二次函数压轴(面积重叠)
中考数学总复习《二次函数压轴题(面积问题)》专题训练-附含答案

中考数学总复习《二次函数压轴题(面积问题)》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________1.如图,在平面直角坐标系中,抛物线2y ax x c =-+与y 轴交于点()0,4A -,与x 轴交于点()4,0B ,连接AB .(1)求抛物线的解析式.(2)P 是AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点C ,过点P 作PD x ⊥轴于点D .①求PC PD +的最大值.①连接PA ,PB ,是否存在点P ,使得线段PC 把PAB 的面积分成3:5两部分?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2.综合与探究如图1,抛物线212y x bx c =-++经过点(4,0)B 和(0,2)C ,与x 轴的另一个交点为A ,连接AC ,BC .(1)求该抛物线的解析式及点A 的坐标;(2)如图1,点D 是线段AC 的中点,连接BD .点E 是抛物线上一点,若ABE BCD S S =△△,设点E 的横坐标为x ,请求出x 的值;(3)试探究在抛物线上是否存在一点P ,使得45PBO OBC ∠+∠=︒?若存在,请直接写出点P 的坐标;若不存在,请说明理由.3.如图抛物线2y ax bx c =++经过点()1,0A -,点()0,3C ,且OB OC =.(1)求抛物线的解析式及其对称轴;(2)点D 、E 是直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值.(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3:5两部分,求点P 的坐标.4.已知二次函数23y ax bx a =+-经过点()1,0A -和()0,3C ,与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 和DB ,判断BCD △的形状并说明理由;(3)在对称轴右侧抛物线上找一点P ,使得P 、D 、C 构成以PC 为底边的等腰三角形,求出点P 的坐标及此时四边形PBCD 的面积.5.如图,抛物线214y x bx c =-++与x 轴交于点,A B 两点(点A 在点B 的右侧),点()()8,02,0A B -、,与y 轴交于点C .(1)求抛物线的解析式; (2)点D 为抛物线的顶点,过点D 作DE AC ∥交抛物线于点E ,点P 为抛物线上点,D E 之间的一动点,连接,,,,AC AE AP CE CP ,线段,AP CE 交于点G ,记CPG △的面积为1,S AEG △的面积为2S ,且12S S S =-,求S 的最大值及此时点P 的坐标;(3)在(2)的条件下,将拋物线沿射线AC 方向平移5个单位长度后得到新抛物线,点Q 是新拋物线对称轴上一动点,在平面内确定一点R ,使得以点P Q B R 、、、为顶点的四边形是矩形.直接写出所有符合条件的点R 的坐标.6.如图,有一个长为30米的篱笆,一面利用墙(墙的最大可用长度18a =米)围成的中间隔有一道篱笆的长方形花圃设花圃的宽AB 为x 米,面积为y 平方米.(1)求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)如何设计才能使长方形花圃面积最大;并求其最大面积.7.如图,过原点的抛物线212y x bx c =-++与x 轴的另一个交点为A ,且抛物线的对称轴为直线2x =,点B 为顶点(1)求抛物线的解析式(2)如图(1),点C 为直线OB 上方抛物线上一动点,连接AB,BC 和AC ,线段AC 交直线OB 于点E ,若CBE △的面积为1S ,ABE 的面积为2S ,求12S S 的最大值 (3)如图(2),设直线()20y kx k k =-≠与抛物线交于D ,F 两点,点D 关于直线2x =的对称点为D ,直线D F '与直线2x =交于点P ,求证:BP 的长是定值.8.抛物线2y x bx c =-++经过点A ,B ,C ,已知()1,0A -和()0,3C .(1)求抛物线的解析式及顶点E 的坐标;(2)点D 在BC 上方的抛物线上.①如图1,若CAB ABD ∠=∠,求点D 的坐标;①如图2,直线BD 交y 轴于点N ,过点B 作AD 的平行线交y 轴于点M ,当点D 运动时,求CBD AMNS S △△的最大值及此时点D 的坐标. 9.在平面直角坐标系中,O 为坐标原点,抛物线244y ax ax =-+交x 轴于点A 、B (A 左B右),交y 轴于点C ,直线123y x =-+,经过B 点,交y 轴于点D .(1)如图1,求a 的值;(2)如图2,点P 在第一象限内的抛物线上,过点A 、B 作x 轴的垂线,分别交直线PD 于点E 和F ,若PF DE =,求点P 的坐标;(3)如图3,在(2)的条件下,点Q 在第一象限内的抛物线上,过点Q 作QH DP ⊥于点H ,交直线BD 于点R ,连接EQ 和ER ,当QE ER =时,求ERQ △的面积.10.已知抛物线213222y x x =-++与x 轴交于B 、C 两点(点B 在点C 的左侧),与y 轴交于点A .(1)判断ABC 的形状,并说明理由.(2)设点(,)P m n 是抛物线在第一象限部分上的点,过点P 作PH x ⊥轴于H ,交AC 于点Q ,设四边形OAPC 的面积为S ,求S 关于m 的函数关系式,并求使S 最大时点P 的坐标和QHC △的面积;(3)在(2)的条件下,点N 是坐标平面内一点,抛物线的对称轴上是否存在点M ,使得以P 、C 和M 、N 为顶点的四边形是菱形,若存在,写出点M 的坐标,并选择一个点写出过程,若不存在,请说明理由.11.已知,如图,在平面直角坐标系中,点O 为坐标原点,直线6y x =+与x 轴相交于点B ,与y 轴交于点C ,点A 是x 轴正半轴上一点,且满足2tan 3ACO ∠=.(1)若抛物线2y ax bx c =++经过A 、B 和C 三点,求抛物线的解析式;(2)若点M 是第二象限内抛物线上的一个动点,过点M 作MP y ∥轴,交BC 于点P ,连接OP ,在第一象限内找一点Q ,过点Q 作⊥OQ OP 且OQ OP =,连接PQ ,MQ ,设MPQ 的面积为S ,点P 的横坐标为t ,求S 与t 的函数关系式,并直接写出自变量的取值范围;(3)在(2)的条件下,设PQ 与y 轴相交于点R ,若53=PR PC 时,求点P 的坐标. 12.已知抛物线22y ax ax c =-+过点()10A -,和()03C ,,与x 轴交于另一点B .(1)求抛物线的解析式;(2)若抛物线的顶点为D ,在直线BC 上方抛物线上有一点P (与D 不重合),BCP 面积与BCD △面积相等,求点P 的坐标;(3)若点E 为抛物线对称轴上一点,在平面内是否存在点F ,使得以E 、F 和B 、C 为顶点的四边形是菱形,若存在,请直接写出F 点的坐标;若不存在,请说明理由.13.如图,抛物线过点()08D ,,与x 轴交于()20A -,,()40B ,两点.(1)求抛物线的解析式;(2)若点C 为二次函数的顶点,求BCD S △.14.如图,O 为平面直角坐标系坐标原点,抛物线22y ax ax c =-+经过点()6,0B ,点()0,6C 与x 轴交于另一点A .(1)求抛物线的解析式;(2)D 点为第一象限抛物线上一点,连接AD 和BD ,设点D 的横坐标为t ,ABD △的面积为S ,求S 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,P 为第四象限抛物线上一点,连接PA 交y 轴于点E ,点F 在线段BC 上,点G 在直线AD 上,若1tan 2DAO ∠=,四边形BEFG 为菱形,求点P 的坐标. 15.已知抛物线2()20y ax x c a =++≠与x 轴交于点(1,0)A -和点B ,与直线3y x =-+交于点B 和点C ,M 为抛物线的顶点,直线ME 是抛物线的对称轴.(1)求抛物线的解析式及点M 的坐标;(2)点P 为直线BC 上方抛物线上一点,连接PB ,PC ,当PBC 的面积取最大值时,求点P 的坐标.参考答案:1.(1)2142y x x =-- (2)① PC PD +取得最大值254 ① 53,2⎛⎫- ⎪⎝⎭或 316,2⎛⎫+- ⎪⎝⎭2.(1)213222y x x =-++ (1,0)-; (2)3172+或3172-或3332+或3332- (3)存在,517(,)39--或113(,)39-3.(1)故抛物线的表达式为:223y x x =-++,函数的对称轴为:1x =;(2)10113++(3)()4,5-或()8,45-4.(1)223y x x =-++(2)BCD △为直角三角形(3)点P 的坐标为()2,3,四边形PBCD 的面积为45.(1)213442y x x =-++ (2)S 的最大值为1,()4,6P(3)()7,3或()5,3-6.(1)2330S x x =-+ 410x ≤<;(2)当宽AB 为5米,长15BC =米时,长方形花圃的最大面积为75平方米.7.(1)2122y x x =-+ (2)188.(1)()1,4(2)①()2,3D ;①CBD AMN S S △△的最大值为916,此时315,24D ⎛⎫ ⎪⎝⎭9.(1)13a =- (2)()4,4P(3)1010.(1)直角三角形(2)244S m m =-++ (2,3)P 1QHC S =(3)存在,点M 坐标为3651(,)22+或3651(,)22-或333(,)22或333(,)22-或31(,)22,理由见解析11.(1)211642=--+y x x (2)()2396042S t t t =---<< (3)()()124,2,2,4P P --12.(1)223y x x =-++(2)()23P ,(3)存在,点F 的坐标为()417,或()417-,或()2314-+,或()2314--,13.(1)228y x x =-++(2)614.(1)211642y x x =-++ (2)2553042S t t =-++ (3)()8,6P -15.(1)抛物线的解析式为223y x x =-++,点M 的坐标为(1,4)(2)315,24P ⎛⎫ ⎪⎝⎭。
二次函数压轴(面积重叠)

