径的计算公式 (7) 对给定的装置,R为常数,暗纹半径 (8) 和级数k的平方根成正比,即随着k的增大,条纹越来越细。 同理,如果r k是第k级明纹,则由式(1)和(2)得 (9) 代入式(5),可以算出 (10)

插值法数值上机实验报告

插值法数值上机实验报告 实验题目: 利用下列条件做插值逼近,并与R (x) 的图像比较 考虑函数:R x y=1 1+x2 (1)用等距节点X i=?5+i,i=0,1,...,10.给出它的10次Newton插值多项式的图像; π),i=0,1,...,20.给出它的20次Lagrange插值多项式(2)用节点X i=5cos(2i+1 42 的图像; (3)用等距节点X i=?5+i,i=0,1,...,10.给出它的分段线性插值函数的图像;(4)用等距节点X i=?5+i,i=0,1,...,10.给出它的三次自然样条插值函数的图像; (5)用等距节点X i=?5+i,i=0,1,...,10.给出它的分段三次Hermite插值函数的图像; 实验图像结果:

实验结果分析: 1.为了验证Range现象,我还特意做了10次牛顿插值多项式和20次牛顿插值多项式的对比图像,结果如下图(图对称,只截取一半) 可以看出,Range现象在高次时变得更加明显。这也是由于高次多项式在端点处的最值随次数的变大很明显。可以料定高次多项式在两侧端点处剧烈震荡,在更小的间距内急剧上升然后下降,Range现象非常明显。

2.分析实验(2)的结果,我们会惊讶地发现,由于取21个点逼近,原本预料的Range现象会很明显,但这里却和f(x)拟合的很好。(即下图中Lagrange p(x)的图像)。可是上图中取均匀节点的20次牛顿多项式逼近的效果在端点处却很差。料想是由于节点X i=5cos2i+1 42 π ,i=0,1,...,20 取得很好。由书上第五章的 知识,对于函数y=1 1+x ,y 1 2对应的cherbyshev多项式的根恰好为X i= 5cos2i+1 42 π ,i=0,1,...,20 。由于所学限制,未能深入分析。 (3)比较三次样条插值图像和Hermit插值图像对原函数图像的逼近情形。见下图:

计算方法第二章方程求根上机报告

实验报告名称 班级:学号:姓名:成绩: 1实验目的 1)通过对二分法与牛顿迭代法作编程练习与上级运算,进一步体会二分法与牛顿迭代法的不同特点。 2)编写割线迭代法的程序,求非线性迭代法的解,并与牛顿迭代法。 2 实验内容 用牛顿法和割线法求下列方程的根 x^2-e^x=0; x*e^x-1=0; lgx+x-2=0; 3实验步骤 1)根据二分法和牛顿迭代法,割线法的算法编写相应的求根函数; 2)将题中所给参数带入二分法函数,确定大致区间; 3)用牛顿迭代法和割线法分别对方程进行求解; 3 程序设计 牛顿迭代法x0=1.0; N=100; k=0; eps=5e-6; delta=1e-6; while(1) x1=x0-fc1(x0)/fc2(x0); k=k+1; if k>N disp('Newmethod failed')

break end if(abs(x1-x0)=delta) c=x1; x1=cutnext(x0,x1); x0=c; %x0 x1μYí?μ?μ?x1 x2 è?è?±£′??úx0 x1 end k=k+1; if k>N disp('Cutline method failed') break; end if(abs(x1-x0)

