牛顿第二定律的应用—传送带问题(学案)
牛顿第二定律传送带问题

牛顿第二定律的应用——传送带问题【模型一】水平传送带例:水平传送带被广泛地应用于机场和火车站,如下图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg 的行李无初速度地放在A处,设行李与传送带之间的动摩擦因数μ=0.1,A、B 间的距离L=2 m,g取10 m/s2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)求行李从A处传送到B处的时间;(4)这个木箱放在传送带上后,传送带上将留下一段多长的摩擦痕迹?(5)如果提高传送带的运行速率,行李就能较快的被传送到B处,求行李从A 处传送到B处的最短时间和传送带对应的虽小运行速率。
【跟踪检测】=6m/s 1、如图,光滑圆弧槽的末端与水平传送带相切,一滑块从圆槽滑下,以v的速度滑上传送带,已知传送带长L=8m,滑块与传送带之间的动摩擦因数为μ=0.2,求下面三种情况下,滑块在传送带上运动的时间(g=10m/s2)(1)传送带以4m/s的速度逆时针转动;(2)传送带不动;(3)传送带以4m/s的速度顺时针转动。
2、如下图所示,一水平方向足够长的传送带以恒定的速度v1沿逆时针方向运动,传送带左端有一与传送带等高的光滑水平面,一物体以恒定的速度v2沿直线向右滑上传送带后,经过一段时间后又返回光滑水平面上,其速率为v3,下列说法正确的是()A.若v1<v2,则v3=v1B.若v1>v2,则v3=v2C.不管v2多大,总有v3=v2D.若v1=v2,才有v3=v1【模型二】倾斜传送带例2:如图所示,传送带与地面成夹角θ=37°,以1m/s的速度顺时针转动,在传送带下端轻轻地放一个质量为m=0.5kg的物体,它与传送带之间的动摩擦因数μ=0.8,已知传送带AB的长度L=5m,则物体从A运动到B需时间是多少? (g 取10 m/s2)【跟踪检测】如图所示,传送带与水平面成夹角θ=37°,以10m/s的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从AB的长度L=16m,求:(1)物体从A传送到B需要的时间为多少?(2)物体从A传送到B过程中在传送带上留下的划痕多长?【巩固练习】1、如图,车以某一加速度向右运动,物块刚好沿车厢壁匀速下滑。
传送带问题(教案)

第三章牛顿运动定律传送带问题【教学目标】1.知识与技能(1)理解传送带问题;(2)学会运用牛顿运动定律解决传送带问题和其它实际问题。
2.过程与方法(1)运用“五段式”教学法,以问题链的形式由浅到深,引导学生自主思考,加深对牛顿运动定律的理解。
(2)通过合作交流、自主探究,培养学生运用物理规律解决实际问题的能力。
3.情感态度价值观(1)通过对传送带问题的学习,感受物理源于生活服务于生活的理念。
(2)通过对传送带问题的学习,感受生活中的物理,激发学生运用物理规律解决生活问题的激情和信念,激发其创造性。
【教学重点】运用牛顿第二定律判定物块在传送带上的运动状态【教学难点】相对位移(划痕)的计算【课时安排】1课时【教学过程】1.创设情境,提出问题。
情境引入:飞机场、火车站、汽车站都有安全检查仪,其装置可以简化成如右图所示的一个传送带。
提出问题:人在传送带A点把行李放在以恒定速度V运行的传送带上。
人同时也以速度V匀速前进,行李和人谁先到达B点?2.问题引导,自主探究。
(1)传送带做什么运动?人做什么运动?行李向哪边运动?为什么?学生:传送到做匀速直线运动,人做匀速直线运动。
通过受力分析知道,行李受到水平向右的摩擦力。
行李向右运动。
(2)行李开始做什么性质的运动?行李会一直这样运动下去吗?行李可能的最大速度是多少?学生:行李F合=μmg,且为恒力。
根据牛顿第二定律,得a=μg。
行李向右做匀加速直线运动。
因为当行李速度等于传送带速度时,行李和传送带达到相对静止,摩擦力消失,行李和传送带以匀速运动的速度共同做匀速直线运动。
(3)行李达到最大速度之前的运动情况:V0、V、a、t、X。