二次函数压轴之面积重叠问题1.(20XX年四川资阳)如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.解:(1)由题意可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),则,解得.故抛物线的解析式为y=﹣x2+2x+3.(2)①当MA=MB时,M(0,0);②当AB=AM时,M(0,﹣3);③当AB=BM时,M(0,3+3)或M(0,3﹣3).所以点M的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3).(3)平移后的三角形记为△PEF.设直线AB的解析式为y=kx+b,则,解得.则直线AB的解析式为y=﹣x+3.△AOB沿x轴向右平移m个单位长度(0<m<3)得到△PEF,易得直线EF的解析式为y=﹣x+3+m.设直线AC的解析式为y=k′x+b′,则,解得.则直线AC的解析式为y=﹣2x+6.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.①当0<m≤时,如图1所示.设PE交AB于K,EF交AC于M.则BE=EK=m,PK=PA=3﹣m,联立,解得,即点M(3﹣m,2m).故S=S△PEF﹣S△PAK﹣S△AFM=PE2﹣PK2﹣AF•h=﹣(3﹣m)2﹣m•2m=﹣m2+3m.②当<m<3时,如图2所示.设PE交AB于K,交AC于H.因为BE=m,所以PK=PA=3﹣m,又因为直线AC的解析式为y=﹣2x+6,所以当x=m时,得y=6﹣2m,所以点H(m,6﹣2m).故S=S△PAH﹣S△PAK=PA•PH﹣PA2=﹣(3﹣m)•(6﹣2m)﹣(3﹣m)2=m2﹣3m+.综上所述,当0<m≤时,S=﹣m2+3m;当<m<3时,S=m2﹣3m+.2. (2014•湖北黄冈)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P 移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=,若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1,综上所述,存在t=或1,使得△OPQ的顶点O或顶点Q在抛物线上;(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:①0<t≤1时,S=×(2t)×=t2,②1<t≤1.5时,S=×(2t)×﹣×(t﹣)2=2t﹣1;③1.5<t<2时,S=×(2+3)×1﹣×[1﹣(2t﹣3)]2=﹣2(t﹣2)2+;所以,S与t的关系式为S=.3. (2014•攀枝花)如图,抛物线y=ax2﹣8ax+12a(a>0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点D的坐标为(﹣6,0),且∠ACD=90°.(1)请直接写出A、B两点的坐标;(2)求抛物线的解析式;(3)抛物线的对称轴上是否存在点P,使得△PAC的周长最小?若存在,求出点P的坐标及周长的最小值;若不存在,说明理由;(4)平行于y轴的直线m从点D出发沿x轴向右平行移动,到点A停止.设直线m与折线DCA的交点为G,与x 轴的交点为H(t,0).记△ACD在直线m左侧部分的面积为s,求s关于t的函数关系式及自变量t的取值范围.解:(1)抛物线的解析式为:y=ax2﹣8ax+12a(a>0),令y=0,即ax2﹣8ax+12a=0,解得x1=2,x2=6,∴A(2,0),B(6,0).(2)抛物线的解析式为:y=ax2﹣8ax+12a(a>0),令x=0,得y=12a,∴C(0,12a),OC=12a.在Rt△COD中,由勾股定理得:CD2=OC2+OD2=(12a)2+62=144a2+36;在Rt△COD中,由勾股定理得:AC2=OC2+OA2=(12a)2+22=144a2+4;在Rt△COD中,由勾股定理得:DC2+AC2=AD2;即:(144a2+36)+(144a2+4)=82,解得:a=或a=﹣(舍去),∴抛物线的解析式为:y=x2﹣x+.(3)存在.对称轴为直线:x=﹣=4.由(2)知C(0,),则点C关于对称轴x=4的对称点为C′(8,),连接AC′,与对称轴交于点P,则点P为所求.此时△PAC周长最小,最小值为AC+AC′.设直线AC′的解析式为y=kx+b,则有:,解得,∴y=x﹣.当x=4时,y=,∴P(4,).过点C′作C′E⊥x轴于点E,则C′E=,AE=6,在Rt△AC′E中,由勾股定理得:AC′==4;在Rt△AOC中,由勾股定理得:AC==4.∴AC+AC′=4+4.∴存在满足条件的点P,点P坐标为(4,),△PAC周长的最小值为4+4.(4)①当﹣6≤t≤0时,如答图4﹣1所示.∵直线m平行于y轴,∴,即,解得:GH=(6+t)∴S=S△DGH=DH•GH=(6+t)•(6+t)=t2+2t+6;②当0<t≤2时,如答图4﹣2所示.∵直线m平行于y轴,∴,即,解得:GH=﹣t+2.∴S=S△COD+S梯形OCGH=OD•OC+(GH+OC)•OH =×6×2+(﹣t+2+2)•t=﹣t2+2t+6.∴S=.。
(名师整理)最新人教版数学中考冲刺压轴题《二次函数》专题训练(含答案解析)

中考九年级数学压轴题强化训练:二次函数1、若抛物线L :y =ax 2+bx +c (a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 与顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系,此时,直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1) 若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2) 若某“路线”L 的顶点在反比例函数xy 6的图像上,它的“带线” l 的解析式为y =2x-4,求此“路线”L 的解析式;(3) 当常数k 满足21≤k ≤2时,求抛物线L: y =ax 2+(3k 2-2k +1)x + k 的“带线” l 与x 轴,y 轴所围成的三角形面积的取值范围.2、如图,顶点为(3,1)A 的抛物线经过坐标原点O ,与x 轴交于点B . (1)求抛物线对应的二次函数的表达式;(2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标.3、如图,抛物线y=ax 2+bx-1(a ≠0)经过A (-1,0),B (2,0)两点,与y 轴交于点C 。
(1)求抛物线的解析式及顶点D 的坐标;(2)点P 在抛物线的对称轴上,当△ACP 的周长最小时,求出点P 的坐标;(3) 点N 在抛物线上,点M 在抛物线的对称轴上,是否存在以点N 为直角顶点的Rt △DNM 与Rt △BOC 相似,若存在,请求出所有符合条件的点N 的坐标;若不存在,请说明理由。
4、已知如图,在平面直角坐标系xoy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,⑴求经过A、B、C三点的抛物线的解析式;⑵在平面直角坐标系xoy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;⑶若点M为该抛物线上一动点,在⑵的条件下,请求出当||PM AM-的最大值时点M的坐标,并直接写出||PM AM-的最大值。
中考数学压轴题:二次函数中的面积问题(含答案)

学生/课程年级日期学科时段课型数学授课教师核心内容二次函数中求面积最值,图形平移或折叠面积问题1.会利用函数的图象性质来研究几何图形的面积最值问题;教学目标重、难点2.掌握几种求图形面积的常见解题方法与技巧,如:割补法、平行等积变换法等。
3.掌握图形平移或折叠变换过程中找等量关系列函数解析式求图形面积问题的一般方法.割补法求三角形面积,动态问题一般解题思路。
了解学生的学习情况S△ = a h或S△ = a d (d表示已知点到直线的距离)以动点作垂直(平行)x轴的直线,即铅垂高,再分别过点A,C作PF的高,即和为水平宽。
S△ = ×水平宽×铅垂高如下图:①等底等高的两个三角形面积相等.②底在同一条直线上并且相等,该底所对角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.如图,AD∥BC中,AC与BD交点O,则S△ABC = S△DBC,S△AOB = S△COD2如图,在平面直角坐标系中,抛物线y=mx -8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x ,10),C(x ,0),且x -x =4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线,直线AD2 2 1的交点分别为P,Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值.图形面积的求法常见有三种,分别是:(1)_______________________________(2)_______________________________(3)_______________________________[学有所获答案] (1)直接公式求法 割补法 平行线等积变换法(2)(3) 2 如图,已知抛物线y =x +bx +c 与 轴交于A ,B 两点(点A 在点B 的左侧)与 轴交于点C (0,-3),对称轴是直线x=1,直线BC 与抛物线的对称轴交于点D ,点E 为y 轴上一动点,CE 的垂直平分线交抛物线于P ,Q 两点(点P 在第三象限)(1)求抛物线的函数表达式和直线BC 的函数表达式;(2)当△CDE 是直角三角形,且∠CDE =90°时,求出点P 的坐标;(3)当△PBC 的面积为 时,求点E 的坐标.2 如图,已知抛物线y = x +ax +4a 与x 轴交于点A ,B ,与y 轴负半轴交于点C 且OB =OC ,点P 为抛物线上的一个动点,且点P 位于x 轴下方,点P 与点C 不重合.(1)求该抛物线的解析式;(2)若△PAC 的面积为 ,求点P 的坐标;(3)若以A ,B ,C ,P 为顶点的四边形面积记作S ,则S 取何值时,对应的点P 有且只有2个?将()的图像如何平移到的图像。
2020年中考数学压轴专题练习 二次函数中的图形面积问题(包含答案)

2020中考数学 压轴专题 二次函数中的图形面积问题(含答案)1. 如图,在平面直角坐标系xOy 中,已知抛物线y =x 2+Bx +C 经过A (0,3),B (1,0)两点,顶点为M .(1)求B 、C 的值;(2)将△OAB 绕点B 顺时针旋转90°后,点A 落到点C 的位置,该抛物线沿y 轴上下平移后经过点C ,求平移后所得抛物线的表达式;(3)设(2)中平移所得的抛物线与y 轴的交点为A 1,顶点为M 1,若点P 在平移后的抛物线上,且满足△PMM 1的面积是△P AA 1面积的3倍,求点P 的坐标.第1题图解:(1)∵抛物线y =x 2+Bx +C 经过A (0,3),B (1,0)两点,∴⎩⎪⎨⎪⎧c =31+b +c =0,解得⎩⎪⎨⎪⎧b =-4c =3;(2)由(1)知,抛物线的表达式为y =x 2-4x +3. ∵A (0,3),B (1,0) ∴OA =3,OB =1, ∴C 点坐标为(4,1),当x =4时,由y =x 2-4x +3得y =3, 则抛物线y =x 2-4x +3经过点(4,3),∴将原抛物线沿y 轴向下平移2个单位后过点C , ∴平移后的抛物线的表达式为y =x 2-4x +1;(3)∵点P 在y =x 2-4x +1上,可设P 点的坐标为(x 0,x 20-4x 0+1), 将y =x 2-4x +1配方得y =(x -2)2-3, ∴抛物线的对称轴为直线x =2, ∵S △PMM 1=12|x 0-2|·MM 1,S △P AA 1=12|x 0|·AA 1,S △PMM 1=3S △P AA 1,MM 1=AA 1=2, ∴x 0<2,|x 0-2|=3|x 0|. 分情况讨论: ①当0<x 0<2时, 则有2-x 0=3x 0,解得x 0=12,则x 20-4x 0+1=-34, ∴点P 的坐标为(12,-34);②当x 0<0时,则有2-x 0=-3x 0,解得x 0=-1,则x 20-4x 0+1=6, ∴点P 的坐标为(-1,6).故满足△PMM 1的面积是△P AA 1面积的3倍时,点P 的坐标为(12,-34)或(-1,6).2. 如图,抛物线y =Ax 2+2x +C 经过点A (0,3),B (-1,0). (1)求抛物线的表达式;(2)抛物线的顶点为D ,对称轴与x 轴交于点E ,连接BD ,求BD 的长;(3)在抛物线的对称轴上是否存在点M ,使得△MBC 的面积是4,若存在,请求出点M 的坐标;若不存在,请说明理由.