牛顿迭代法解元方程组以及误差分析matlab实现

.0],;,[0 ),()(),()(),(0),()(),()(),(,.**,0],;,[),()()(),()()(,0),(),(),(])()[(),(),(),(),(),(])()[(),(),(2,),(])()[(21),(])()[(),(),()(2 )(''))((')()(: 1n 1n 110101010100000000000000000000000000200000000000 00 000fg g f y y g f g f g f fg x x g g f f y x g y y y x g x x y x g y x f y y y x f x x y x f y x y x y x g f g f fg g f y y g f g f g f fg x x g f g f fg g f y y g f g f g f fg x x g g f f y x g y x g y y y x g x x y x f y x f y y y x f x x y x g y x f y x g y y y x x x y x g y x g y x f y x g y x f y y y x x x y x f y x f y x y x f y y y x x x y x f y y y x x x y x f y x f x x f x x x f x f x f x x n n x y y x y y y x y x n n y n n n x n n n n n y n n n x n n n n n x y y x x x x y y x y y x y y x x x x y y x y y y x y x y x y x y y x x y y x x y x y y x x ,则其解可记为: 的行列式不为若系数矩阵: 附近的线性化方程组为在一元方程牛顿迭代法,类似 ,的新近似值于是就得到了根,则可得解: 的行列式不为若系数矩阵),(),( ),(),( 则两式构成方程组: 令可得: 构成二元方程组,同样与若另有一方程: 阶小项,得到线性方程忽略在方程根附近取值时,当二元函数的展开为: 开类似一元函数的泰勒展?????+-+=-+-+=?????=-+-+=-+-+??? ????-+-+=-+-+=????????-+-=--+-=-?????-=-+--=-+-==??-+??-+=??-+??-+=??-+??-+??-+??-+=-+ -+=++========η ξξ

等厚干涉牛顿环实验报告材料97459

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一.实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二.实验仪器 读数显微镜钠光灯牛顿环仪

三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 2222222)(r d Rd R r d R R ++-=+-= 由于r R >>,可以略去d 2得

R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1,0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环半径r m 和r n 的平方差来计算曲率半径R 。因为 λMR r m =2 λnR r n =2 两式相减可得 λ)(22n m R r r n m -=-

MATLAB程序(牛顿法及线形方程组)

MATLAB 程序 1、图示牛顿迭代法(M 文件)文件名:newt_g function x = new_g(f_name,x0,xmin,xmax,n_points) clf,hold off % newton_method with graphic illustration del_x = 0.001; wid_x = xmax - xmin; dx = (xmax - xmin)/n_points; xp = xmin:dx:xmax; yp = feval(f_name,xp); plot(xp,yp);xlabel('x');ylabel('f(x)'); title('newton iteration'),hold on ymin = min(yp); ymax = max(yp); wid_y = ymax-ymin; yp = 0. * xp; plot(xp,yp) x = x0; xb = x+999; n=0; while abs(x-xb) > 0.000001 if n > 300 break; end y=feval(f_name,x); plot([x,x],[y,0]);plot(x,0,'o') fprintf(' n = % 3.0f, x = % 12.5e, y = % 12.5e \ n', n, x, y); xsc = (x-xmin)/wid_x; if n < 4, text(x,wid_y/20,[num2str(n)]), end y_driv = (feval(f_name,x + del_x) - y)/del_x; xb = x; x = xb - y/y_driv; n = n+1; plot([xb,x],[y,0]) end plot([x x],[0.05 * wid_y 0.2 * wid_y]) text( x, 0.2 * wid_y, 'final solution') plot([ x ( x - wid_x * 0.004)], [0.01 * wid_y 0.09 * wid_y]) plot([ x ( x + wid_x * 0.004)], [0.01 * wid_y 0.09 * wid_y]) 传热问题 假设一个火炉是用厚度为0.05m 的砖单层砌成的。炉内壁温度为T 0=625K, 外壁温度为T 1(未知)。由于对流和辐射造成了外壁的热量损失,温度T 1由下式决定: 44111()()()()0f k f T T T T T h T T x εσ∞=-+-+-=? 其中: k :炉壁的热传导系数,1.2W/mK ε: 发射率,0.8 T 0:内壁温度,625K T 1:外壁温度(未知),K T ∞:环境温度,298K T f :空气温度,298K H :热交换系数,20W/m 2K

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 Prepared on 22 November 2020

等厚干涉——牛顿环等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光 学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻 璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平

凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何

数值分析实验报告记录

数值分析实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

数值分析实验报告 (第二章) 实验题目: 分别用二分法、牛顿迭代法、割线法、史蒂芬森迭代法求方程 的根,观察不同初始值下的收敛性,并给出结论。 问题分析: 题目有以下几点要求: 1.不同的迭代法计算根,并比较收敛性。 2.选定不同的初始值,比较收敛性。 实验原理: 各个迭代法简述 二分法:取有根区间的重点,确定新的有根区间的区间长度仅为区间长度的一版。对压缩了的有根区间重复以上过程,又得到新的有根区间,其区间长度为的一半,如此反复,……,可得一系列有根区间,区间收敛到一个点即为根。 牛顿迭代法:不动点迭代法的一种特例,具有局部二次收敛的特性。迭代格式为 割线法:是牛顿法的改进,具有超线性收敛的特性,收敛阶为1.618. 迭代格式为 史蒂芬森迭代法:采用不动点迭代进行预估校正。至少是平方收敛的。迭代格式为 这里可采用牛顿迭代法的迭代函数。 实验内容:

1.写出该问题的函数代码如下: function py= f(x) syms k; y=(k^2+1)*(k-1)^5; yy=diff(y,k); py(1)=subs(y,k,x); py(2)=subs(yy,k,x); end 2.分别写出各个迭代法的迭代函数代码如下: 二分法: function y=dichotomie(a,b,e) i=2; m(1)=a; while abs(a-b)>e t=(a+b)/2; s1=f(a); s2=f(b); s3=f(t); if s1(1)*s3(1)<=0 b=t; else a=t; end m(i)=t; i=i+1; end y=[t,i+1,m]; end 牛顿迭代法: function y=NewtonIterative(x,e) i=2; en=2*e;m(1)=x; while abs(en)>=e s=f(x); t=x-s(1)/s(2); en=t-x; x=t; m(i)=t; i=i+1; end y=[x,i+1,m]; end 牛顿割线法: function y=Secant(x1,x2,e) i=3; m(1)=x1,m(2)=x2; while abs(x2-x1)>=e s1=f(x1); s2=f(x2); t=x2-(x2-x1)*s2(1)/(s2(1)-s1( 1)); x1=x2; x2=t; m(i)=t; i=i+1; end

数值计算(二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法))

本科生实验报告 实验课程数值计算方法 学院名称信息科学与技术学院 专业名称计算机科学与技术 学生姓名 学生学号 指导教师 实验地点 实验成绩 二〇一六年五月二〇一六年五月

实验一非线性方程求根 1.1问题描述 实验目的:掌握非线性方程求根的基本步骤及方法,。 实验内容:试分别用二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法),求x5-3x3+x-1= 0 在区间 [-8,8]上的全部实根,误差限为10-6。 要求:讨论求解的全过程,对所用算法的局部收敛性,优缺点等作分析及比较, 第2章算法思想 2.1二分法 思想:在函数的单调有根区间内,将有根区间不断的二分,寻找方程的解。 步骤: 1.取中点mid=(x0+x1)/2 2.若f(mid)=0,则mid为方程的根,否则比较与两端的符号,若与 f(x0) 异号,则根在[x0,mid]之间,否则在[mid,x1]之间。 3并重复上述步骤,直达达到精度要求,则mid为方程的近似解。

2.2 简单迭代法 思想:迭代法是一种逐次逼近的方法,它是固定公式反复校正跟的近似值,使之逐步精确,最后得到精度要求的结果。 步骤:1.构造迭代公式f(x),迭代公式必须是收敛的。 2.计算x1,x1=f(x0). 3.判断|x1-x0|是否满足精度要求,如不满足则重复上述步骤。 4.输出x1,即为方程的近似解。

开始 输入x0,e X1=f(x0)|x1-x0|

牛顿环实验报告

北京师范大学珠海分校大学物理实验报告 实验名称:牛顿环实验测量 学院工程技术学院 专业测控技术与仪器 学号 1218060075 姓名钟建洲 同组实验者 1218060067余浪威 1218010100杨孟雄 2013 年 1 月 17日