ABV学生: V 0=0; V=V 传; a=μg ; t 加=t V =ug V 。
加速位移 X 加=21at 2= 2ug 2V 传送带位移 X 传=Vt= ug 2V 总结行李整体的运动情况,回答课前问题。
结论:当L>X 加时,行李先加速后匀速。
2021高中物理牛顿定律应用专题4深度剖析传送带问题学案新人教版必修1

2021高中物理牛顿定律应用专题4深度剖析传送带问题学案新人教版必修1知识点考纲要求题型分值牛顿第二定律的应用应用牛顿第二定律解决问题传送带模型的分析选择题解答题6~15分二、重难点提示重点:学会使用牛顿第二定律解决传送带问题。
难点:倾斜传送带上物体的运动情形分析。
传送带问题是以真实物理现象为依据的问题,它既能训练学生的科学思维,又能联系科学、生产和生活实际,因而,这种类型问题具有生命力,因此也确实是高考命题所关注的问题。
1. 传送带分类:水平、倾斜两种;按转向分类:顺时针、逆时针转两种。
2. 受力和运动分析:受力分析中的摩擦力突变——发生在v物与v带相同的时刻运动分析中的速度变化——相对运动方向和对地速度变化分析关键:①判定v物、v带的大小与方向;②判定mg sinθ与f 的大小与方向。
【要点诠释】水平传送带倾斜传送带第一是要对放在传送带上的物体进行受力分析,分清物体所受摩擦力是阻力依旧动力。
先对物体进行受力分析,再判定摩擦力的方向是关键,正确明白得题意和挖掘题中隐含条件是解决这类问题的突破口。
其次是对物体进行运动状态分析,即对静态→动态→终态进行分析和判定,对其全过程作出合理分析、推论,进而采纳有关物理规律求解。
例题1 如图所示,一平直的传送带以速度v =2m/s 匀速运动,传送带把A 处的工件运送到B 处,A 、B 相距L =10m 。
若从A 处把工件无初速地放到传送带上,通过时刻t =6s 能传送到B 处。
现要用最短的时刻把工件从A 处传送到B 处,求传送带的运行速度至少多大。
思路分析:由题意可知:t >vL,因此工件在6s 内先匀加速运动,后匀速运动,故有S 1=2vt 1、S 2=vt 2,且t 1+t 2=t 、S 1+S 2=L 联立求解得t 1=2s ;v =a t 1,a =1m/s 2。
若要用最短时刻把工件传送到B 处,工件加速度仍为a ,设传送带速度为v ′,工件先加速后匀速,同上,L =21t v '+v ′t 2;又t 1=av ',t 2=t -t 1,联立求解得L =a 22v '+v ′(t -a v ');因此得a v v L t 2'+'=,从式子看出常量=='⨯'a L a v v L 22,时即aL v a v v L 22=''=',其t 有最小值,因而s m aL v v /202=='=,通过解答可知工件一直加速到B所用时刻最短,故可用ax v v t 2202=-一步解出,00=v ,t v m L x s m a ,10,/12===即为传送带运行最小速度,得s m v t /20=。
精品牛顿第二定律的应用-导学案

牛顿第二定律的应用——传送带与板块模型(导学案)姓名:教学目的:1、知识与技能:能理解牛顿第二定律,利用问题分析培养学生的解题能力,对给定情境进行受力分析和运动过程分析,培养学生分析物理问题的能力。
2、过程与方法:通过教师示范和学生自主分析与讨论相结合,让学生体验物理解题的逻辑性、严谨性以及物理试题表达的规范性。
3、情感态度与价值观:通过规范表达、示范分析、师生共情,让学生体验物理问题的解决总是将复杂的问题分解成简单的问题进行处理的方法,让学生体验科学态度和物理学的美。
重点:牛顿第二定律方程的建立,运动学公式的应用,对运动情境的分析及其过程中的受力分析。
难点:对运动情境的分析和受力分析。
学习过程:知识框图一、复习旧知识1、回顾所学运动学公式有哪些:2、所学重力、弹力和摩檫力的表达式是怎样的:3、知道物体的受力情况,要讨论运动情况的关键是什么?知道物体的运动情况,要讨论受力情况的关键又是什么?二、学习新知识1、传送带模型例题1:水平传送带A、B以v=10m/s的速度沿顺时针方向匀速运动,如图1-a所示,A、B相距L=16m,一质量m=1kg的木块(可视为质点)从A点由静止释放,木块与传送带间的动摩擦因数μ=0.5。