第2题图解:(1)∵抛物线y =Ax 2+2x +C 经过点A (0,3),B (-1,0),∴⎩⎪⎨⎪⎧a -2+c =0c =3, 解得⎩⎪⎨⎪⎧a =-1c =3,∴抛物线的表达式为y =-x 2+2x +3;(2)∵抛物线的顶点为D ,对称轴与x 轴交于点E , y =-x 2+2x +3=-(x -1)2+4, B (-1,0),∴点D 的坐标是(1,4),点E 的坐标是(1,0), ∴DE =4,BE =2, ∴BD =DE 2+BE 2=42+22=20=25,∴BD 的长是25;(3)在抛物线的对称轴上存在点M ,使得△MBC 的面积是4. 设点M 的坐标为(1,M ), 令-x 2+2x +3=0得x =-1或3, ∴点C 的坐标为(3,0), ∴BC =3-(-1)=4, ∵△MBC 的面积是4, ∴S △BCM =BC ×|m |2=4×|m |2=4, 解得M =±2,∴点M 的坐标为(1,2)或(1,-2).3. 如图,抛物线y =12x 2-32x -2与x 轴交于A ,B 两点,与y 轴交于点C ,点D 与点C 关于x 轴对称.(1)求点A 、B 、C 的坐标; (2)求直线BD 的解析式;(3)在直线BD 下方的抛物线上是否存在一点P ,使△PBD 的面积最大?若存在,求出点P 的坐标;若不存在,请说明理由.第3题图解:(1)令y=0,则12x2-32x-2=0,解得x1=-1,x2=4,∴A(-1,0),B(4,0),令x=0,得y=-2,∴C(0,-2);(2)∵C,D两点关于x轴对称,∴D(0,2),设直线BD的解析式为y=kx+b(k≠0),将B、D坐标代入可得4=0 =2k bb+⎧⎨⎩,解得1=-2 =2⎧⎪⎨⎪⎩kb,∴直线BD的解析式为y=-12x+2;(3)存在这样的点P,使得△PBD的面积最大.设P(m,12m2-32m-2),如解图,过点P作PE⊥x轴于点F,与BD交于点E,第3题解图则E 点坐标为(m ,- 12m +2),∴PE =(- 12m +2)-(12m 2-32m -2)=- 12m 2+m +4,∴S △PBD =S △PDE +S △PEB =12PE ·OF +12PE ·BF =12PE ·OB =12×(-12m 2+m +4)×4 =-m 2+2m +8 =-(m -1)2+9,当m =1时,S △PBD 取得最大值,最大值为9, 此时12m 2-32m -2=-3,∴P (1,-3).4. 如图,在平面直角坐标系xOy 中,已知二次函数y =Ax 2+2Ax +C 的图象与y 轴交于点C (0,3),与x 轴交于A 、B 两点,点B 的坐标为(-3,0). (1)求二次函数的解析式及顶点D 的坐标;(2)点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1∶2的两部分,求出此时点M 的坐标;(3)点P 是第二象限内抛物线上的一动点,当点P 在何处时△CPB 的面积最大?求出最大面积?并求出此时点P 的坐标.第4题图解:(1)根据题意将B (-3,0),C (0,3)代入抛物线解析式,得⎩⎪⎨⎪⎧c =39a -6a +c =0,解得⎩⎪⎨⎪⎧a =-1c =3, ∴二次函数的解析式为y =-x 2-2x +3, 将其化为顶点式为y =-(x +1)2+4, ∴顶点D 的坐标为(-1,4);(2)如解图①,连接OD 、AD 、AD 与y 轴交于点F ,第4题解图①S △OBD =12×3×4=6,S 四边形ACDB =S △ABD +S △CDF +S △ACF =12×4×4+12×1×1+12×1×1+12×1×1=9,因此直线OM 必过线段BD ,由B (-3,0),D (-1,4)得线段BD 的解析式为y =2x +6, 设直线OM 与线段BD 交于点E , 则△OBE 的面积可以为3或6.①当S △OBE =3时,12×3×y E =3,解得y E =2,将y =2代入y =2x +6中,得x =-2,∴E 点坐标(-2,2).则直线OE 的解析式为y =-x .设M 点坐标为(x ,-x ),联立抛物线的解析式可得-x =-x 2-2x +3, 解得x 1=-1-132,x 2=-1+132(舍去).∴点M (-1-132,1+132);②当S △OBE =6时,12×3×y E =6,解得y E =4,将y =4代入y =2x +6中得x =-1,此时点E 、M 、D 三点重合. ∴点M 坐标为(-1,4);综上所述,点M 的坐标为(-1-132,-1+132),(-1,4).(3)如解图②,连接OP ,设P 点的坐标为(M ,-M 2-2M +3),第4题解图②∵点P 在抛物线上,∴S △CPB =S △CPO +S △OPB -S △COB=12OC ·(-M )+12OB ·(-M 2-2M +3)-12OC ·OB =-32M +32(-M 2-2M +3)-92=-32(M 2+3M )=-32(M +32)2+278.∵-3<M <0,∴当M =-32时,(-M 2-2M +3)=154,△CPB 的面积有最大值278.∴当点P 的坐标为(-32,154)时,△CPB 的面积有最大值,且最大值为278.5. 如图,在平面直角坐标系中,二次函数y =-14x 2+Bx +C 的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(-4,0). (1)求该二次函数的表达式及点C 的坐标;(2)点D 的坐标为(0,4),点F 为该二次函数在第一象限内图象上的动点,连接CD 、CF ,以CD 、CF 为邻边作平行四边形CDEF ,设平行四边形CDEF 的面积为S .①求S 的最大值;②在点F 的运动过程中,当点E 落在该二次函数图象上时,请直接写出此时S 的值.第5题图解:(1)∵二次函数y =-14x 2+Bx +C 过A (0,8)、B (-4,0)两点,∴⎩⎪⎨⎪⎧-14×(-4)2-4b +c =0c =8,解得⎩⎪⎨⎪⎧b =1c =8,∴二次函数的解析式为y =-14x 2+x +8,当y =0时,解得x 1=-4,x 2=8, ∴C 点坐标为(8,0);(2)①如解图,连接DF ,OF ,设F (M ,-14M 2+M +8),第5题解图∵S 四边形OCFD =S △CDF +S △OCD = S △ODF +S △OCF ,∴S △CDF =S △ODF +S △OCF -S △OCD ,=12×4×M +12×8×(-14M 2+M +8)-12×8×4 =2M -M 2+4M +32-16 =-M 2+6M +16 =-(M -3)2+25,当M =3时,△CDF 的面积有最大值,最大值为25, ∵四边形CDEF 为平行四边形, ∴S 四边形CDEF =2S △CDF =50, ∴S 的最大值为50; ②S =18.【解法提示】∵四边形CDEF 为平行四边形, ∴CD ∥EF ,CD =EF ,∵点C 向左平移8个单位,再向上平移4个单位得到点D ,∴点F 向左平移8个单位,再向上平移4个单位得到点E ,即E (M -8,-14M 2+M +12),∵E (M -8,-14M 2+M +12)在抛物线上,∴-14(M -8)2+(M -8)+8=-14M 2+M +12,解得M =7,当M =7时,S △CDF =-(7-3)2+25=9, ∴此时S =2S △CDF =18.6. 如图,抛物线y =Ax 2+Bx -3与x 轴交于点A (1,0)和点B ,与y 轴交于点C ,且其对称轴L 为直线x =-1,点P 是抛物线上B ,C 之间的一个动点(点P 不与点B ,C 重合).第6题图(1)直接写出抛物线的解析式;(2)小唐探究点P 的位置时发现:当动点N 在对称轴L 上时,存在PB ⊥NB ,且PB =NB 的关系,请求出此时点P 的坐标;(3)是否存在点P 使得四边形PBAC 的面积最大?若存在,请求出四边形PBAC 面积的最大值,若不存在,请说明理由.解:(1)y =x 2+2x -3;【解法提示】∵A (1,0),对称轴L 为直线x =-1, ∴B (-3,0),将AB 两点坐标代入得,∴⎩⎪⎨⎪⎧a +b -3=09a -3b -3=0,解得⎩⎪⎨⎪⎧a =1b =2, ∴抛物线的解析式为y =x 2+2x -3.(2)如解图①,过点P 作PM ⊥x 轴于点M ,连接BP ,过点B 作BN ⊥PB 交直线L 于点N , 设抛物线的对称轴与x 轴交于点Q ,第6题解图①∵PB⊥NB,∴∠PBN=90°,∴∠PBM+∠NBQ=90°.∵∠PMB=90°,∴∠PBM+∠BPM=90°.∴∠BPM=∠NBQ.又∵PB=NB,∴△BPM≌△NBQ.∴PM=BQ.由(1)得y=x2+2x-3,∴Q(-1,0),B(-3,0)∴BQ=2,∴PM=BQ=2.∵点P是抛物线y=x2+2x-3上B、C之间的一个动点,且点P的纵坐标为-2,将y=-2代入y=x2+2x-3,得-2=x2+2x-3,解得x1=-1-2,x2=-1+2(不合题意,舍去),∴点P的坐标为(-1-2,-2);(3)存在.如解图②,连接AC,BC,CP,PB,过点P作PD∥y轴交BC于点D,第6题解图②∵A (1,0),B (-3,0),C (0,-3),∴S △ABC =12×3×4=6, 直线BC 的解析式为y =-x -3.设P (T ,T 2+2T -3),则D (T ,-T -3),∴S △BPC =12×3×(-T -3-T 2-2T +3)=-32T 2-92T , ∴S 四边形PBAC =-32T 2-92T +6 =-32(T +32)2+758, 当T =-32时,S 四边形PBAC 存在最大值,最大值为758. 此时点P 的坐标为(-32,-154). 7. 如图,抛物线y =-12x 2+32x +c 与x 轴交于A 、B 两点,与y 轴交于点C ,且A 点坐标为(-3,0),连接BC 、AC .(1)求抛物线的解析式;(2)点E 从点B 出发,沿x 轴向点A 运动(点E 与点A 、B 不重合),过点E 作直线L 平行于AC ,交BC 于点D ,设BE 的长为M ,△BDE 的面积为S ,求S 关于M 的函数关系式,并写出自变量M 的取值范围;(3)在(2)的条件下,连接CE ,求△CDE 面积的最大值.第7题图解:(1)∵抛物线y =-12x 2+32x +c 过A 点,且A (-3,0), ∴0=-12×9-32×3+c ,解得c =9, ∴抛物线的解析式为y =-12x 2+32x +9; (2)∵抛物线的解析式为y =-12x 2+32x +9, ∴C 点坐标为(0,9),∴OC =9,令y =0可得-12x 2+32x +9=0,解得x =-3或x =6, ∴B 点坐标为(6,0),∴AB =6-(-3)=9;设直线AC 的解析式为y =kx +b ,把A 、C 两点坐标代入可得⎩⎪⎨⎪⎧-3k +b =0b =9, 解得⎩⎪⎨⎪⎧k =3b =9, ∴直线AC 的解析式为y =3x +9,∵直线ED ∥AC ,∴可设直线ED 的解析式为y =3x +m ,∵OB =6,BE =m ,∴OE =6-m ,∴E 点的坐标为(6-m ,0),代入直线ED 的解析式可得0=3(6-m )+n ,解得n =3(m -6),∴直线ED 的解析式为y =3x +3m -18,设直线BC 的解析式为y =rx +s ,把B 、C 两点坐标代入可得⎩⎪⎨⎪⎧6r +s =0s =9,解得⎩⎪⎨⎪⎧r =-32s =9, ∴直线BC 的解析式为y =-32x +9, 联立⎩⎪⎨⎪⎧y =3x +3m -18y =-32x +9,解得⎩⎪⎨⎪⎧x =6-23m y =m, ∴D 点坐标为(6-23m ,m ), ∴D 到BE 的距离为m ,∴S =S △BDE =12m ·m =12m 2, 又∵E 在线段AB 上,且不与点A 、B 重合,∴0<BE <AB ,∴m 的取值范围为0<m <9;(3)∵OC =9,BE =m ,∴S △BEC =12BE ·OC =12×m ×9=92m , ∴S △CDE =S △BEC -S △BDE =92m -12m 2=-12(m -92)2+818, ∴当m =92时,△CDE 的面积有最大值,最大值为818. 