实验名称 牛顿环实验测量 一、实验目的 1.观察牛顿环干涉现象条纹特征; 2.学习用光的干涉做微小长度的测量; 3.利用牛顿环干涉测量平凸透镜的曲率半径; 4.通过实验掌握移测显微镜的使用方法 二、实验原理 在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点 o 附近就形成一层空 气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和下表面反射的光束在膜上表面相遇相干,形成以 o 为圆心的明暗相间的环状干涉图样,称为牛顿环。如果已知入射光波长,并测得第 k 级 暗环的半径 r k ,则可求得透镜的曲率半径 R 。但 实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。第m 环与第n 环 用直径 D m 、 D n 。 () λ n m n D m D R +-= 42 2此为计算 R 用的公式,它与附加厚度、

圆心位置、绝对级次无关,克服了由这些因素带来的系统误差,并且D m 、 D n 可以是弦长。 三、实验内容与步骤 用牛顿环测量透镜曲率半径 (1).按图布置好实验器材,使用单色扩展光源,将牛顿环装置放在读数显微镜工作台毛玻璃中央,并使显微镜筒正对牛顿环装置中心。 (2).调节读数显微镜。 1.调节目镜,使分划板上的十字刻度线清晰可见,并转动目镜,使十字刻度线的横线与显微镜筒的移动方向平行。 2.调节45度反射镜,使显微镜视觉中亮度最大,这时基本上满足入射光垂直于待测量透镜的要求。 1.转动手轮A,使显微镜平移到标尺中部,并调节调焦手轮B,使物镜接近牛顿环装置表面。 2.对显微镜调焦。缓慢地转动调焦手轮B,使显微镜筒由下而上移动进行调焦,直到从目镜中清楚地看到牛顿环干涉条纹且无视差为止;然后移动牛顿环装置,使目镜中十字刻度线交点与牛顿环中心重合 (1).观察条纹的特征。 观察各级条纹的粗细是否一致,其间距有无差异,并做出解释。观察牛顿环中心是亮斑还是暗斑? (2).测量暗环的直径 转动读数显微镜的读数鼓轮,同时在目镜中观察,使十字刻度线由牛顿环中心缓慢地向一侧移动到43环;然后再回到第42环。自42环起,单方向移动十字刻度,每移3环读数一——直到测量完成另一侧的第42环。并将所测量的第42环到第15环各直径的左右两边的读数记录在表格内。 四、数据处理与结果 1.求透镜的曲率半径。 测出第15环到第42环暗环的直径,取m-n=15,用逐差法求出暗环的直径平方 差的平均值,按算出透镜的曲率半径的平均值R。 R1=(d422-d272)/[4(42-27]λ= 895.85 mm R2=(d392-d242)/[4(39-24]λ= 896.97 mm R3=(d362-d212)/(4(36-21)λ= 887.94mm R4=(d332-d182)/(4(33-18)λ= 893.30mm

牛顿插值法试验报告

. 牛顿插值法一、实验目的:学会牛顿插值法,并应用算法于实际问题。 x?x)f(二、实验内容:给定函数,已知: 4832401.2)?.?1449138f(2.f.f(20)?1.414214(2.1) 549193.)?1f(2.4516575(f2.3)?1. 三、实验要求:以此作为函数2.15插值多项式在处的值,用牛顿插值法求4 次Newton( 1)2.15?N(2.15)。在MATLAB中用内部函数ezplot绘制出的近似值4次Newton插值多项式的函数图形。 (2)在MATLAB中用内部函数ezplot可直接绘制出以上函数的图形,并与作出的4次Newton插值多项式的图形进行比较。 四、实验过程: 1、编写主函数。打开Editor编辑器,输入Newton插值法主程序语句: function [y,L]=newdscg(X,Y,x) n=length(X); z=x; A=zeros(n,n);A(:,1)=Y';s=0.0; p=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end end C=A(n,n); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); L(k,:)=poly2sym(C); 0 / 3 . %%%%%%%%%%%%%%%%%% t=[2,2.1,2.2,2.3,2.4]; fx=sqrt(t); wucha=fx-Y; 以文件名newdscg.m保存。 2、运行程序。 (1)在MATLAB命令窗口输入: >> X=[2,2.1,2.2,2.3,2.4]; Y =[1.414214,1.449138,1.483240,1.516575,1.549193]; x=2.15;[y,P]=newdscg(X,Y,x) 回车得到:

用牛顿迭代法求解非线性方程

数值分析实验报告(一) 实验 名称 用牛顿迭代法求解非线性方程实验时间2011年11 月19日姓名班级学号成绩 一、实验目的 1.了解求解非线性方程的解的常见方法。 2.编写牛顿迭代法程序求解非线性方程。 二、实验内容 分别用初值 0.01 x=, 10 x=和 300 x=求113,要求精度为5 10-。 三、实验原理 设113 x=,则21130 x-=,记f(x)= 2113 x-,问题便成为了求2x -113=0的正根; 用牛顿迭代公式得 2 1 113 2 k k k k x x x x + - =-,即 1 1113 () 2 k k k x x x + =+(其中k=0,1,2,3,…,) 简单推导 假设f(x)是关于X的函数: 求出f(x)的一阶导,即斜率: 简化等式得到: 然后利用得到的最终式进行迭代运算直至求到一个比较精确的满意值。 如果f函数在闭区间[a,b]内连续,必存在一点x使得f(x) = c,c是函数f在闭区间[a,b]内的一点 我们先猜测一X初始值,然后代入初始值,通过迭代运算不断推进,逐步靠近精确值,直到得到我们主观认为比较满意的值为止。 回到我们最开始的那个”莫名其妙”的公式,我们要求的是N的平方根,令x2 = n,假设一关

于X的函数f(x)为: f(X) = X2 - n 求f(X)的一阶导为: f'(X) = 2X 代入前面求到的最终式中: X k+1 = X k - (X k 2 - n)/2X k 化简即得到我们最初提到求平方根的迭代公式: 四、实验步骤 1.根据实验题目,给出题目的C程序。 当初值为0.01、10、300时,即x=0.01,10,300 分别应用程序: #include "stdio.h" int main() { float number; printf("Please input the number:"); scanf("%f", &number); float x=1; int i; for (i=0;i<1000;i++) { x = (x + number/x)/2; } printf("The square root of %f is %8.5f\n", number ,x); } 得出结果 2.上机输入和调试自己所编的程序。 当x=0.01时,结果为:10.63015 x=10时,结果为:10.63015 x=300时,结果也为:10.63015 3.实验结果分析。 当初值取0.01、10、300时取不同的初值得到同样的结果10.63015。 五、程序

非线性方程组求解的牛顿迭代法用MATLAB实现

1. 二元函数的newton 迭代法理论分析 设),(y x f z =在点),(00y x 的某一邻域内连续且有直到2阶的连续偏导数,),(00h y h x ++为该邻域内任意一点,则有 ?? ? ????? +??+≈++==00) ,(),(),(),(0000y y x x y x f y k y x f x h y x f k y h x f 其中 0x x h -=,0y -=y k 于是方程0),(=y x f 可近似表示为 0) ,(),(),(k =?? ? ????? +??+==k k y y x x k y x f y k y x f x h y x f 即 0),()(),()(),(y k =-+-+k k k k k x k k y x f y y y x f x x y x f 同理,设y)g(x,z =在点),(00y x 的某一邻域内连续且有直到2阶的连续偏导数,),(00h y h x ++为该邻域内任意一点,亦有 ?? ?????? +??+≈++==00),(),(),(),(0000y y x x y x g y k y x g x h y x g k y h x g 其中0x x h -=,0y -=y k 于是方程0),(g =y x 可近似表示为 0) ,(),(),(k =?? ? ????? +??+==k k y y x x k y x g y k y x g x h y x g 即 0),(g )(),()(),(y k =-+-+k k k k k x k k y x y y y x g x x y x g 于是得到方程组 ? ??=-+-+=-+-+0),(g )(),()(),(0),()(),()(),(y k y k k k k k k x k k k k k k k x k k y x y y y x g x x y x g y x f y y y x f x x y x f