g取10m/s2(1)求木块从A沿传送带运动到B所需的时间为多少?(2)若将传送带右端放低到传送带与水平面成θ=37°且仍以v=10m/s的速度沿逆时针方向匀速运动,如图1-b所示,木块以v0=6m/s的速度冲上传送带,求木块从A沿传送带运动到B所需的时间为多少?练习:如图2所示,水平传送带以v=13 m/s的速度逆时针匀速转动,两端相距x=8 m,工件与传送带间的动摩擦因数μ=0.6,工件滑上A端时速度v A=10 m/s,求工件到达B端时的速度v B和工件由A到B所用的时间。
(取g=10 m/s2)2、板块模型例题2:如图3所示,有一质量M=4 kg、长L=2.5 m的木板静置于水平地面上,在其最右端放一质量m=1 kg且可视为质点的木块,木板上表面与木块间动摩擦因数μ=0.3,下表面与地面之间的动摩擦因数μ1=0.2,现给木板施加水平向右的恒力F=30 N,则木块滑离木板需要多长时间?g取10 m/s2。
高考物理-牛顿第二定律应用:传送带问题(学案)

牛顿第二定律应用----传送带问题(学案)传送带问题的考查一般从受力和运动分析的层面上展开,受力分析中关键是注意摩擦力.....突变(大小、方向).........——..发生在...V .物.与.V .带.相同的时刻.....;运动分析中关键是相对运动的速度大小与方向的变化——物体和传送带对地速度的大小与方向比较。
难点形成的原因:1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清;2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误;3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。
一、水平放置运行的传送带处理水平放置的传送带问题,首先是要对放在传送带上的物体进行受力分析,分清物体所受摩擦力是阻力还是动力;其二是对物体进行运动状态分析,即对静态→动态→终态进行分析和判断,对其全过程作出合理分析、推论,进而采用有关物理规律求解.1. 水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查。
如图为—水平传送带装置示意图,绷紧的传送带AB 始终保持v =1m/s 的恒定速率运行,一质量为m =4kg 的行李无初速地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动。
设行李与传送带间的动摩擦因数μ=0.1,AB 间的距离l =2m ,g 取10m/s 2。
(1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小; (2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B 处。
求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率。
2.:如图所示,传送带的水平部分长为L .传动速率v ,在其左端无初速度放一小木块,若木块与传送带间的动摩擦因数为μ,则木块从左端运动到右端的时间不可能是 ( ) A . + B . C .D .3. 如图所示,质量=M 20kg 的物体从光滑斜面上高度8.0=H m 处释放,到达底端时水平进入水平传送带(不计斜面底端速度大小的损失,即在斜面底端速度方向迅速变为水平,大小不变),传送带由一电动机驱动着匀速向左转动,速率为3 m/s .已知物体与传送带间的动摩擦因数=μ0.1. 物体冲上传送带后就移走光滑斜面.(g 取10 m/s 2).(1)物体滑上传送带A 点时的速度大小。
【人教版】2020高中物理 专题11 牛顿运动定律的应用之传送带模型学案 新人教版必修1