8. 已知抛物线y =x 2+4x +3交x 轴于A 、B 两点(点A 在点B 的左侧),交y 轴于点C ,抛物线的对称轴l 交x 轴于点E .(1)求抛物线的对称轴及点A 的坐标;(2)点P 为坐标系内一点,且以点A 、B 、C 、P 为顶点的四边形为平行四边形,求出所有满足条件的P 点的坐标.(3)连接CA 与L 交于点D ,M 为抛物线上一点,是否存在点M ,使经过点C 、M 的直线恰好将四边形DEOC 的面积平分?若存在,请求出直线CM 的解析式;若不存在,请说明理由.第8题图解:(1)对称轴为直线x=-42=-2,当y=0时,有x2+4x+3=0,解得x1=-1,x2=-3,∴点A的坐标为(-3,0);(2)由y=x2+4x+3可知A(-3,0),B(-1,0),C(0,3),①当AC是平行四边形的对角线时,将点C向左平移两个单位长度即是P点,即P(-2,3);②当BC是平行四边形的对角线时,将点C向右平移两个单位长度即是P点,即P(2,3);③当AB是平行四边形的对角线时,将点A向下平移三个单位长度再向左平移1个单位长度即是P点,即P(-4,-3);满足条件的点P有3个,分别为(-2,3),(2,3),(-4,-3);(3)存在;∵点C的坐标为(0,3),又DE∥y轴,AO=3,EO=2,AE=1,CO=3,∴△AED∽△AOC,∴AEAO=DECO,即13=DE3,∴DE=1,∴S四边形DEOC=12×(1+3)×2=4,在OE上找点F,使OF=43,此时S △COF =12×43×3=2, 直线CF 把四边形DEOC 分成面积相等的两部分,交抛物线于点M ,设直线CM 的解析式为y =kx +3,它经过点F (-43,0), 则-43k +3=0,解得k =94, ∴直线CM 的解析式为y =94x +3. 9. 如图,已知抛物线y =-12x 2+bx +c 与x 轴交于点B ,E 两点,与y 轴交于点A ,OB =8,tan ∠ABD =1,动点C 从原点O 开始沿OA 方向以每秒1个单位长度移动,动点D 从点B 开始沿BO 方向以每秒1个单位长x 度移动,动点C ,D 同时出发,当动点D 到达原点O 时,点C ,D 停止运动.(1)求抛物线的解析式;(2)求△CED 的面积S 与D 点运动时间t 的函数解析式;当t 为何值时,△CED 的面积最大?最大面积是多少?(3)当△CED 的面积最大时,在抛物线上是否存在点P (点E 除外),使△PCD 的面积等于△CED 的最大面积,若存在,直接写出P 点的坐标;若不存在,请说明理由.第9题图解:(1)∵OB =8,tan ∠ABD =1,∴OA =OB =8,∴A (0,8),B (8,0).把点A (0,8),B (8,0)代入y =-12x 2+bx +c , 得⎩⎪⎨⎪⎧c =8-12×82+8b +c =0,解得⎩⎪⎨⎪⎧b =3c =8, ∴抛物线解析式为y =-12x 2+3x +8; (2)令y =0时,有-12x 2+3x +8=0, 解得x 1=-2,x 2=8,∴E (-2,0),∴BE =10,∵S △CED =12DE ·OC , ∴S =12t (10-t )=-12t 2+5t , ∴S 与T 的函数解析式为S =-12t 2+5t =-12(t -5)2+252(0≤t ≤8), ∴当t =5时,△CED 的面积最大,最大面积为252; (3)存在,P 点坐标为(8,0)或(43,1009)或(343,-2009). 【解法提示】当△CED 的面积最大时,t =5,即BD =DE =5,此时要使S △PCD =S △CED ,CD 为公共边,只需求出过点B 、或点E 且平行于CD 的直线即可,如下:设直线CD 的解析式为y =kx +B ,由(2)可知OC =5,OD =3,∴C (0,5),D (3,0),把C (0,5)、D (3,0)代入,得⎩⎪⎨⎪⎧b =53k +b =0,解得⎩⎪⎨⎪⎧k =-53b =5, ∴直线CD 的解析式为y =-53x +5, ∵DE =DB =5,∴过点B 且平行于CD 的直线为y =-53(x -5)+5, 过点E 且平行于CD 的直线为y =-53(x +5)+5, 与抛物线解析式联立得方程①:-12x 2+3x +8=-53(x -5)+5, 解得x 1=8,x 2=43, 方程②:-12x 2+3x +8=-53(x +5)+5, 解得x 3=343,x 4=-2, 分别将x 的值代入抛物线的解析式,得y 1=0,y 2=1009,y 3=-2009,y 4=0, 又∵P 点不与E 点重合,∴满足题意的P 点坐标有3个,分别是P 1(8,0),P 2(43,1009),P 3(343,-2009).第9题解图10.如图①,在平面直角坐标系中,已知抛物线y=ax2+bx-5与x轴交于A(-1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的函数表达式;(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与△ABC相似,求点D的坐标;(3)如图②,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H 的坐标及最大面积.第10题图解:(1)∵抛物线过点A(-1,0)和点B(5,0),∴--502555=0a ba b=⎧⎨+-⎩=1=4ab⎧⎨-⎩,解得,∴抛物线的函数表达式为y=x2-4x-5;(2)∵OB=OC=5,∴∠ABC=∠OCB=45°,∴以B 、C 、D 三点为顶点的三角形要与△ABC 相似,必须要有一个角等于45°.(ⅰ)当点D 在点C 的下方时,∠BCD =180°-45°=135°,∴不会出现45°角,∴此种情况不存在;(ⅱ)当点D 在点C 的上方时,∠BCD =45°,易得BC =2OB =52,AB =OA +OB =1+5=6, 存在两种情况:①当△BCD ∽△ABC 时,BC AB =CD BC, 即526=, ∴CD =253, OD =CD -OC =253-5=103, ∴D (0,103); ②当△DCB ∽△ABC 时,DC AB =CB BC, 即6CD =5252, ∴CD =6,OD =CD -OC =6-5=1,∴点D (0,1),∴综上所述,点D 的坐标为(0,1)或(0,103)时,以B ,C ,D 为顶点的三角形与△ABC 相似; (3)令y =-5得x 2-4x -5=-5,解得x 1=0,x 2=4,∴E (4,-5),∴CE =4,设H (a ,a 2-4a -5),点H 是在直线CE 下方抛物线上的动点,∴0<a <4.设直线BC 的表达式为y =kx +b ,把点B (5,0)、C (0,-5)代入得5=0=5k b b +⎧⎨-⎩,解得=1=5k b ⎧⎨-⎩, ∴直线BC 的表达式为y =x -5,则点F (a ,a -5),∴FH =a -5-(a 2-4a -5)=-a 2+5a ,∵CE ⊥FH ,∴S 四边形CHEF =12CE ×FH =-2a 2+10a =-2(a -52)2+252, ∵0<a <4,∴当a =52时,四边形CHEF 面积有最大值,最大值是252, 此时H (52,-354). 11. 已知:二次函数y =-x 2-2x +M 的图象与x 轴交于点A (1,0)、B ,与y 轴交于点C .(1)求M 的值;(2)求点B 的坐标;(3)若该二次函数图象上有一点P (不与点C 重合),满足S △ABP =S △ABC ,求点P 的坐标.第11题图解:(1)将点A (1,0)代入y =-x 2-2x +M 中,得-1-2+M =0,解得M =3;(2)由(1)知y =-x 2-2x +3,令y=0,则-x2-2x+3=0,解得x1=1,x2=-3,∵A(1,0),∴B(-3,0);(3)①当点P在x轴上方时,∵S△ABP=S△ABC,且点P不与点C重合,∴点C和点P关于二次函数图象的对称轴对称,由二次函数的解析式可知,对称轴为直线x=-1,∵C(0,3),∴P(-2,3);②当点P在x轴下方时,∵△ABP与△ABC的底边均为AB,∴△ABP的边AB上的高应等于OC,即此时点P的纵坐标y=-3,即-3=-x2-2x+3,整理得x2+2x-6=0,解得x=-1±7,∴点P的坐标为(-1+7,-3)或(-1-7,-3).综上,当S△ABP=S△ABC时,点P的坐标为(-2,3)或(-1+7,-3)或(-1-7,-3).。
2023年九年级数学中考专题:二次函数综合压轴题(面积问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(面积问题)1.如图,二次函数25y ax bx =++的图象经过点(1,8),且与x 轴交于A 、B 两点,与y 轴交于点C ,其中点(1,0)A -,M 为抛物线的顶点.(1)求二次函数的解析式; (2)求MCB △的面积;(3)在坐标轴上是否存在点N ,使得BCN △为直角三角形?若存在,求出点N 的坐标;若不存在,请说明理由.2.如图,抛物线212y x bx c =-++(b 、c 为常数)经过()4,0A 和()0,4B 两点,其顶点为C .(1)求该抛物线的表达式及其顶点坐标;(2)若点M 是拋物线上第一象限的一个动点.设ABM 的面积为S ,试求S 的最大值; (3)若抛物线222y mx mx m =-++与线段AB 有两个交点,直接写出m 的取值范围. 3.如图,抛物线22(0)y ax ax c a =-+>与y 轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 左侧.点A 的坐标为(1,0),3OC OA -=.(1)求抛物线的解析式;(2)在直线BC 下方的抛物线上是否存在一点P ,使得PBC 的面积等于ABC 面积的三分之二?若存在,求出此时OP 的长;若不存在,请说明理由.(3)将直线AC 绕着点C 旋转45︒得到直线l ,直线l 与抛物线的交点为M (异于点C ),求M 点坐标.4.如图1,抛物线24y ax bx a =+-经过()10A -,,()04C ,两点,与x 轴交于另一点B .(1)求抛物线和直线BC 的解析式;(2)如图2,点P 为第一象限抛物线上一点,是否存在使四边形PBOC 面积最大的点P ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图3,若抛物线的对称轴EF (E 为抛物线顶点)与直线BC 相交于点F ,M 为直线BC 上的任意一点,过点M 作MN EF ∥交抛物线于点N ,以E ,F ,M ,N 为顶点的四边形能否为平行四边形?若能,请求出点N 的坐标;若不能,请说明理由. 5.如图,抛物线24y ax bx =+-与x 轴交于点()2,0A -,()4,0B ,与y 轴交于点C ,顶点为D .(1)求抛物线的解析式和顶点D 的坐标;(2)动点P ,Q 以相同的速度从点O 同时出发,分别在线段,OB OC 上向点B ,C 方向运动,过点P 作x 轴的垂线,交抛物线于点E . ①当四边形OQEP 为矩形时,求点E 的坐标;①过点E 作EM BC ⊥于点M ,连接,PM QM ,设BPM △的面积为1S ,CQM 的面积为2S ,当PE 将BCE 的面积分成1:3两部分时,请直接写出12S S 的值. 6.如图,抛物线2(0)y ax bx c a =++≠与x 轴相交于A ,B 两点,抛物线的对称轴为直线=1x -,其中点A 的坐标为(3,0)-.(1)求点B 的坐标;(2)已知1a =,C 为抛物线与y 轴的交点,求抛物线的解析式; (3)若点P 在抛物线上,且4POCBOCSS=,求点P 的坐标;(4)设点Q 是线段AC 上的动点,过点Q 作QD y 轴交抛物线于点D ,求线段QD 长度的最大值.7.