数值分析实验报告-插值、三次样条(教育教学)

实验报告:牛顿差值多项式&三次样条 问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数2 1()25f x x 作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。 实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。应用所编程序解决实际算例。 实验要求: 1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。 实验原理: 详见《数值分析 第5版》第二章相关内容。 实验内容: (1)牛顿插值多项式 1.1 当n=10时: 在Matlab 下编写代码完成计算和画图。结果如下: 代码: clear all clc x1=-1:0.2:1; y1=1./(1+25.*x1.^2); n=length(x1); f=y1(:); for j=2:n for i=n:-1:j f(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1)); end end syms F x p ; F(1)=1;p(1)=y1(1); for i=2:n F(i)=F(i-1)*(x-x1(i-1)); p(i)=f(i)*F(i);

end syms P P=sum(p); P10=vpa(expand(P),5); x0=-1:0.001:1; y0=subs(P,x,x0); y2=subs(1/(1+25*x^2),x,x0); plot(x0,y0,x0,y2) grid on xlabel('x') ylabel('y') P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36*x^4+2.0202e-1 4*x^3-16.855*x^2-6.6594e-16*x+1.0 并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。 Fig.1 牛顿插值多项式(n=10)函数和原函数图形 从图形中我们可以明显的观察出插值函数在两端点处发生了剧烈的波动,产生了极大的误差,即龙格现象,当n=20时,这一现象将更加明显。 1.2 当n=20时: 对n=10的代码进行修改就可以得到n=20时的代码。将“x1=-1:0.2:1;”改为“x1=-1:0.1:1;”即可。运行程序,我们得到n=20时的牛顿插值多项式,结果为:P20(x)= 260188.0*x^20 - 1.0121e6*x^18 + 2.6193e-12*x^17 + 1.6392e6*x^16 + 2.248e-11*x^15 - 1.4429e6*x^14 - 4.6331e-11*x^13 + 757299.0*x^12 + 1.7687e-11*x^11 - 245255.0*x^10 + 2.1019e-11*x^9 + 49318.0*x^8 + 3.5903e-12*x^7 - 6119.2*x^6 - 1.5935e-12*x^5 + 470.85*x^4 + 1.3597e-14*x^3 - 24.143*x^2 - 1.738e-14*x + 1.0 同样的,这里得到了该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.2)。

2-8牛顿迭代法matlab

实验七 牛顿迭代法 【实验目的】 1.了解牛顿迭代法的基本概念。 2.了解牛顿迭代法的收敛性和收敛速度。 3.学习掌握MATLAB 软件有关的命令。 【实验内容】 用牛顿迭代法求方程0123=-++x x x 的近似根,误差不超过310-。 【实验准备】 1.牛顿迭代法原理 设已知方程0)(=x f 的近似根0x ,则在0x 附近)(x f 可用一阶泰勒多项式))((')()(000x x x f x f x p -+=近似代替.因此, 方程0)(=x f 可近似地表示为0)(=x p .用1x 表示0)(=x p 的根,它与0)(=x f 的根差异不大. 设0)('0≠x f ,由于1x 满足,0))((')(0100=-+x x x f x f 解得 ) (')(0001x f x f x x -= 重复这一过程,得到迭代格式 ) (')(1n n n n x f x f x x -=+ 这就是著名的牛顿迭代公式,它相应的不动点方程为 ) (')()(x f x f x x g -=. 2. 牛顿迭代法的几何解析 在0x 处作曲线的切线,切线方程为))((')(000x x x f x f y -+=。令 0=y ,可得切线与x 轴的交点坐标) (')(0001x f x f x x -=,这就是牛顿法的迭代公式。因此,牛顿法又称“切线法”。