专题11 牛顿运动定律的应用之传送带模型水平传送带问题求解的关键在于对物体所受的摩擦力进行正确的分析判断。
物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻。
【例1】如图所示,水平长传送带始终以v匀速运动,现将一质量为m的物体轻放于A端,物体与传送带之间的动摩擦因数为μ,AB长为L,L足够长。
问:(1)物体从A到B做什么运动?(2)当物体的速度达到传送带速度v时,物体的位移多大?传送带的位移多大?(3)物体从A到B运动的时间为多少?(4)什么条件下物体从A到B所用时间最短?【答案】(1)先匀加速,后匀速(2)v22μgv2μg(3)Lv+v2μg(4)v≥2μgL【解析】(1)物体先做匀加速直线运动,当速度与传送带速度相同时,做匀速直线运动。
(2)由v=at和a=μg,解得t=vμg(4)当物体从A到B一直做匀加速直线运动时,所用时间最短,所以要求传送带的速度满足v≥2μgL。
倾斜传送带问题求解的关键在于分析清楚物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用。
当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变。
【例2】如图所示,传送带与地面夹角θ=37°,AB长度为16 m,传送带以10 m/s的速率逆时针转动。
在传送带上端A无初速度地放一个质量为0.5 kg的物体,它与传送带之间的动摩擦因数为0.5。
求物体从A运动到B所需时间是多少?(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)【答案】 2 s【解析】 物体放在传送带上后,开始阶段,由于传送带的速度大于物体的速度,传送带给物体一沿传送带向下的滑动摩擦力F f ,物体受力情况如图甲所示。
物体由静止加速,由牛顿第二定律有mg sin θ+μmg cos θ=ma 1,得a 1=10×(0.6+0.5×0.8) m/s 2=10 m/s 2。
第四单元传送带问题导学案
第四章 牛顿运动定律 传送带问题1.了解两类传送带的基本问题2.由受力分析能判断在传送带上的物体的运动情况3.会用牛顿第二定律和运动学公式求解传送带问题。
想一想:一. 摩擦力的产生条件:二. 动力学两类基本问题:一.水平传送带1.如图所示,水平放置的传送带以速度v 向右匀速运行,现将一质量为m 的小物体轻轻地放在传送带A 端,物体与传送带间的动摩擦因数为μ,若A 端与B 端相距L ,试求:物体由A 运动到B 的时间和物体到达B 端时的速度?2. 如图所示,水平放置的传送带以速度v 向右匀速运行,现有一质量为m 的小物体以速度u 滑上传送带A 端,物体与传送带间的动摩擦因数为μ,若A 端与B 端相距L ,试求:物体由A运动到B 的时间和物体到达B 端时的速度?二.倾斜传送带1.如图,传送带与水平方向夹37°角,AB 长为L =16m 的传送带以恒定速度v =10m/s 运学习目标 自主学习探究互动动,在传送带上端A 处无初速释放质量为m =0.5kg 的物块,物块与带面间的动摩擦因数μ=0.5,(sin37°=0.6,cos37°=0.8,取g =10 m/s 2)求:(1)当传送带顺时针转动时,物块从A 到B 所经历的时间为多少?(2)当传送带逆时针转动时,物块从A 到B 所经历的时间为多少?1.水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行了安全检查。
右图为一水平传送带装置示意图,绷紧的传送带AB 始终保持v =1m/s 的恒定速率运行,一质量为m =4kg 的行李无初速地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动。
设行李与传送带间的动摩擦因数μ=0.1,AB 间的距离l =2m ,g 取10m/s2。
(1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小;(2)求行李从A 运动到B 的时间;(3)行李在传送带上滑行痕迹的长度。