如图,在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()30A -,,()10B ,两点,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △的面积最大时,求点P 的坐标;(3)Q 是x 轴上一动点,M 是第二象限内抛物线上一点,若以A ,C ,M ,Q 为顶点的四边形是平行四边形,直接写出点Q 的坐标.8.如图,直线132y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c =-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求四边形ABCM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90°得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围.9.如图,已知抛物线与x 轴交于()1,0A - 、()4,0B 两点,与y 轴交于点()0,3C .(1)求抛物线的解析式; (2)求直线BC 的函数解析式;(3)在抛物线上,是否存在一点P ,使PAB 的面积等于ABC 的面积?若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,抛物线26y ax bx =++与x 轴交于点()6,0B ,()2,0C -,与y 轴交于点A ,点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,PAB 的面积最大?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 作PE x ∥轴交抛物线于点E ,连接DE .是否存在点P ,使PDE △为等腰直角三角形?若存在,求点P 的坐标;若不存在,请说明理由.11.如图,直线l :112y x =-+与x 轴,y 轴分别交于点B ,C ,经过B ,C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A .(1)求该抛物线的解析式;(2)若点P 在直线l 下方的抛物线上,过点P 作PD ①x 轴交l 于点D ,PE ①y 轴交l 于点E ,求PD PE +的最大值;(3)若点P 在直线l 下方的抛物线上,F 为直线l 上的点,以A ,B ,P ,F 为顶点的四边形能否构成平行四边形?若能,直接写出点F 的坐标;若不能,请说明理由. 12.已知顶点为()1,5A 的抛物线2y ax bx c =++经过点()5,1B ,(1)求抛物线的解析式;(2)设C ,D 分别是x 轴、y 轴上的两个动点.①当四边形ABCD 的周长最小时,在图1中作直线CD ,保留作图痕迹并直接写出直线CD 的解析式;①点()(),>0P m n m 是直线y x =上的一个动点,Q 是OP 的中点,以PQ 为斜边按图2所示构造等腰Rt PQR △.在①的条件下,记PQR 与COD △的公共部分的面积为S ,求S 关于m 的函数关系式,并求S 的最大值.13.抛物线24y x x =-与直线y x =交于原点O 和点B , 与x 轴交于另一点A , 顶点为D .(1)填空: 点B 的坐标为___________, 点D 的坐标为___________.(2)如图1 , 连结OD P ,为x 轴上的动点, 当以O D P ,,为顶点的三角形是等腰三角形时, 请直接写出点P 的坐标;(3)如图2, M 是点B 关于拋物线对称轴的对称点, Q 是拋物线上的动点, 它的横坐标为 (05)m m <<, 连结MQ BQ MQ ,,与直线OB 交于点E . 设BEQ 和BEM △的面积分别为1S 和2S , 设12S t s =, 试求t 关于m 的函数解析式并求出t 的最值. 14.如图,二次函数的图象经过点()10A -,,()30B ,,()03C -,,直线22y x =-与x 轴、y 轴交于点D ,E .(1)求该二次函数的解析式(2)点M 为该二次函数图象上一动点.①若点M 在图象上的B ,C 两点之间,求DME 的面积的最大值. ①若MED EDB ∠∠=,求点M 的坐标.15.如图,在平面直角坐标系中,抛物线24y ax bx =+-与x 轴交于()2,0A -,B 两点,其对称轴直线2x =与x 轴交于点D .(1)求该抛物线的函数表达式为______;(2)如图1,点P 为抛物线上第四象限内的一动点,连接CD ,PB ,PC ,求四边形BDCP 面积最大值和点P 此时的坐标;(3)如图2,将该抛物线向左平移得到抛物线y ',当抛物线y '经过原点时,与原抛物线的对称轴相交于点E ,点F 为抛物线y '对称轴上的一点,点M 是平面内一点,若以点A ,E ,F ,M 为顶点的四边形是以AE 为边的菱形,请直接写出满足条件的点M 的坐标______.16.如图,已知抛物线2y x bx c =++与x 轴交于点()21,0A m -和点()2,0B m +,与y 轴交于点C ,对称轴轴为直线=1x -.(1)求抛物线的解析式;(2)点P 是直线AC 上一动点,过点P 作PQ y ∥轴,交抛物线于点Q ,以P 为圆心,PQ 为半径作P ,当P 与坐标轴相切时,求P 的半径;(3)直线()340y kx k k =++≠与抛物线交于M ,N 两点,求AMN 面积的最小值.17.如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于两点()1,0A -和()3,0B ,与y 轴交于点C ,抛物线上有一动点P ,抛物线的对称轴交x 轴于点E ,连接EC ,作直线BC .(1)求抛物线的解析式;(2)若点P 为直线BC 上方抛物线上一动点时,连接,PB PC ,当23EBC PBC S S =△△时,求点P 坐标;(3)如果抛物线的对称轴上有一动点Q ,x 轴上有一动点N ,是否存在四边形PQCN 是矩形?若存在,在横线上直接写出点N 的坐标,若不存在,请说明理由. 18.如图,直线122y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c=-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求三角形ACM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90︒得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围(直接写出结果即可).参考答案:1.(1)245y x x =-++; (2)15(3)存在,点N 的坐标为(5,0)-或(0,5)-或(0,0).2.(1)2142y x x =-++,91,2⎛⎫⎪⎝⎭(2)S 的最大值为4 (3)2m ≥或1249m -<≤-3.(1)抛物线的解析式为2=23y x x -- (2)不存在这样的点P , (3)M 点坐标是(45),或315()24-,4.(1)抛物线的解析式:234y x x =-++;直线BC 的解析式为4y x =-+;(2)当()26P ,时,四边形PBOC 面积最大; (3)能,点N 的坐标为52124⎛⎫ ⎪⎝⎭,或724⎛- ⎝或724⎛- ⎝.5.(1)2142y x x =--,91,2D ⎛⎫- ⎪⎝⎭.(2)①(-;①1215S S =或1279S S =6.(1)(1,0) (2)223y x x =+- (3)(4,21)或()4,5- (4)947.(1)224233y x x =--+(2)3(2P -,5)2(3)(5,0)-或(1,0)-8.(1)03A (,),20B -(,),60C (,),抛物线解析式为:2134y x x =-++; (2)3a =时,四边形ABCM 面积最大,其最大值为754,此时M 的坐标为153,4⎛⎫⎪⎝⎭;(3)当3m -≤≤-33m ≤≤时,线段O A ''与抛物线只有一个公共点.9.(1)239344y x x =-++(2)334y x =-+(3)存在,点P 的坐标为:()13,3P ,23P ⎫-⎪⎪⎝⎭,33P ⎫-⎪⎪⎝⎭10.(1)21262y x x =-++(2)153,2P ⎛⎫ ⎪⎝⎭(3)点P 坐标为()46,或()55.11.(1)2512y x x =-+ (2)3(3)13,2⎛⎫- ⎪⎝⎭或1(1,)212.(1)21119424y x x =-++(2)①4y x =-+;①当02m <≤时,218PQRSm =;当823m <≤时,27448S m m =-+-;当843m ≤≤时,21244S m m =-+;S 的最大值为:47答案第3页,共3页 13.(1)()5,5;()2,4-;(2)点P的坐标为()或()-或()4,0或()5,0; (3)()2150566t m m m =-+<<,当52m =时,t 的最大值为2524.14.(1)该二次函数的解析式是()()21323y x x x x =+-=--;(2)①DME 的面积的最大值为52;①点M的坐标为⎝⎭或()12--.15.(1)214433y x x =-- (2)PBDC S 四边形的最大值为17,此时点P 的坐标为()3,5-(3)⎛ ⎝⎭或⎛ ⎝⎭或⎛- ⎝⎭或8,⎛- ⎝⎭16.(1)223y x x =+-(2)2或4(3)817.(1)2=23y x x --(2)⎝⎭或⎝⎭ (3)存在,⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭18.(1)()0,2A ,()2,0B -,()4,0C ,211242y x x =-++ (2)2,()2,2(3)34m -≤≤-或32m -+≤。
精选中考二次函数压轴题(含答案)
精选中考二次函数压轴题(含答案)1.如图,二次函数c x y +-=221的图象经过点D ⎪⎭⎫ ⎝⎛-29,3,与x 轴交于A 、B 两点. ⑴求c 的值;⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式;⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)2.(2010福建福州)如图,在△ABC 中,∠C =45°,BC =10,高AD =8,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H . (1)求证:AH AD =EFBC;(2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值;(3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线QC 匀速运动(当点Q 与点C 重合时停止运动),设运动时间为t 秒,矩形EFFQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式.3.(2010福建福州)如图1,在平面直角坐标系中,点B 在直线y =2x 上,过点B 作x 轴的垂线,垂足为A ,OA =5.若抛物线y =16x 2+bx +c 过O 、A 两点.(1)求该抛物线的解析式;(2)若A 点关于直线y =2x 的对称点为C ,判断点C 是否在该抛物线上,并说明理由;(3)如图2,在(2)的条件下,⊙O 1是以BC 为直径的圆.过原点O 作⊙O 1的切线OP ,P 为切点(点P 与点C 不重合).抛物线上是否存在点Q ,使得以PQ 为直径的圆与⊙O 1相切?若存在,求出点Q 的横坐标;若不存在,请说明理由4.(2010江苏无锡)如图,矩形ABCD 的顶点A 、B 的坐标分别为(-4,0)和(2,0),BC=AC 与直线x =4(第2(图1) (图交于点E .(1)求以直线x =4为对称轴,且过C 与原点O 的抛物线的函数关系式,并说明此抛物线一定过点E ;(2)设(1)中的抛物线与x 轴的另一个交点为N ,M 是该抛物线上位于C 、N 之间的一动点,求△CMN 面积的最大值.5.(2010湖南邵阳)如图,抛物线y =2134x x -++与x 轴交于点A 、B ,与y 轴相交于点C ,顶点为点D ,对称轴l 与直线BC 相交于点E ,与x 轴交于点F 。