3.牛顿迭代法的收敛性 计算可得2)] ('[)(")()('x f x f x f x g -=,设*x 是0)(=x f 的单根,有0)(',0)(**≠=x f x f ,则 0)]('[)(")()('2**** =-=x f x f x f x g , 故在*x 附近,有1)('>clear; >>x=0.5; >>for i=1:3 >>x=x-(x^3+x^2+x-1)/(3*x^2+2*x+1) >>end 可算得迭代数列的前3项0.5455, 0.5437, 0.5437.近三次迭代,就大大超过了精度要求. 练习2用牛顿迭代法求方程)0(2>=a a x .的近似正实根,由此建立一种求平方根的计算方法. 由计算可知,迭代格式为)(21)(x a x x g += .,在实验12的练习4种已经进行了讨论. 练习3用牛顿迭代法求方程1=x xe 的正根. 牛顿迭代法的迭代函数为

大学物理仿真实验报告 牛顿环

大学物理仿真实验报告 实验名称:牛顿环法测曲率半径实验日期: 专业班级: 姓名:学号: 教师签字:________________ 一、实验目的 1.学会用牛顿环测定透镜曲率半径。 2.正确使用读书显微镜,学习用逐差法处理数据。 二、实验仪器 牛顿环仪,读数显微镜,钠光灯,入射光调节架。 三、实验原理 如图所示,在平板玻璃面DCF上放一个曲率半径很大的平 凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形 成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到 透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜 的上下表面反射的两条光线来自同一条入射光线,它们满 足相干条件并在膜的上表面相遇而产生干涉,干涉后的强 度由相遇的两条光线的光程差决定,由图可见,二者的光 程差等于膜厚度e的两倍,即 此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为(1) 当?满足条件(2)时,发生相长干涉,出现第K级亮纹,而当 (k = 0,1,2…)(3)时,发生相消干涉,出现第k级暗纹。因为

同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。 如图所示,设第k级条纹的半径为,对应的膜厚度为,则 (4) 在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R >> e k,e k2相对于2Re k是一个小量,可以忽略,所以上式可以简化为 (5) 如果r k是第k级暗条纹的半径,由式(1)和(3)可得 (6) 代入式(5)得透镜曲率半径的计算公式 (7) 对给定的装置,R为常数,暗纹半径 (8) 和级数k的平方根成正比,即随着k的增大,条纹越来越细。 同理,如果r k是第k级明纹,则由式(1)和(2)得 (9) 代入式(5),可以算出(10)

牛顿迭代法实验报告

用牛顿迭代法求非线性方程的根 一、 实验题目 求方程()013=--=x x x f 在5.1附近的根。 二、 实验引言 (1)实验目的 1. 用牛顿迭代法求解方程的根 2. 了解迭代法的原理 3. 改进和修缮迭代法 (2)实验意义 牛顿迭代法就是众多解非线性方程迭代法中比较普遍的一种,求解方便实用。 三、 算法设计 (1)基本原理 给定初始值0x ,ε为根的容许误差,η为()x f 的容许误差,N 为迭代次数的容许值。 1.如果()0='x f 或迭带次数大于N ,则算法失败,结束;否则执行2. 2.计算()() 0001x f x f x x '-=. 3.若ε<-21x x 或()η<1x f ,则输出1x ,程序结束;否则执行4. 4.令10x x =,转向1. (2)流程图

四、程序设计program nndd01 implicit none real,parameter::e=0.005 real,parameter::n=9 real::x1 real::x0=1.5 integer::k real,external::f,y do k=1,9 if (y(x0)==0) then write(*,*)"失败" else x1=x0-f(x0)/y(x0) if (abs(x1-x0)

else x0=x1 end if end if end do end function f(x) implicit none real::f real::x f=x*x*x-x-1 return end function function y(x) implicit none real::y real::x y=3*x*x-1 return end function 五、求解结果 3 1.324718 4 1.324718 5 1.324718 6 1.324718 7 1.324718 8 1.324718 9 1.324718 六、算法评价及讨论 1.在求解在1.5处附近的根,不难发现在输入区间左端值为1时 需要迭代6次,而输入区间左端值为1.5时,却只要4次。初

相关文档
最新文档