牛顿第二定律的应用——传送带问题
牛顿第二定律的应用——传送带问题传送带问题的分析思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
难点是当物体与皮带速度出现大小相等、方向相同时,物体能否与皮带保持相对静止。
一般采用假设法,假使能否成立关键看F静是否在0- Fmax之间注意:1、传送带与物体运动的牵制。
关键是受力分析和情景分析2、牛顿第二定律中a是物体对地加速度,运动学公式中x是物体对地的位移,这一点必须明确。
【例题分析】例1:如图所示为水平传送带装置,绷紧的皮带始终保持以υ=1m/s的速度移动,一质量m=0.5kg的物体(视为质点)。
从离皮带很近处轻轻落到一端A处。
若物体与皮带间的动摩擦因素µ=0.1。
AB两端间的距离为L=2.5m。
试求:物体从A运动到B的过程所需的时间为多少?例2:如图所示,一平直的传送带以速度V=2m/s匀速运动,传送带把A处的工件运送到B处,A、B相距L=10m.从A处把工件无初速地放到传送带上,经时间t=6s能传送到B处,欲用最短时间把工件从A处传到B处,求传送带的运行速度至少多大.例3:一传送带装置示意如图,传送带与地面倾角为37 °,以4m/s的速度匀速运行,在传送带的低端A处无初速地放一个质量为0.5kg的物体,它与传送带间动摩擦因素μ=0.8,A、B间长度为25m, 求:(1)说明物体的运动性质(相对地面)(2)物体从A到B的时间为多少?(sin37°=0.6)例4:如图所示,传送带与地面倾角为37 °,从A到B长度为16m,传送带以v=20m/s,变:(v=10m/s)的速率逆时针转动.在传送带上端A无初速地放一个质量为m=0.5kg的物体,它与传送带之间的动摩擦因数为μ=0.5.求物体从A运动到B所需时间是多少.(sin37°=0.6)练习1:某工厂用传送带传送零件,设两轮圆心的距离为S,传送带与零件的动摩擦因数为μ,传送带的速度为V,在传送带的最左端P处,轻放一质量为m的零件,并且被传送到右端的Q处,设零件运动一段与传送带无相对滑动,则传送零件所需的时间为多少?•。
传送带问题导学案
识后到黑板上
展示成果。
达标检测限时化
10分
1、 如图,一水平方向足够长的传送带以恒定
速率 沿顺时针方向运动,右端有一传送带等
高的光滑水平面,物体以恒定速率 沿直线
向左滑上传送带后,经过一段时间又返回光滑水平面,这时速率为 ,则下列说法正确的是:
A、若 ,则 B、 ,则
C、不管 多大,总有 D、只有 时,才有
变式:若摩擦因数为0.8,上述问题如何呢?(简单分析过程)
小组内交流讨论下列问题:
(1)物体刚放上传送带,受力如何,怎样求加速度?
(2)共速后,物体受力及加速度如何,以后物体怎样运动?
(3)若 =0.8,共速后,物体怎样运动?
展示目标:展示
解题过程。
达成目标:
1、熟练掌握传
送带问题解题
思路。
2小组讨论要求:先独立完成题目,后小组讨论、不
自主
学习
提纲
化5分钟
1、静摩擦力的产生条件,方向,大小。
2、滑动摩擦力的产生条件,方向,大小。
3应用牛顿第二定律解两类动力学问题的基本思路:
自主学习目标:
1、回顾体会两种摩擦力的产生条件、方向及大小的计算方法。
2、明确两种动力学问题的求解思路。
3、教师展示提纲答案和思维导图。
夯实基础问题化
15分钟
情景:如图,水平传送带瞬时针匀
应用牛顿定律解传送带问题
学习目标:1、准确对传送带上物体进行受力分析,找准临界状态。
2.会应用牛顿运动定律求解传送带问题,提高分析解决实际问题的能力
知识与技能:掌握传送带问题的分析方法和求解思路。
过程与方法:通过受力分析和过程分析,弄清传送带问题的物理过程。
牛顿第二定律的应用(三)传送带问题
牛顿第二定律的应用(三)传送带问题基本方法解决传送带问题要特别注重物理过程的分析和理解,关键是分析传送带上随行物时一般以地面为参照系。
1、对物体受力情况进行正确的分析,分清摩擦力的方向、摩擦力的突变。