专题06 二次函数压轴题-备战2022年中考数学满分真题模拟题分类汇编(福建专用)(原卷版)
专题06 二次函数压轴题1.(2021•福建)已知抛物线2y ax bx c =++与x 轴只有一个公共点. (1)若抛物线过点(0,1)P ,求a b +的最小值;(2)已知点1(2,1)P -,2(2,1)P -,3(2,1)P 中恰有两点在抛物线上. ①求抛物线的解析式;②设直线:1l y kx =+与抛物线交于M ,N 两点,点A 在直线1y =-上,且90MAN ∠=︒,过点A 且与x 轴垂直的直线分别交抛物线和l 于点B ,C .求证:MAB ∆与MBC ∆的面积相等.2.(2020•福建)已知直线1:210l y x =-+交y 轴于点A ,交x 轴于点B ,二次函数的图象过A ,B 两点,交x 轴于另一点C ,4BC =,且对于该二次函数图象上的任意两点11(P x ,1)y ,22(P x ,2)y ,当125x x >时,总有12y y >.(1)求二次函数的表达式;(2)若直线2:(10)l y mx n n =+≠,求证:当2m =-时,21//l l ;(3)E 为线段BC 上不与端点重合的点,直线3:2l y x q =-+过点C 且交直线AE 于点F ,求ABE ∆与CEF ∆面积之和的最小值.3.(2019•福建)已知抛物线2(0)y ax bx c b =++<与x 轴只有一个公共点. (1)若抛物线与x 轴的公共点坐标为(2,0),求a 、c 满足的关系式;(2)设A 为抛物线上的一定点,直线:1l y kx k =+-与抛物线交于点B 、C ,直线BD 垂直于直线1y =-,垂足为点D .当0k =时,直线l 与抛物线的一个交点在y 轴上,且ABC ∆为等腰直角三角形.①求点A 的坐标和抛物线的解析式;②证明:对于每个给定的实数k ,都有A 、D 、C 三点共线.4.(2018•福建)已知抛物线2y ax bx c =++过点(0,2)A . (1)若点(2-,0)也在该抛物线上,求a ,b 满足的关系式;(2)若该抛物线上任意不同两点1(M x ,1)y ,2(N x ,2)y 都满足:当120x x <<时,1212()()0x x y y -->;当120x x <<时,1212()()0x x y y --<.以原点O 为心,OA 为半径的圆与抛物线的另两个交点为B ,C ,且ABC ∆有一个内角为60︒. ①求抛物线的解析式;②若点P 与点O 关于点A 对称,且O ,M ,N 三点共线,求证:PA 平分MPN ∠.5.(2021•泉州模拟)已知抛物线2y ax bx =+.(1)若抛物线与一次函数1y x =--有且只有一个公共点,求a 、b 满足的关系式; (2)设点Q 为抛物线上的顶点,点P 为平面内一点,若点P 坐标为(2,2)-,3OPQ S ∆=,且OP OQ >,抛物线经过点(,)A m n 和点(4,)B m n -,直线PB 与抛物线的另一交点为C .①求抛物线的解析式;②证明:对于任意实数m ,直线AC 必过一定点.6.(2021•厦门模拟)点1(A m -,1),1(B m ,1),2(C m ,4)在抛物线2()y a x h =-上,其中10m >,20m >.点D 在第四象限,直线AD AC ⊥交x 轴于点M ,且AD AC =.(1)若21m =, ①求该抛物线的解析式; ②(P m ,1)(1)4n m 是该抛物线上的动点,连接AP 交y 轴于点N ,点Q 的坐标为(0,4),求PNQ ∆面积的取值范围;(2)连接CD ,点K 在线段CD 上,2AM =,512ACK ACD S S ∆∆=.将抛物线2()y a x h =-平移,若平移后抛物线的顶点仍在原抛物线上,判断平移后的抛物线是否经过点K ,并说明理由.7.(2021•宁德模拟)已知抛物线2132y x x c =--+的顶点为A ,与y 轴交于点B .(1)求点A ,B 的坐标;(用含c 的代数式表示)(2)以AB 为边作平行四边形ABCD ,使得点C 在x 轴上,点D 在抛物线上. ①当四边形ABCD 是矩形时,求c 的值;②当点D 在AB 之间的一段抛物线上运动时,求四边形ABCD 面积的最大值.8.(2021•泉州模拟)已知顶点为D 的抛物线2(3)(0)y a x a =-≠交y 轴于点(0,3)C ,且与直线l 交于不同的两点A 、(B A 、B 不与点D 重合). (1)求抛物线的解析式; (2)若90ADB ∠=︒, ①试说明:直线l 必过定点;②过点D 作DF l ⊥,垂足为点F ,求点C 到点F 的最短距离.9.(2021•龙岩模拟)抛物线2y ax b =+经过点(4,0)A ,(0,4)B -,直线EC 过点(4,1)E -,(0,3)C -,点P 是抛物线上点A 、B 间的动点(不含端点A 、)B ,过P 作PD x ⊥轴于点D ,连接PC 、PE .(1)求抛物线与直线CE 的解析式; (2)求证:PC PD +为定值;(3)若PEC ∆的面积为1,求满足条件的点P 的坐标.10.(2021•海沧区模拟)已知抛物线2(0)y ax bx c a =++≠与x 轴只有一个公共点(2,0)A 且经过点1(3,)3.(1)求抛物线的函数解析式; (2)直线3:3l y x m -=+与抛物线2y ax bx c =++相交于B ,C 两点(C 点在B 点的左侧),与对称轴相交于点P ,且B ,C 分布在对称轴的两侧.若B 点到抛物线对称轴的距离为n ,且(23)CP t BP t =⋅. ①试探求n 与t 的数量关系;②求线段BC 的最大值,以及当BC 取得最大值时对应m 的值.11.(2021•莆田模拟)已知函数21(1)y mx m x =+-和22(1)(0y nx n x m =+->,0)n <的图象在第一象限内的交点为A ,且函数1y ,2y 的图象分别与x 轴正半轴交于点B ,C . (1)求点A 的坐标; (2)若90BAC ∠=︒,①求证:1mn =-;②函数1y ,2y 图象的顶点分别为M ,N ,设ABC ∆的外心为点P ,OMN ∆的内心为点Q .问是否存在m ,n 的值,使得O ,P ,Q 三点共线?若存在,求m ,n 的值;若不存在,说明理由.12.(2021•翔安区模拟)已知二次函数,为常数).(1)当,时,求二次函数的最小值;(2)当时,若在函数值的情况下,只有一个自变量的值与其对应,求此时二次函数的解析式;(3)当时,若在自变量的值满足的情况下,与其对应的函数值的最小值为21,求此时二次函数的解析式.13.(2021•梅列区一模)如图,顶点为,的二次函数图象与轴交于点,点在该图象上,直线交二次函数图象对称轴于点,点、关于点对称,连接、.(1)求该二次函数的关系式(用含的式子表示);(2)若点在对称轴右侧的二次函数图象上运动,请解答下列问题:2(y x bx c b =++c 2b =-3c =5c =4y =x 2c b =x 3b x b +y (P m )(0)m m >x (2,0)A m B OB l M M N P BN ON m B l①连接,当时,请判断的形状,并说明理由. ②求证:.14.(2021•三明模拟)已知抛物线的对称轴为直线,且经过点和点. (1)求抛物线的解析式;(2)点坐标为,过点作轴的平行线,设抛物线上的任意一点到直线的距离为,求证:;(3)点在轴上(点位于点下方),点,在抛物线上(点,均不同于点,点在点左侧),直线,与抛物线均有唯一公共点,直线交轴于点,求证:点为线段的中点.15.(2021•漳州模拟)已知面积为1的等腰直角三角形的三个顶点均在抛物线、为常数,且上,其中直角顶点与抛物线顶点重合. (1)求的值;(2)若直线与抛物线有公共点.①求的取值范围;OP 12OP MN =NOB ∆BNM ONM ∠=∠2x =(0,3)A (3,0)B C 3(2,)4-5(0,)4D -x l P l d PC d =E y E A M NM NAM N EM EN MN y F A EF 2(y ax bx a=+b 0)a >a (4)y t t =2(0)y ax bx a =+>t②求关于的函数的最大值.16.(2021•南平模拟)已知抛物线.(1)若抛物线与直线相交于点,. ①求抛物线的解析式;②已知点在抛物线上,且在直线上方,过点分别作、轴的垂线,交直线于点、,求的最大值;(2)已知抛物线与轴交于、两点,与轴交于点,过、、三点的圆与轴的另外一个交点,求证:是常数.17.(2021•思明区校级模拟)已知抛物线与轴交于,两点(点在点的左侧),与轴交于点,顶点的纵坐标是. (1)点的坐标是 (用含的代数式表示); (2)若直线经过点,求抛物线的解析式;(3)在(2)的条件下,将抛物线向右平移1个单位,再向上平移4个单位后,得到新的抛t 2(22)y at bt b =+-<<22(0)y x bx c c =-++>l (1,0)M -(2,6)N P l P x y l E F PE PF +22y x bx c =-++x A B y C A B Cy (0,)D n n 2(0)y ax bx c b =++>x A B A B y (0,3)C -D 4-D b 1y x =-B物线,直线上有一动点,过点作两条直线,分别与新抛物线有唯一的公共点,(直线,不与轴平行).求证:直线恒过一定点.18.(2021•闽侯县模拟)在平面直角坐标系中,已知抛物线. (1)求抛物线顶点的坐标;(用含的代数式表示)(2)抛物线与轴只有一个公共点,经过点的直线与抛物线交于点,,与轴交于点.①判断的形状,并说明理由;②已知,,设的外心为,当点在线段上时,求点的纵坐标的取值范围.20.(2021•永定区模拟)如图,平面直角坐标系中,为坐标原点,直线交轴于点,交轴于点,点在线段上,且的面积为16,抛物线经过、两点;(1)点坐标为 ;点坐标为 ;2y =-P P E F PE PF y EF xOy 212y x bx =+Q b x (0,2)A B x K AOB ∆(2,0)E (4,0)F AOB ∆M K EF M m O 364y x =-+y A x C B OA ABC ∆214y x bx c=-++B C C B(2)求抛物线解析式;(3)为线段上一点,连接,过点作交抛物线于,若,求点坐标;(4)在(3)的条件下,将绕点逆时针旋转一定的角度得到,其中点与点对应,点与点对应,在旋转过程中过点作轴交线段于,连接,当平分时,求点坐标,并判断点是否在抛物线上.21.(2021•福建模拟)已知抛物线的解析式与轴交于、两点,点的坐标为抛物线与轴正半轴交于点,面积为6. (1)如图1,求此抛物线的解析式;(2)为第一象限抛物线上一动点,过作,垂足为点,设点的横坐标为,线段的长为,求与之间的函数关系式,并直接写出自变量的取值范围; (3)如图2,在(2)的条件下,过点作的平行线交轴上一点,连接,在D OC AD D DE AD ⊥E 32AD DE =E ADE ∆A AMN ∆D M E N M MH y ⊥OA H NH NH AM MM 23y ax bx =++x A B B (1,0)-y C ABC ∆P P PG AC ⊥G P t PG d d t t B CP y F AF BF的延长线上取点,连接,若,,求点的坐标.22.(2020•福州模拟)综合与探究如图1,抛物线与轴交于,两点,与轴交于点.(1)求抛物线的表达式;(2)点是抛物线上异于点的动点,若的面积与的面积相等,求出点的坐标;(3)如图2,当为的中点时,过点作轴,交抛物线于点.