当传送带和随行物相对静止时,两者之间的摩擦力为恒定的静摩擦力或零;当两者由相对运动变为速度相等时,摩擦力往往会发生突变,即由滑动摩擦力变为静摩擦力或变为零,或者滑动摩擦力的方向发生改变。
2、对运动情况进行分析分清物体的运动过程,明确传送带的运转方向。
【例1】一水平传送带长度为20m,以2m/s的速度做顺时针匀速转动,已知某物体与传送带间动摩擦因数为0.1,则从把该物体由静止放到传送带的一端开始,到达另一端所需时间为多少?【例2】. 如下图所示为车站使用的水平传送带模型,传送带长L=8m,现有一质量为m=10kg的旅行包以的初速度水平地滑上水平传送带。
已知旅行包与传送带间的动摩擦因数为,可将旅行包视为质点,取。
试讨论如下问题:(1)若传送带静止,则旅行包从传送带左端A滑到右端B所需要的时间是多少?(2)若传送带以速度v=4m/s沿顺时针方向匀速转动,则旅行包从传送带左端A滑到右端B历时多少?(3)若传送带以速度v=4m/s沿逆时针方向匀速转动,则旅行包能否从传送带的A端滑到B 端?如不能试说明理由;如能试计算历时多少?【例3】传送带以恒定速度υ=1.2m/s运行, 传送带与水平面的夹角为37º。
现将质量m=20kg 的物品轻放在其底端,经过一段时间物品被送到1.8m高的平台上,如图所示。
已知物品与传送带之间的摩擦因数μ=0.85,则物品从传送带底端到平台上所用的时间是多少?【例4】、如图2—1所示,传送带与地面成夹角θ=37°,以10m/s的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A→B的长度L=16m,则物体从A到B需要的时间为多少?【例5】.如图所示,传送带以恒定的速度v=10 m/s顺时针转动,传送带与水平面的夹角θ为37°,PQ=16 m,将一小物块无初速地放在传送带上P点,物块与此传送带间的动摩擦因数μ=0.5,g=10 m/s2. (sin 37°=0.6,cos 37°=0.8)求:小物块运动到Q点的时间为多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿第二定律的应用————传送带问题
皮带传输是利用货物和传送带之间的摩擦力将货物运送到别的地方去,它是牛顿第二定律在实际生产和生活中的应用。
传送带问题涉及摩擦力的判断、物体的运动状态和运动学知识的运用,具有较强的综合性和灵活性,可以很好地考查学生分析问题和解决问题的能力。
1、如图所示,小物块以速度v=2m/s滑上静止
的传送带,已知小物块与传送带的动摩擦因数为μ=0.2,传送带AB间距L=1m,则物块的运动时间为,若
小物体以速度v=4m/s滑上,小物块在传送带上的运动时间为课前热身
2、如图示,水平传送带以v=4m/s匀速运行,传送带AB间距
L=4m,物体(可视为质点)从A点静止释放,物体与传送带之间的
动摩擦因数为μ=0.2,则物体由A沿传送带运动到B所需的时间
为。
3、物块M在静止的传送带上匀速下滑时,传送带突然转动,传送
带的转动方向如图示。
则传送带转动后( )
A、物块将减速下滑
B、物块仍匀速下滑
C、物块所受摩擦力将变化
D、物块所受的摩擦力将不变
知识点拨
以是。
1、滑动摩擦力的方向与物体的物体的方向相反。
从作用效果来看,摩擦力既可以是也可
2、质点在水平传送带上运动的可能情景:
(1)情景一:传送带静止,质点以一定的初速度v从左端滑上传送
带,那么质点相对传送带向运动,摩擦力方向,则质点做
运动。
(
2)情景二:传送带以初速度v0顺时针转动,质点轻放于传送带的左端,质点相对传送带向运动,摩擦力方向,若质点的
速度达到v0时,质点的位移= ,
当x≥LAB时,质点一直向右作运动;
当x<LAB时,质点先后。
(3)情景三:质点以初速度v向右滑上以速度v0运行的传送带:
“不受”)摩擦力,做运1、当传送带以速度v0顺时针转动:若v=v0时,质点(“受”
“不受”)摩擦力,方向,其运动可能,动若v< v0时,质点(“受”
也可能。
若v> v0时,质点(“受”“不受”)摩擦力,方向,其运动可能;也可能。
1。