连接,将沿轴向左平移个单位长度,将平移过程中与重叠部分的面积记E PE PE AF =180AFE BEP ∠+∠=︒P 23y ax bx =+-x (2,0)A -(4,0)B y C N C NAB ∆CAB ∆N P OB P PD x ⊥D BD PBD ∆x m (02)m <PBD ∆OBC ∆为,求与的函数关系式.23.(2020•思明区校级模拟)已知二次函数的图象经过点.(1)当,时,求该二次函数的表达式;(2)已知点,在该二次函数的图象上,请直接写出的取值范围; (3)当时,若该二次函数的图象与直线交于点,,将此抛物线在直线下方的部分图象记为,①试判断此抛物线的顶点是否一定在图象上?若是,请证明;若不是,请举反例; ②已知点关于抛物线对称轴的对称点为,若在图象上,求的取值范围.S Sm 2(0)y ax bx c a =++>(1,2)A 1b =4c =-(1,5)M t -(1,5)N t +t 1a =31y x =-P Q PQC C P P 'P 'Cb24.(2020•鼓楼区一模)已知抛物线过点(1)若点也在该抛物线上,请用含的关系式表示;(2)若该抛物线上任意不同两点,、,都满足:当时,;当时,,若以原点为圆心,为半径的圆与抛物线的另两个交点为、在左侧),且有一个内角为,求抛物线的解析式;(3)在(2)的条件下,若点与点关于点对称,且、、三点共线,求证:平分.25.(2020•泉州模拟)二次函数的顶点是直线和直线的交点.(1)用含的代数式表示顶点的坐标;(2)①当时,的值均随的增大而增大,求的取值范围;②若,且满足时,二次函数的最小值为2,求的取值范围.(3)试证明:无论取任何值,二次函数的图象与直线总有两个不同的交点.2(0)y ax bx c a =++≠(0,2)A -(2,0)-a b 1(M x 1)y 2(N x 2)y 120x x <<1212()()0x x y y --<120x x <<1212()()0x x y y -->O OA B (C B C ABC ∆60︒P O A O M N PA MPN∠2y x px q =++M 12y x =-y x m =+m M 2x 2y x px q =++x m 6m =x 13t x t -+t m 2y x px q =++y x m =+26.(2020•晋安区一模)在平面直角坐标中,已知点在抛物线上,且.(1)若,求,的值;(2)若该抛物线与轴交于点,其对称轴与轴交于点,则命题“对于任意一个,都存在,使得”是否正确?若正确,请证明;若不正确,请举反例;(3)将该抛物线平移,平移后的抛物线仍经过,点的对应点为,当时,求平移后抛物线的顶点所能达到的最高点的坐标.27.(2020•福清市模拟)已知抛物线的顶点在轴上.(1)若点是抛物线最低点,且落在轴正半轴上,直接写出,,的取值范围; (2),,,是抛物线上两点,若,则;若,则,且当的绝对值为4时,为等腰直角三角形(其中. ①求抛物线的解析式;②设中点为,若,求点纵坐标的最小值.A 2(0)y x bx c b =++>(1,1)A -4b c -=b c yBx C (01)k k <<b OC k OB =(1,1)-A 1A (1,21)m b --32m -2()y a x h k =-+A x A x a h k 1(P x 1)y 2(Q x 2)y 120x x <<2121()()0x x y y --<120x x >>2121()()0x x y y -->1y APQ ∆90)PAQ ∠=︒PQ N 6PQ N28.(2020•福建模拟)已知抛物线与直线相交于点,,直线与轴交于点.(1)当时,求的值; (2)点是抛物线上的动点,过点作直线于点,当时,求的值;(3)点是抛物线上的动点,过点作轴交直线于点,当时,求证:不论为何实数,的值为定值,并求定值;(4)若将(2)的抛物线改为” ”,其他条件不变,则的值还为定值吗?若是,请求出定值;若不是,说明理由.2:3x C y =:l y kx b =+A B l y P 0k =2OPAB M M MG ⊥l G 0k =GMGA GBM M //MG y l G 2k =b MGGA GB2y ax =MGGA GB29.(2020•福州模拟)已知抛物线与轴交于,,,两点.(1)若,,求的长;(2)点在点,间的抛物线上(不含点,,若, ①求的值;②以,为边作矩形,当点落在直线上,且矩形的面积最小时,求抛物线的解析式.2y x bx c =++x 1(A x 0)2(B x 0)12()x x <2b =5c =-AB (,)C m n A B A )B 90ACB ∠=︒n AC BC ACBD D 2x =ACBD30.(2020•福州模拟)在平面直角坐标系中,抛物线的对称轴是轴,过点作一直线与抛物线相交于,两点,过点作轴的垂线与直线相交于点.(1)求抛物线的解析式;(2)判断点是否在直线上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切.过抛物线上的任意一点(除顶点外)作该抛物线的切线,分别交直线和直线于点,,求的值.xOy 22:(4)C y kx k k x =+-y (0,2)F C P Q Q x OP A C A 2y =-C l 2y =2y =-M N 22MF NF-。
中考数学总复习《二次函数压轴题(面积问题)》专题训练-附答案
中考数学总复习《二次函数压轴题(面积问题)》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.已知矩形OABC中,OA=3,AB=6,以OA,OC所在的直线为坐标轴,建立如图1的平面直角坐标系.将矩形OABC绕点O顺时针方向旋转,得到矩形ODEF,当点B在直线DE上时,设直线DE和x轴交于点P,与y轴交于点Q.(1)求证:△BCQ△△ODQ;(2)求点P的坐标;(3)若将矩形OABC向右平移(图2),得到矩形ABCG,设矩形ABCG与矩形ODEF重叠部分的面积为S,OG=x,请直接写出x≤3时,S与x之间的函数关系式,并且写出自变量x的取值范围.2.如图14,已知点A(-1,0),B(4,0),点C在y轴的正半轴上,且△ACB=900,抛物线2=++y ax bx c经过A 、B 、C 三点,其顶点为M.(1)求抛物线2y ax bx c =++的解析式;(2)试判断直线CM 与以AB 为直径的圆的位置关系,并加以证明;(3)在抛物线上是否存在点N ,使得BCN S 4∆=如果存在,那么这样的点有几个?如果不存在,请说明理由.3.如图一所示,在平面直角坐标系中,抛物线28y ax bx =+-与x 轴交于(4,0)(2,0)A B -、两点,与y 轴交于点C .(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接PA、PC,求PAC△面积的最大值及此时点P的坐标;(3)设直线135 :4l y kx k=+-交抛物线于点M、N,求证:无论k为何值,平行于x轴的直线237 :4l y=-上总存在一点E,使得MEN∠为直角.4.如图,顶点为P(2,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M(1)求该二次函数的关系式.(2)若点A的坐标是(3,-3),求△OAP的面积.(3)当点A在对称轴l右侧的二次函数图象上运动时,l上有一点N,且点M、N关于点P对称,试证明:△ANM=△ONM.5.已知开口向下的抛物线223y x ax -=-+与x 轴的交点为A 、B 两点(点A 在点B 的左侧),与y 轴的交点为C ,OC =3OA .(1)求出该抛物线的解析式;(2)在抛物线第四象限上是否存在一点P ,使得△P AC 的面积等于△PBC 的面积的3倍,若存在,求点P 的坐标,若不存在,请说明理由;(3)P 是该抛物线上位于对称轴右侧的动点,经过点P 的直线交对称轴于G ,作PH △PG ,交对称轴于H ,当直线PG 与抛物线有且只有一个交点P 时,求证△PGH 的外心一定是某个定点,并求出这个定点的坐标.6.如图,已知等腰直角三角形ABC 90B 4AB BC == 点P 为AC 的中点,点F 为BC 边上一个动点,点E 在AB 边上,且满足条件45EPF ∠=︒,设图中阴影部分图形的面积为1S .(1)求证:APE CFP ∠=∠;(2)若AE CF =,求CF 的长;(3)设CPF 的面积为2S ,CF x =和12S y S =.求y 关于x 的函数解析式和自变量x 的取值范围,并求出y 的最大值.7.如图,已知抛物线2y ax c =+过点(-2,2),(4,5),过定点F (0,2)的直线l :y =kx +2与抛物线交于A 、B 两点,点B 在点A 的右侧,过点B 作x 轴的垂线,垂足为C .(1)求抛物线的解析式;(2)当点B 在抛物线上运动时,判断线段BF 与BC 的数量关系(>、<、=),并证明你的判断;(3)P 为y 轴上一点,以B 、C 、F 、P 为顶点的四边形是菱形,设点P (0,m ),求自然数m 的值;BPB'与ABC重叠部分的面积为判断ABC的形状,并证明;关于x的函数解析式,并直接写出自变量9.将抛物线2487y x x -=+先向左平移1个单位长度,再向下平移3个单位长度得到抛物线C ,经过定点D 的直线2y kx =+()0k ≠交抛物线C 于A ,B 两点(点A 在点B 的左侧),点O 为坐标原点.(1)直接写出抛物线C 的解析式和定点D 的坐标;(2)用字母S 表示三角形的面积,若21AOD BOD S S =-△△.请补充图1,求k 的值;(3)若点P 在直线=2y -上运动,且满足直线PA 与直线PB 分别与y 轴交于M 、N 两点,请补充图2,求证:OM 与ON 的积是定值.3(2)如图1,直线CD 交抛物线于另一点D ,过点D 作DE x ⊥轴于点E ,过点E 作//EF AC 交CD 于点F .求证://BF y 轴;(3)如图2,P 和Q 为抛物线上两点,直线BP ,BQ 交y 轴于点M ,N 和9OM ON ⋅=,求APQ △面积的最小值.12.已知抛物线()()2120y ax a x a =+--≠.(1)若1a =-,求该抛物线的顶点坐标;(2)若1a =,抛物线与x 轴交于A ,B 两点,点P 是抛物线上点A 与点B 之间的动点(不包含点A ,B ). △求PAB 面积的最大值,并求此时点P 的坐标;△点C 、D 是该抛物线上两点,且位于x 轴的两侧(点C 在点D 的右侧),点E 为直线4y x =-与y 轴的交点,连接EC ED 、.若直线OE 平分CED ∠,求证:C 、O 、D 三点共线.13.已知二次函数()()2211y kx k x k =-+++(0k ≠且k 为实数).(1)求证:无论k 为何值,该函数的图象与x 轴总有两个交点.(2)该函数的图象与x 轴交于A 、B 两点,与y 轴交于点C .当ABC 的面积等于2时,求k 的值.14.如图,在x轴上有两点A(m,0),B(n,0)(n>m>0),分别过点A,B作x轴的垂线交抛物线y=x2于点C,D,直线OC交直线BD于点E,直线OD交直线AC于点F.点E,F的纵坐标分别为y E,y F.(1)特例探究(填空):当m=1,n=2时,y E=____,y F=____;当m=3,n=5时,y E=____,y F=____.(2)归纳证明:对任意m,n(n>m>0),猜想y E与y F的大小关系,并证明你的猜想.(3)拓展应用:连结EF,AE,当S四边形OFEB=3S△OFE时,直接写出m与n的关系及四边形OFEA的形状.15.我们约定:图象关于y 轴对称的函数称为偶函数.(1)下列函数是偶函数的有________(填序号);△2023y x =+;△220012020y x =-+;△ 6.09y x=;△220002023 6.19y x x =-+. (2)已知二次函数()()22111y k x k x =++-+(k 为常数)是偶函数,将此偶函数向下平移得到新的二次函数2y ax bx c =++,新函数的图象与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,若以AB 为直径的圆恰好经过点C ,求平移后新函数的解析式;(3)如图,已知偶函数2y ax bx c =++(0a ≠)经过()1,2和()2,5,过点()0,2E 的一次函数的图象与二次函数的图象交于A ,B 两点(A 在B 的左侧),过点AB 分别作AC x ⊥轴于点C ,BD x ⊥轴于点D ,取AB 的中点Q ,连接CQ 、DQ ,分别用1S ,2S 和3S 表示ACQ ,QCD 和QDB 的面积,若213S S S =⋅. △证明:13111S S +=; △求直线AB 的解析式.参考答案:1.【答案】(1)(2)P 的坐标是(5,0);(3)S =2229(0)35{315279(3)8485x x x x x ≤≤-+-<≤. 2.【答案】1) 213y x +x+222=-.(2)直线CM 与以AB 为直径的圆相切. (3).3.【答案】(1)228=+-y x x (2)PAC △面积的最大值为8,此时点P 的坐标为()2,8P --(1)ABC是等腰直角三角形)24y x=【答案】解:(1)△的坐标为(2 -,2528△DG DE BC BE=,即5DG 31023=.△DG=1. △△D 的半径是1,且DG△BE ,△BE 是△D的切线.(3)由题意,得E (23-,0),B (2,2).设直线BE 为y=kx+h ,则2k h 2{2k h 03+=-+=,解得,3k 4{1h 2==. △直线BE 为:31y x 42=+. △直线BE 与抛物线的对称轴交点为P ,对称轴直线为x=1 △点P 的纵坐标5y 4=,即P (1,54). △MN△BE ,△△MNC=△BEC .△△C=△C=90°,△△MNC△△BEC .△CN MC EC BC =,即CN t 823=.△4CN t 3=. △4DN t 13=-. △PND 14555S DN PD t 1t 23434∆⎛⎫=⋅⋅=-⋅=- ⎪⎝⎭ 2MNC 1142S CN CM t t t 2233∆=⋅⋅=⋅⋅= ()PDCM 11551S PD CM CD t 1t 22482=+⋅=⋅+⋅=+梯形(). △()22PND MNC PDCM 2422S S S S t t t 13333∆∆=+-=-+=--+梯形(0<t <2). △抛物线()222S t 133=--+(0<t <2)的开口方向向下 △S 存在最大值,当t=1时,S 最大=23.11.【答案】(1)243y x x =-+;(2)见解析;(3)APQ S 的最小值为1.(2)△PAB面积最大值13=,或k,n=2时,(3) n=2m,21x-(3)△。
二次函数压轴题(含答案)[1]
二次函数压轴题(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(二次函数压轴题(含答案)(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为二次函数压轴题(含答案)(word版可编辑修改)的全部内容。
面积类1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.考点:二次函数综合题.专题:压轴题;数形结合.分析:(1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长.(3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,MN 的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值.解答:解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则:a(0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=﹣x+3.已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3);∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3).(3)如图;∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,∴S△BNC=(﹣m2+3m)•3=﹣(m﹣)2+(0<m<3);∴当m=时,△BNC的面积最大,最大值为.2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.考点:二次函数综合题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数压轴之面积重叠问题
1.(2014年四川资阳)如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.
(1)求抛物线的解析式;
(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;
(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.
解:(1)由题意可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),则
,解得.故抛物线的解析式为y=﹣x2+2x+3.
(2)①当MA=MB时,M(0,0);②当AB=AM时,M(0,﹣3);③当AB=BM时,M(0,3+3)或M (0,3﹣3).
所以点M的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3).
(3)平移后的三角形记为△PEF.设直线AB的解析式为y=kx+b,则,解得.
则直线AB的解析式为y=﹣x+3.△AOB沿x轴向右平移m个单位长度(0<m<3)得到△PEF,
易得直线EF的解析式为y=﹣x+3+m.设直线AC的解析式为y=k′x+b′,则,解得.则直线AC的解析式为y=﹣2x+6.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.
①当0<m≤时,如图1所示.设PE交AB于K,EF交AC于M.则BE=EK=m,PK=PA=3﹣m,联立,解得,即点M(3﹣m,2m).
故S=S△PEF﹣S△PAK﹣S△AFM=PE2﹣PK2﹣AF•h=﹣(3﹣m)2﹣m•2m=﹣m2+3m.
②当<m<3时,如图2所
示.设PE交AB于K,交AC于H.因为BE=m,所以PK=PA=3﹣m,
又因为直线AC的解析式为y=﹣2x+6,所以当x=m时,得y=6﹣2m,所以点H (m,6﹣2m).
故S=S△PAH﹣S△PAK=PA•PH﹣PA2=﹣(3﹣m)•(6﹣2m)﹣(3﹣m)2=m2﹣3m+.
综上所述,当0<m≤时,S=﹣m2+3m;当<m<3时,S=m2﹣3m+.
2. (2014•湖北黄冈)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P 移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.
(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标
(2)用含t的代数式表示点P、点Q的坐标;
(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;
(4)求出S与t的函数关系式.
解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代
入得,
解得,∴抛物线解析式为y=x2﹣x,
∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);
(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,
∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,
∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,
∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),
若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=,
若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1,
综上所述,存在t=或1,使得△OPQ的顶点O或顶点Q在抛物线上;(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,
点P与点C重合时,OP=3,t=3÷2=1.5,
t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,
所以,分三种情况讨论:
①0<t≤1时,S=×(2t)×=t2,
②1<t≤1.5时,S=×(2t)×﹣×(t﹣)2=2t﹣1;
③1.5<t<2时,S=×(2+3)×1﹣×[1﹣(2t﹣3)]2=﹣2(t﹣2)2+;所以,S与t的关系式为S=.
3. (2014•攀枝花)如图,抛物线y=ax2﹣8ax+12a(a>0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点D的坐标为(﹣6,0),且∠ACD=90°.
(1)请直接写出A、B两点的坐标;
(2)求抛物线的解析式;
(3)抛物线的对称轴上是否存在点P,使得△PAC的周长最小?若存在,求出点P的坐标及周长的最小值;若不存在,说明理由;
(4)平行于y轴的直线m从点D出发沿x轴向右平行移动,到点A停止.设直线m与折线DCA的交点为G,与x 轴的交点为H(t,0).记△ACD在直线m左侧部分的面积为s,求s关于t的函数关系式及自变量t的取值范围.
解:(1)抛物线的解析式为:y=ax2﹣8ax+12a(a>0),
令y=0,即ax2﹣8ax+12a=0,解得x1=2,x2=6,∴A(2,0),B(6,0).
(2)抛物线的解析式为:y=ax2﹣8ax+12a(a>0),
令x=0,得y=12a,∴C(0,12a),OC=12a.
在Rt△COD中,由勾股定理得:CD2=OC2+OD2=(12a)2+62=144a2+36;
在Rt△COD中,由勾股定理得:AC2=OC2+OA2=(12a)2+22=144a2+4;
在Rt△COD中,由勾股定理得:DC2+AC2=AD2;
即:(144a2+36)+(144a2+4)=82,解得:a=或a=﹣(舍去),
∴抛物线的解析式为:y=x2﹣x+.
(3)存在.对称轴为直线:x=﹣=4.
由(2)知C(0,),则点C关于对称轴x=4的对称点为C′(8,),
连接AC′,与对称轴交于点P,则点P为所求.此时△PAC周长最小,最小值为AC+AC′.设直线AC′的解析式为y=kx+b,则有:
,解得,∴y=x﹣.
当x=4时,y=,∴P(4,).
过点C′作C′E⊥x轴于点E,则C′E=,AE=6,
在Rt△AC′E中,由勾股定理得:AC′==4;
在Rt△AOC中,由勾股定理得:AC==4.∴AC+AC′=4+4.∴存在满足条件的点P,点P坐标为(4,),△PAC周长的最小值为4+4.(4)①当﹣6≤t≤0时,如答图4﹣1所示.
∵直线m平行于y轴,∴,即,解得:GH=(6+t)
∴S=S△DGH=DH•GH=(6+t)•(6+t)=t2+2t+6;。